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Abstract. We demonstrate how symmetrized Riemann integration recently introduced in [3]
can be employed in the evaluation of integrals of piecewise continuous differentiable functions.
A Romberg symmetrized integration method, with randomized intervals, is developed for
various possible applications. Integration error bounds are derived statistically for the
pertaining  Richardson  extrapolations.  Symmetrized-to-conventional integral  ratio
computations are suggested as a means to reduce these error bounds.

Key words: Romberg integration, Randomized intervals, Error bounds, Symmetrized integral,
Functional equations.

AMS Subject Classifications : 65Q05, 65G40, 65C50

1. Introduction

This work deals with the problem of integrating over / = [a,b] < R = (—o0,0) the
piecewise continuous real function
L { 1,xe]1=[a1,b,_]
SO =D fikix)  with Ki(x) = , (1)
-1 0, x ¢ I
by as the left-hand-side limit of b;, and f;(x) is, V [/, either a monotonically increasing or a
monotonically decreasing differentiable function over /;. Clearly, the interval set {/;}£, is here
a partition of /. It reports on a certain Romberg method of integration that utilizes the concept
of the symmetrized integration [3], over /; , of such f;(x) functions. Due to the novely of this
concept, the rest of this section shall be a brief survey of it.
The Riemann integral of a function y = f;(x)over an interval /; is

pr=| i) dx @
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12 N. H. S. HAIDAR

is based on the projection of the curve of f;(x) on the x — axis (y = 0) of the Cartesian plane.
Let us assume that the range of f;(x), that corresponds to [a;, b7 ], is [fi(a:),
f1(b7)] = [c1,d;] < R in order to state the definitions that follow.

Definition 1.1. The symmetrized integral [3] of the y = fi(x) function is

yi=] m@ dr. 3)

!

with n; (r) = z obtained from f;(x) =y by means of a linear transformation I" : R? - R?, such

1
that C(x,y)” = €(x,y)T = (1,2)7, with € = f | ), a rotation matrix, and
Ji = [ay, Bi] satisfying the affine map
ai BT = Elanby)+ —=(c; - by, d; +a)T. 4
(ai, B1) (a1,b7) ﬁ(z 1.di +ai) 4)

Clearly y, is another Riemann integral of f;(x) that is based on the projection of the curve
of fi(x), over the [ay, B;] interval, on the median (y = x) of the first quadrant of the Cartesian
plane. This takes place instead of projection of f;(x) on the y = 0 axis in the p; — integral. The
symmetrized y; — integral should, nontheless, by no means be confused with a changed
variable form [7], for the same p; of fi(x).

Lemma 1.1. [3] If fi(x) is monotonically increasing or decreasing differentiable function over
[a1,b7] then 1,(7) is a one-to one map overlay, Bi].

Definition 1.2. Let f;(x) be a monotonically increasing or decreasing function over

[a1,b7]. Then an end point variation [3] of fi(x) atx = a; is

Go =Glanflan] = g@j+arci—ct) = plai—ci (V2 = D[ar+ ¢ (V2 + 1)]. (%)
Based on the fundamental theorem that follows, the previous (7,, number turns out to play

the role of a generalized integrated antiderivative” in the calculus of the p; —y; difference

integral.

Theorem 1.1. [3] (Differenced integral calculus) If p; is the conventional integral of a
monotonically increasing or decreasing function fi(x) over [a;,b;] and y, is its pertaining
symmetrized integral, then
Yi—p1=Gu — Ga,. (6)
This result is similar to, though different from, the Fundamental Theorem of Calculus. It
indicates remarkably that one needs to know or compute only one of the two integrals p; or y;
(whichever is easier) then use this theorem to find the other one. Nevertheless, the y; — integral
can serve either as an alternative or a complement to the p; — integral in some graphical or
charting applications. Indeed, the symmetrized-to-conventional integral ratio y;/p; could have
some specific technical applications. Indeed if
(i) p:> 0and y; > 0, then the graph of f;(x) is in the sector, of the first quadrant, which is
above the median,
(i) p; > 0 and y; < 0, then the graph of f;(x) is in the sector, of the first quadrant, which is
below the median,
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(ii1) p; < O then y; < p; < 0, the graph of f;(x) is in the fourth quadrant.

