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Abstract. We investigate the boundedness character of solutions of a rational system with
nonnegative parameters and with arbitrary nonnegative initial conditions such that the
denominators are always positive.

Key words: Boundedness, Rational systems.

AMS Subject Classifications : 39A10.

1. Introduction

We investigate the boundedness character of solutions of the rational system in the plane

_ a1+fiXn
Xn+l = Xn+yn
, n=0,1,... (1)
_ Bty
yrH—l - As+Xn

with A, > 0 and the remaining parameters nonnegative, and with arbitrary nonnegative initial
conditions such that the denominators are always positive.
In the numbering system which was introduced in [6], System (1) contains the following 12
special cases of rational systems:

(12,14), (12,29), (12,35), (12,47),

(14,30), (15,14), (15,29), (15,35),

(15,47), (29,30), (30,35), (30,47).

The boundedness of the six special cases:
(12,47), (15,14), (15,29), (15,35), (15,47), and (30,47)
was established in [5]. Here we establish the boundedness character of solutions in the
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remaining six cases. We strongly believe that the methods and techniques we develop here to
understand the boundedness of various special cases of rational systems will also be useful in
analyzing the boundedness character of solutions in any mathematical model that involves
systems of difference equations. For some work on rational systems see [5]-[6], [9]-[13], and
[23]. Also for some basic results in the area of difference equations and systems see [1]-[4],
[7]-[8], [14]-[22] and [24].

The following lemma will be useful in the sequel.

Lemma 1.1. Let {y,} be an arbitrary sequence of positive numbers and let {x,} be a solution
of the difference equation

ai
Xn+1: Xn+yn, n:(),l,... .

Then
—Yn(xﬁq +Yn-1Xp-1 — Q1 y)r/'_;l

ar +Yn(Xn-1 + Yn-1)

Xn+1 — Xp-1 =

2. The Boundedness Character of System (12,14)

In this section we investigate the boundedness character of solutions of the system:

— aj
XI’H—l - Xn+Yn

(12,14) : ,n=0,1,... 2)

_ Y2Yn
Yner = As+Xn

with positive parameters and with arbitrary nonnegative initial conditions such that the
denominators are always positive.

We establish that for every solution {X»,yn}, the first component {X,} is always bounded,
for all values of the parameters and for all initial conditions. For the second component, {y,},
we show that it is unbounded in a certain region of the parameters and for some initial
conditions.

Theorem 2.1. Let{x,,yn} be a solution of System (2). Then the sequence {x,} is bounded.

Proof. Assume for the sake of contradiction that there exists a sequence of indices {n;} such
that
Xpi+1 = © and X, > Xn, for n<nj+1. 3)

Then, clearly
Xni ayni ayni—l - 0 and Xni—l - 0.

In view of Lemma 1.1,

Yni -
5 nj -1
_yni (Xni -1 + yni —lxni -1 ap - ylni )

a1 +yni (Xni—l +yni—1)

4)

Xni +1 Xni -1 =
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and

Yoot Ay X

Yni ar oy °
it follows that

X2+ Yo X — y;;i_l = X2+ Vnot — %)Xni_l - aé/jz >0
and so
Xni 1 < Xni 15
which is a contradiction. |
Theorem 2.2. Assume that
y2 > As.

Let{Xn,yn} be a solution of System (2) with initial conditions

a al—(yz—Az)z}
y2—Ay’ 2 — Ay '

Xo < y2—Az andy, > max{

Then
lim x, = 0 and lim y, = oo.
N—oo N—o0

Proof. Indeed,

Y2
As + Xo

ai 01 _
Xo + Yo <W<}/2—A2 and Vi1 =

X1 = *Yo > Yo

and by induction, we see that

Xns1 < ¥2—Az and Yna > Y, for Nn>0

from which the result follows. |
The following result describes the global character of solutions of System (2) when
72 < Ag. (5)

Theorem 2.3. Assume that (5) holds. Then every solution {x,,y,} of system (2) is bounded and
converges to a (not necessarily prime) period — two solution.

Proof. The proof is straightforward and will be omitted. |
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3. The Boundedness Character of System (12,29)

In this section we investigate the boundedness character of solutions of the system:
a]

XI’H—I = Xn+Yn
(12,29) : . n=0,1,... (6)
Yot =

with positive parameters and with arbitrary nonnegative initial conditions such that the
denominators are always positive.

