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1. Introduction

We investigate the boundedness character of solutions of the rational system in the plane

xn1 
11xn

xnyn

yn1 
22xnyn

A2xn

, n  0,1,… 1

with A2  0 and the remaining parameters nonnegative, and with arbitrary nonnegative initial
conditions such that the denominators are always positive.
In the numbering system which was introduced in [6], System (1) contains the following 12
special cases of rational systems:

12,14, 12,29, 12,35, 12,47,
14,30, 15,14, 15,29, 15,35,

15,47, 29,30, 30,35, 30,47.
The boundedness of the six special cases:

12,47, 15,14, 15,29, 15,35, 15,47, and 30,47
was established in [5]. Here we establish the boundedness character of solutions in the
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remaining six cases. We strongly believe that the methods and techniques we develop here to
understand the boundedness of various special cases of rational systems will also be useful in
analyzing the boundedness character of solutions in any mathematical model that involves
systems of difference equations. For some work on rational systems see [5]-[6], [9]-[13], and
[23]. Also for some basic results in the area of difference equations and systems see [1]-[4],
[7]-[8], [14]-[22] and [24].
The following lemma will be useful in the sequel.

Lemma 1.1. Let yn be an arbitrary sequence of positive numbers and let xn be a solution
of the difference equation

xn1 
1

xn  yn
, n  0,1,… .

Then

xn1 − xn−1 
−ynxn−1

2  yn−1xn−1 − 1 
yn−1
yn 

1  ynxn−1  yn−1
.

2. The Boundedness Character of System (12,14)

In this section we investigate the boundedness character of solutions of the system:
xn1  1

xnyn

12,14 :
yn1  2yn

A2xn

, n  0,1,… 2

with positive parameters and with arbitrary nonnegative initial conditions such that the
denominators are always positive.
We establish that for every solution xn,yn, the first component xn is always bounded,

for all values of the parameters and for all initial conditions. For the second component, yn,
we show that it is unbounded in a certain region of the parameters and for some initial
conditions.

Theorem 2.1. Letxn,yn be a solution of System 2.Then the sequence xn is bounded.

Proof. Assume for the sake of contradiction that there exists a sequence of indices ni such
that
xni 1 →  and xni 1  xn, for n  ni  1. 3

Then, clearly
xni
,yni

,yni −1 → 0 and xni −1 → .
In view of Lemma 1.1,

xni 1 − xni −1 
−yni

xni −1
2  yni −1xni −1 − 1 

yni −1
yni



1  yni
xni −1  yni −1

4



Boundedness Character of a Rational System 3
and

yni −1
yni

 A2
2 

xni −1
2 ,

it follows that

xni −1
2  yni −1xni −1 − 1 

yni −1
yni

 xni −1
2  yni −1 −

1
2 xni −1 −

1A2
2  0

and so

xni 1  xni −1,

which is a contradiction. 

Theorem 2.2. Assume that

2  A2.

Letxn,yn be a solution of System 2 with initial conditions

x0  2 − A2 and y0  max 1
2 − A2

, 1 − 2 − A22
2 − A2

.

Then

n→
lim xn  0 and

n→
lim yn  .

Proof. Indeed,

x1  1
x0  y0  1

y0  2 − A2 and y1 
2

A2  x0
 y0  y0

and by induction, we see that

xn1  2 − A2 and yn1  yn, for n ≥ 0

from which the result follows. 
The following result describes the global character of solutions of System (2) when

2 ≤ A2. 5

Theorem 2.3. Assume that 5 holds.Then every solution xn,yn of system 2 is bounded and
converges to a not necessarily prime period − two solution.

Proof. The proof is straightforward and will be omitted. 
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3. The Boundedness Character of System (12,29)

In this section we investigate the boundedness character of solutions of the system:
xn1  1

xnyn

12,29 :
yn1  2yn

A2xn

, n  0,1,… 6

with positive parameters and with arbitrary nonnegative initial conditions such that the
denominators are always positive.
We establish that for every solution xn,yn, the first component xn is always bounded, for
all values of the parameters and for all initial conditions. For the second component, yn, we
show that it is unbounded in a certain region of the parameters and for some initial conditions.