Therefore the situations (i) and (iii) are characterized by a y,/p; > 0 while the situation (ii)
corresponds to y,/p; < 0.Moreover, computations of the y,/p; ratios can in principle have
some other useful applications in various fields. One of these applications, which will be
demonstrated later in this paper, shall aim at reducing the error in evaluating p; by the
Romberg method of numerical integration.

The rest of the paper is organized as follows. Motivated by interest in symmetrized integral,
section 2 shall illustrate how the Romberg method, based on the trapezoid rule, turns out to be
ideal for the computation of this integral. Section 3 is a study on randomization of intervals in
Romberg integration as a way to elevate correlation coefficients for the Richardson
extrapolation lines with scatterplots of relatively small size. It reports, moreover, on statistical
error bounds for this novel method of integration. A possible enhancement of the computation
of the p; — integral, which is based on utilization of Theorem 1.1 is provided in section 4 ; to
be followed in section 5 by some conclusions.

2. Evaluation of n,(r)

In most activities involving a Riemann integration, f;(x) would be a given analytical or
discrete function. In contrast, n (), in the form

I(r,z) =z—ni(r) =0, (7)
needs to be derived from
Hi(x,y) =y - filx) =0, (8)

by means of the I' —map. This happens to lead to the result that follows.

Theorem 2.1. [4] The integrand z = n/(t) of the symmetrized integral (2) of a monotonically
increasing or decreasing differentiable fi(x) over [a;,b;] is a solution to the functional
equation

fil La-a ]+ it [ Feen ] = sx )

Example 2.1. For the straight line function
v=fi(x) =ex+gqi| e |# 1, the corresponding functional equation (9) is

e %(r —-2)+q+ i—l %(r +z)— qe—ll = /27, and this can easily be rearranged to

e;—l ﬁ

7T+ .
e[+1 €1+1ql

z =) = (10)

Example 2.2. Consider next the simplest nonlinear function, i.e. the monomial
y = fi (x) = x¥,x > 0,with k£ >> 1. Its corresponding functional equation,

k 1k
[%(T —z):| + [f(r +z):| = J21,cannot be resolved analytically in z, as an explicit

function of 7 ; contrary to the situation in Example 1.

Unfortunately the same nonresolvable situation happens to hold as well for all other
L (r—
nonlinear functions like, e.g., the exponential f; (x) = & for which k2 S

logk%(r +2) = J21.
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2.1. Broken line approximation to n;(z)

In view of the previous examples and related facts, any analogue or digital nonlinear
y = f1 (x) can be approximated to a system of broken lines vis

fi () = D file)u(x), (11)
i=1

13 € ]i - is

where f(x) = es x + hy, 9u(x) = x € Li = [an, i , filaw) = ¢y and fi(by) = d; .
0, x ¢ Ij

Making use of (10) allows directly for the corresponding broken-line approximate

representation

n
ni(r) = Y (@) xu(), (12)
i=1
- 1 N B 1, v € Ji = [an, Bl
in which n;(7) = l+ Tt o 11 qi, xi(t) = 0.7 ¢ s , and

(au,Bi)" = € (au,by)" +f(cﬁ — by ,dy +an)’.

2.2. Approximate symmetrized-to-conventional integral ratio

The broken line representation (12) of n;(r)defines a certain sectioning scheme with an
by —a;

effective step size of h; = T

, even when the sectioning interval /; is not uniform or

random. Obviously, utilization of (12) in (2) provides, when v; = 7 for an estimate for y,,
as an alternative way for estimation of p; via (9), which is

ﬁ/l —_ 1 2
Yim = vi(V1) = Z J |: e;+1 - 61;/:-1 qzi:|lli(f) a

or
n
_ 1oen—1 0o oy N2
VI(UI) = ZZI 2 en+1 (.Bli ali) + en + 1 qii (ﬁll alz)-

A finer sectioning scheme involving the use of larger n; and smaller /; intervals generates
the finer y;(v;) estimate which is expected to tend, in principle, to y; when n; - o, i.e., when
v — 0.
A practical approach to this objective consists of course in a standard application of the
equivalent Romberg integration [2] with a linear (or nonlinear) Richardson’s extrapolation [5]
on an v; — y;(v;) plane, which yields y;(0) = y;.