We establish that for every solution {Xn,Yn}, the first component {x} is always bounded, for
all values of the parameters and for all initial conditions. For the second component, {yn}, we
show that it is unbounded in a certain region of the parameters and for some initial conditions.

Theorem 3.1. Let {xn,yn} be a solution of system (6). Then the sequence {x,} is bounded.

Proof. Assume for the sake of contradiction that there exists a sequence of indices {n;} such
that
Xp+1 = o0 and Xp41 > Xp, fOor n<nj+1. (7)
Then, clearly
as

XnisYni O’ Yni-1 = A—z, and Xnj=1 — 0.

In view of Lemma 1.1

Ynj-1
~Yni (XFmt + Yni-1Xn-1 — a1 - o)

Xni#l — Xni-1 = (8)
n " a1 +Yn(Xni-1 + Yni-1)
and
Yni-1 _ Yni-1
yni - o) + Yni—l (A2 + Xni—l)a
it follows that
) Yni-1 oo a1Yni-1 a1Aryni-1
Xni-1 + Yni-tXni-1 — @1 - Yni X1+ (Ynimt = o2 + Yni-1 Xni-1 = 02 + Yni-1 >0
and so
Xni+1 < Xnj-1
which is a contradiction. [ |

Theorem 3.2. Assume that A, < 1. Let {xn,yn} be a solution of system (6). Assume that (X,y)
is the equilibrium point (when it exists) of system (6). Choose initial conditions

Xo < ¥2—A; andy, > max{ﬁ , y}.

Then
lim x, = 0 and lim y, = oo.

n—oo nN—oo
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Proof. Indeed,

ay a1 _ 1,
Xo + Yo < Vo <1 Az and Y1 > A2+X0 Yo > Yo

and by induction, we see that
Xns1 < 1 —A2 and Yneg > Yn, for n>0

X1 =

from which the result follows. [ |

4. The Boundedness Character of Solutions of System (12,35)

Here we investigate the boundedness character of solutions of the rational system

— a1
Xn+1 - Xn+Yn

(12,35) : ,n=0,1,... )

BoXn+y2yn
1+Xn

Y1t =

with positive parameters and with arbitrary nonnegative initial conditions such that the
denominators are always positive.

We establish that for every solution {Xn,Yyn}, the first component {X,} is always bounded,
for all values of the parameters and for all initial conditions. For the second component, {yn},
we show that it is unbounded in a certain region of the parameters and for some initial
conditions.

Theorem 4.1. Let {xn,yn} be a solution of system (6). Then the sequence {x,} is bounded.
Proof. The proof is along the lines of the proof of Theorem 2.1 and it will be omitted. |

Theorem 4.2.Assume that y, > 1. Let {X,,yn} be a solution of system (9). Assume that (X,y) is
the equilibrium point (when it exists) of system (9). Choose initial conditions

Xo <y2—1 andyg > max{L s y}.
72— 1

Then
lim X, = 0 and lim y, = .
Nn—oo N—o0
Proof. Indeed,
_ o1 o Y2
X Xoryg < ye <72 loand yi> En Yo > Yo

and by induction, we see that
Xns1 < ¥2—1 and Yne1 > Yn, for n>0

from which the result follows.
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5. The Boundedness Character of System (14,30)

In this section we investigate the boundedness character of solutions of the system:

o =
(14,30) : ,n=0,1,... (10)
=

with positive parameters and with arbitrary nonnegative initial conditions such that the
denominators are always positive.

We establish that for every solution {Xn,Yn}, the second component {y,} is always bounded,
for all values of the parameters and for all initial conditions. For the first component, {X,}, we
show that it is unbounded in a certain region of the parameters and for some initial conditions.

Theorem 5.1. Let {Xn,yn} be a solution of system (10). Then the sequence {y,} is bounded.