Theorem 3.1. Let xn,yn be a solution of system 6.Then the sequence xn is bounded.

Proof. Assume for the sake of contradiction that there exists a sequence of indices ni such
that

xni1 →  and xni1  xn, for n  ni  1. 7
Then, clearly

xni ,yni → 0, yni−1 →
2
A2
, and xni−1 → .

In view of Lemma 1.1

xni1 − xni−1 
−ynixni−1

2  yni−1xni−1 − 1 
yni−1
yni



1  ynixni−1  yni−1
8

and
yni−1
yni

 yni−1
2  yni−1

 A2  xni−1,

it follows that

xni−1
2  yni−1xni−1 − 1 

yni−1
yni

 xni−1
2  yni−1 −

1yni−1
2  yni−1

xni−1 −
1A2yni−1
2  yni−1

 0

and so
xni1  xni−1

which is a contradiction. 

Theorem 3.2. Assume that A2  1. Let xn,yn be a solution of system 6.Assume that x,y
is the equilibrium point when it exists of system 6.Choose initial conditions

x0  2 − A2 and y0  max 1
2 − A2

, y .

Then

n→
lim xn  0 and

n→
lim yn  .
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Proof. Indeed,
x1  1

x0  y0  1
y0  1 − A2 and y1  1

A2  x0
 y0  y0

and by induction, we see that
xn1  1 − A2 and yn1  yn, for n ≥ 0

from which the result follows. 

4. The Boundedness Character of Solutions of System (12,35)

Here we investigate the boundedness character of solutions of the rational system
xn1  1

xnyn

12,35 :

yn1  2xn2yn

1xn

, n  0,1,… 9

with positive parameters and with arbitrary nonnegative initial conditions such that the
denominators are always positive.
We establish that for every solution xn,yn, the first component xn is always bounded,

for all values of the parameters and for all initial conditions. For the second component, yn,
we show that it is unbounded in a certain region of the parameters and for some initial
conditions.

Theorem 4.1. Let xn,yn be a solution of system 6.Then the sequence xn is bounded.

Proof. The proof is along the lines of the proof of Theorem 2.1 and it will be omitted. 

Theorem 4.2.Assume that 2  1. Let xn,yn be a solution of system 9.Assume that x,y is
the equilibrium point when it exists of system 9.Choose initial conditions

x0  2 − 1 and y0  max 1
2 − 1

, y .

Then

n→
lim xn  0 and

n→
lim yn  .

Proof. Indeed,

x1  1
x0  y0  1

y0  2 − 1 and y1 
2
1  x0

 y0  y0

and by induction, we see that

xn1  2 − 1 and yn1  yn, for n ≥ 0

from which the result follows.
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5. The Boundedness Character of System (14,30)

In this section we investigate the boundedness character of solutions of the system:
xn1  1xn

1yn

14,30 :
yn1  22yn

B2xnyn

, n  0,1,… 10

with positive parameters and with arbitrary nonnegative initial conditions such that the
denominators are always positive.
We establish that for every solution xn,yn, the second component yn is always bounded,

for all values of the parameters and for all initial conditions. For the first component, xn, we
show that it is unbounded in a certain region of the parameters and for some initial conditions.

Theorem 5.1. Let xn,yn be a solution of system 10.Then the sequence yn is bounded.

Proof. Assume for the sake of contradiction that there exists a sequence ni such that
yni1 → .

From

xn1yn1 
1xn

B2xn  yn

2  2yn
1  yn

it follows that the sequence xn1  yn1 is bounded. Then, clearly,
xni ,yni → 0

and from this it follows that
xni−1 →  and yni−1 → 0

or
xni−1 → 0 and yni−1 → .