In a similar fashion, it is possible to compute the symmetrized-to-conventional integral
ratio
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n
1 oei-1 »n 5 N2
2 ei+1 (Bi — i) + e+ 1 qu(Pi — o)

Yi _ =l
W(vl) n n

1
—-ei (bi* —ap) + qu (b —an)

i=1

which is supposed to yield Lll = %(0). Furthermore, it is anticipated that the value of

%(O) is less sensitive to the nature of the employed Richardson extrapolation scheme than

the value of y,(0) to enable utilization of the procedure that follows.

Proposition 2.1. [f the error of computing %(0) < the error of computing p;(0), then the

estimated accuracy of pi(0) is enhanced when
pO) = (G, = G, V50 1], (13)
and %(0) is the only quantity to be computed.

Proof. This is in fact a corollary of Theorem 1.1, combined with realizing that if p;(0) £ A and
y(0) £ A, in the right hand side of (13), have the same error A, then the corresponding ratio
A

pi1(0)

(13), i.e., ending up with an error reduction by a factor of

result is %(O) + . This would be the effective error of p;(0) in the left hand side of

1
pi(0)

3. Arandomized Romberg integration method over I,

Employment of Romberg integration, based on a composite trapezoid rule, for the

evaluation of the p;(v;) and/or the %(vl) ratios over /; implements a construction of a

Romberg table, which is known [2] to be designed to eliminate the systematic error gradually.
Despite the high accuracy of the Romberg method, it suffers from a serious problem of slow
convergence which calls for increased values of 7;, number of discrete points.

To circumvent this problem we shall develop here a small size Romberg integration
scheme (over /; where the integral p; of f;(x) is symmetrizable to y;) which employs
randomization of the size of intervals for a finite set of values for n; as an alternative to
increasing the size of n; .

Consider then subdivision of the /; = [a;, b7 ] interval according to

Xicigr P = Xikr (14)
where i = 1,2,3,..... ,n; while k = ko, ko + 1,ko+2,ko+3,..... ,ko + N;— 1 stands for the
number of subdivision intervals k = 1 + Inn;/In2 of n; = 25 Yand r = 1,2,3,..... ,M; stands

for a number enumerating a stochastic set of arbitrary discrete random probabilities
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21=A<Lp1,P2,P3s---.. ,Prs---->-pmy < (0,1). For consistency it is anticipated that &, is a small
number between 5 and 10, say, and assuming that m = k — ko + 1 provides a range of [1, N;] for
the number of extrapolation points where for reasons of computational economy, N; is
intended to be a sufficiently small number. The elements of ¢, , generated from a set of
appropriate random numbers, define Binomial [1] probability density distributions

1 .
O1jsr = ( " >p’ (1—p)m-1  j=i-1=0,1,2,3,.....,n— 1 (15)

J
for the intervals
hl,j,k,r = Ol,j,k,r(bl_ - al)a (16)

in a randomized interval subdivision scheme (13) for which
Lijkr = [atjrr,bijur] € lanbr], with hyjp, = bijir — arjkr = Xje14r — Xjk, and
Xopr,=ar and x,,. = b;,Vkandr. (17)
In this procedure j coincides, for any fixed r, with the number of successes out of n; — 1 trials
in a Bernoulli (Binomial) experiment with a probability of success equalling to p; .