Proof. Assume for the sake of contradiction that there exists a sequence {n;} such that

Yni+1 — O,
From

Bixn  ax+yayn
BZXn +yn 1+yn

it follows that the sequence Xn.1 « Yn+1 1s bounded. Then, clearly,
Xni ayni - O

Xn+1Yn+e1 =

and from this it follows that

Xni-1 = © and Yp-1 = 0
or

Xn-1 = 0 and Yyn_1 — oo.
For each of the above two cases, and in view of

Xni— aj + .,
Xn = BiXni-1 and yp = 22 Y2Yni-1 ,
1 + Yni-1 BaXni—1 + Yni-1
we obtain a contradiction and the proof is complete. |

Theorem 5.2. Assume that ; > y2 + 1. Let {Xn,yn} be a solution of system (10) with initial
conditions (Xo, Yo) such that

o1 _
XO>maX{Bz(ﬂ1—y2—l) ,X} and yo < 1 — 1.

Then
lim X, = oo and lim y, = 0.

nN—oo n—oo

Proof. The proof is along the lines of the proof of Theorem 2.2 and it will be omitted. |
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6. The Boundedness Character of System (29,30)

In this section we investigate the boundedness character of solutions of the system:

Xn+1 alliﬁy]nxn
(29,30) : ,n=0,1,... (11)
Vet = ai:ﬁ;:n

with positive parameters and with arbitrary nonnegative initial conditions such that the
denominators are always positive.

We establish that for every solution {Xn,Yn}, the second component {y,} is always bounded,
for all values of the parameters and for all initial conditions. For the first component, {Xn}, we
show that it is unbounded in a certain region of the parameters and for some initial conditions.

Theorem 6.1. Let {xn,yn} be a solution of system (11). Then the sequence {y,} is bounded.

Proof. Assume for the sake of contradiction that there exists a sequence of indices {n;} such
that

Yni+1 = 0.
Then, clearly,
XnisYn; = 0.
From this and from
Xy = a1 ﬂlxnrl
! 1+ Yni-1 1+ Yni-1
it follows that
Yn-1 — o and i(,z::i - 0.
From
V2 Xt
Yni = Xni—lo‘lﬁyni—l i 1+ i::l_:
it follows that
Yni = 72
which is a contradiction. |

Theorem 6.2. Assume that 8, > y» + 1. Let {xn,yn} be a solution of system (11) with initial
conditions (Xo, Yo) such that

% _
Xo>maX{ﬁl_y2_1 ,X} and yo<ﬁ1 1.

Then
lim X, = oo and lim y, = 0.

N—oo n—o0
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Proof. The proof is along the lines of the proof of Theorem 2.2 and it will be omitted. |

7. The Boundedness Character of System (30,35)

We also investigate in this section the boundedness character of solutions of the system:

_artfixn
Xn+1 - len+yn
(30,35) : ,n=0,1,... (12)
yn+1 = —ﬁz):zzjyn

with positive parameters and with arbitrary nonnegative initial conditions such that the
denominators are always positive.

We establish that for every solution {Xn,Yn}, the first component {X} is always bounded, for
all values of the parameters and for all initial conditions. For the second component, {y,}, we
show that it is unbounded in a certain region of the parameters and for some initial conditions.

Theorem 7.1. Let {Xn,Yn} be a solution of system (12). Then the sequence {y,} is bounded.

Proof. From

a1+ PiXn | PaXn +y2yn
A] + Xn BZXn+yn

it follows that the product {Xn+1Yn+1} is bounded from above and from below.
Assume for the sake of contradiction that there exists a sequence {n;} such that

Xn+1yn+1 =

Xni+1 — 0.
Then, clearly
XnisYn; = 0
which is a contradiction. H
Theorem 7.2. Assume that
Y2 > A2 + g—i

Let {xn,Yyn} be a solution of system (12) with initial conditions (X, Yo) such that

Yo > IIlaX{Lﬂ1 5 Y} and Xo < Y2 - A,.

y2—Ar— g
Then
lim X, = 0 and lim y, = co.
n—oo n—oo
Proof. The proof is along the lines of the proof of Theorem 2.2 and it will be omitted. |

8. Conclusions and Future Work
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In this paper we investigated the boundedness character of solutions of several systems in
the plane. The boundedness character of solutions of a system is one of the main ingredients in
understanding the global behavior of a system including global stability. Our future goal is to
discover the pattern of boundedness of the complete rational system in the plane

a1+B1Xn+y 1Yn

Xn+1 = A1+Bl)(n+Clyn

, n=0,1,... . (13)
_ax+foXntyayn
T
In addition, we want to study systematically the global behavior of all solutions of System (13)
and to extend and generalize the results to general systems in two dimensions and higher.
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