For each of the above two cases, and in view of

xni 
1xni−1
1  yni−1

and yni 
2  2yni−1

B2xni−1  yni−1
,

we obtain a contradiction and the proof is complete. 

Theorem 5.2. Assume that 1  2  1. Let xn,yn be a solution of system 10 with initial
conditions x0, y0 such that

x0  max 1
B21 − 2 − 1

, x and y0  1 − 1.

Then

n→
lim xn   and

n→
lim yn  0.

Proof. The proof is along the lines of the proof of Theorem 2.2 and it will be omitted. 
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6. The Boundedness Character of System (29,30)

In this section we investigate the boundedness character of solutions of the system:
xn1  11xn

1yn

29,30 :
yn1  22yn

xnyn

, n  0,1,… 11

with positive parameters and with arbitrary nonnegative initial conditions such that the
denominators are always positive.
We establish that for every solution xn,yn, the second component yn is always bounded,

for all values of the parameters and for all initial conditions. For the first component, xn, we
show that it is unbounded in a certain region of the parameters and for some initial conditions.

Theorem 6.1. Let xn,yn be a solution of system 11.Then the sequence yn is bounded.

Proof. Assume for the sake of contradiction that there exists a sequence of indices ni such
that

yni1 → .
Then, clearly,

xni ,yni → 0.
From this and from

xni 
1

1  yni−1


1xni−1
1  yni−1

it follows that
yni−1 →  and xni−1

yni−1
→ 0.

From

yni 
2

xni−1  yni−1

2 

yni−1
xni−1

1  yni−1
xni−1

it follows that
yni → 2

which is a contradiction. 

Theorem 6.2. Assume that 1  2  1. Let xn,yn be a solution of system 11 with initial
conditions x0, y0 such that

x0  max 2
1 − 2 − 1

, x and y0  1 − 1.

Then

n→
lim xn   and

n→
lim yn  0.
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Proof. The proof is along the lines of the proof of Theorem 2.2 and it will be omitted. 

7. The Boundedness Character of System (30,35)

We also investigate in this section the boundedness character of solutions of the system:
xn1  11xn

B1xnyn

30,35 :

yn1  2xn2yn

A2xn

, n  0,1,… 12

with positive parameters and with arbitrary nonnegative initial conditions such that the
denominators are always positive.
We establish that for every solution xn,yn, the first component xn is always bounded, for
all values of the parameters and for all initial conditions. For the second component, yn, we
show that it is unbounded in a certain region of the parameters and for some initial conditions.

Theorem 7.1. Let xn,yn be a solution of system 12.Then the sequence yn is bounded.

Proof. From

xn1yn1 
1  1xn
A1  xn


2xn  2yn
B2xn  yn

it follows that the product xn1yn1 is bounded from above and from below.
Assume for the sake of contradiction that there exists a sequence ni such that

xni1 → .
Then, clearly

xni ,yni → 0
which is a contradiction. 

Theorem 7.2. Assume that

2  A2 
1
B1
.

Let xn,yn be a solution of system 12 with initial conditions x0, y0 such that

y0  max 1
2 − A2 − 1

B1

, y and x0  2 − A2.

Then

n→
lim xn  0 and

n→
lim yn  .

Proof. The proof is along the lines of the proof of Theorem 2.2 and it will be omitted. 

8. Conclusions and Future Work



Boundedness Character of a Rational System 9
In this paper we investigated the boundedness character of solutions of several systems in

the plane. The boundedness character of solutions of a system is one of the main ingredients in
understanding the global behavior of a system including global stability. Our future goal is to
discover the pattern of boundedness of the complete rational system in the plane

xn1 
11xn1yn

A1B1xnC1yn

yn1 
22xn2yn

A2B2xnC2yn

, n  0,1,… . 13

In addition, we want to study systematically the global behavior of all solutions of System (13)
and to extend and generalize the results to general systems in two dimensions and higher.
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