Romberg integration of ;(x) over /;, based on the composite trapezoid rule [2], allows in

the present context, for writing
n;—1

Plkr = % hiokr flar) + hy, 4, fb7 )+Z(hlz i T hiies) f1 al+zhler +x

with 7, in the summation limit representlng 2" -1 and x being the error term
/ —_ .
I:(h,()k,, Ly — 1kr):l = |: IOkrf (a;) ln;—l,k,rfl(bl):| + terms of higher orders

of hiok, and h;, ;. . It should be noted here that in many situations the f / (a;) and f / (b7)
derivatives may not be known. It is clear, however, that for any fixed &,

1
pik = pi(vy) = ML, Z Plir

M; ny—1
= 3 DS ik flan) + by g SO + D (g 1k,+hz,kr>faz+2hukr +e,
r=1 i=1

is an average over M; random subdivisions of the /; interval,
M,

I:(hl()k” > ln/ lkr):l ~ - %}M,Z[hzl,o,k,rfl,(al) - hlz,nl—l,k,rfl,(bl_):| L (18)

r=1
and € = [(h,Ok, , ln, 1kr):l - 0, as n; (or k) oo and p;(0) = p;

A unique feature of the present method is that p;(0) shall not be determined via increasing
k in a Romberg table [5] but statistically by means of a least squares regression line for a finite
number N; of p;(v;) values. Obviously both p;x of (18) and associated standard deviation

12
M
Sie = s1(v;) = |:Z(p1,k,, —pux)? /(M) - 1):| can be evaluated simultaneously.

Let us assume that p;(v;) follows, near v; = 0, a linear regression model,
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Y, = p;(vl) = A]l)[ + B; +§1

in which &; is a normally distributed random error term allowing for the variability in ¥; that
cannot be explained by a linear relationship between v, and Y;. Implicit hypothetical
assumption that the variance o¢, of &; 1s the same for all values of v; implies that Y; is also a
normally distributed random variable and with the same variance for all vales of v;.In practice
however this situation is not realistic since the variance in Y; is known from experience with
Romberg tables [5] to decrease with the decrease in v;. This is actually our reason for designing
m = 1 for the scatterplot Y;,, = pi(vim) to correspond to a reasonably large enough value of
ko. Correspondingly, Y, = pixr = pr-(Vim) leads to

u, 12
Sim = Sl(vl,m) = [Z(Yl,m,r - Yl,m)2 / (Ml - I)J 5 (19)
r=1
N,
which illustrates that o can be estimated by NL] > sim . Moreover only when
m=1
E¢) =& =0,

E(Yz) = Aﬂ)[ +Bl.

The estimation of 4; and B, in the present context is a statistical process that employs an
estimated least squares regression line LSRL

Y1=g011)1+¢[ (20)
in which ¢, and ¢, are the sample statistics[6]:
N, N, _
¢1=[2 Wim=0D)Yiu—=Y)1/ 2, Wim—0D)* , ¢1=Yi—¢; 0i, with (21)
m=1 m=1
N, Ny

N; Ny
The LSRL is well known to minimize SSE(Y;) = D> (Yim—Yim)? = D (Yim— @i
m=1

m=1

Vim —¢1)* ~ &, which  eventually superimposes itself on the regression error
N, Ny

SSR(Y)) = > (Yim—Y1)? to establish [6] the total error SST(Y;) = > (Y — Y))2,vis
m=1 m=1
SST(Y[) = SSE(Y}) + SSR(Y]).

If 4; = 0 then E(Y;) = By; in this case E(Y;) does not depend on v; and we conclude that v,
and Y; are not linearly related. Alternatively, if 4; # 0, we start with a hypothesis test to
determine whether A; = 0. This requires an estimate of the variance of &; which is
Slzy = SSE(Y])/(N[ - 2), i.e.,

N;
sy = [ 2 Yim = Vi) /(N1 = 2)]12, (22)

m=1

would be the standard error of the estimate which has N; — 2 degrees of freedom [6] because of



18 N. H. S. HAIDAR

the two parameters 4; and B;.
3.1. t-test

The purpose of the t-test is to see whether the sample data set {v;, Y, l,m}Z ' is usable to

conclude that 4; # 0, and the hypothesis to be tested is
Hy:4,=0 ; H,: A4, + 0.
Clearly, the sampling distribution of ¢; has a mean E(¢;) = 4, and a standard deviation

1

N,
Op, = O_éfz/l: Z (Dl,m - 171)2] 1z,
-1

Because we do not know o¢, , we develop an estimate [6] of o, , denoted s, ,based on

estimating o ¢, with s;, of (22) vis

[ (A

Ny
Sor = s/l 32 (01 — )]
=1

The pertaining test statistic

o — A

f = ——v

O-<P1

is assumed to follow a t-distribution with N; —2 degrees of freedom. If Hy is true then

t = Sg’i Alternatively, the rejection rule at level of significance v is : Reject Ho if # < — ¢+
Q1

or¢ >ty. Accordingly, the confidence interval for4;is ¢, £y s, .

Let us move now to evaluate the confidence interval estimate of E(Y;) when extrapolated
to v; = 0. For any particular value of v;, say v, E(Y)) would be the corresponding expected
value of ¥; while ¥, = ©1 Vi, + ¢; 1s the corresponding estimate of E(Y;,). In general we
should not expect Y}, to exactly equal E(Y},). Moreover, in order to infer about how close Yy, is
to the true value E(Y},), we will have to estimate the variance of Y, or its standard deviation

m=1

N, 12
SY/o = SIY|:NLI +(Ulo_lTl)2/ Z(vl,m_m)z:| .

The corresponding test statistic would be

_ Y lo — E(Y lo)
tl - Sv B
Yo
and the confidence interval estimate of E(Y;,) is Yj, * ty sy, . In particular application to the

present integrations, v, = 0, E(Y},) = B; and Y}, = ¢, . Consequently the estimated standard
deviation of ¢, is

12
Ny
S¢, = min(Szy,S[N) |:NL1 +0;%/ Z (Vim — 171)2:| , (23)

m=1
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where
M, 12 4B
siv = [Z [(prr(oiw) = pr(win)]* | (M — 1)} . owhile 5= = (24)
and the confidence interval estimate of B; = p;(0) is
PrEtysy,. (25)

This fact has been based on the assumption that sy, is fixed along the v; line . In actual fact
it is possible to assume also that s; (v;) follows, near v; = 0, a linear regression model,

Z/ = Sl(l)l) = C[ 1)1+D/+§/

in which {; is a normally distributed random error of this linear model. The corresponding
LSRL is Z; = w; v; + ;. Furthermore, an implicit hypothetical assumption that the variance
o, of {; is the same for all values of v; implies that Z; of the scatterplot Z;,, = s;(v;») is also a
normally distributed random variable and with the same variance for all vales of v;,.In
practice however this situation is not realistic since the variance in Z; is known from
experience with Romberg tables [5] to decrease with the decrease in v,. Here also, only when

E(¢) =01 =0,
E(Z)) = Cui+ Dy,
and the corresponding statistic is

yi—D; Dl

t =
i1 Sy,

Theorem 3.1. Starting from a sufficiently large value of ko for m = k—ko+ 1, if ¢; is the
Richardson extrapolated value for p;(0), then the v confidence interval for ¢; has a lower
bound of

¢1 £ty min(se, w1 frsy,) (26)
and an upper bound of
¢1 +12 max(se, Y1+ 1rsy,), (27)
where
Y N, 12
= Z (Zim — Zv/,m)z/(N/ -2)] 172 |:NL1 + 7%/ Z (Vim — 171)2:| . (28)
m=1 m=1

Proof- The LSRL for Z;,, = sy (vlm) Vm has
Z (vlm - Ul)(Zlm - Zl) Z (vl,m - vl)2 » Vi = 7[ — 17[:

with

N, N,
— 1 7 1
vl:ﬁzvl,m,zl:ﬁzzl,m-

m =1 m=1
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N; N,
Here SSE(Z)) = Y (Zim —Zw)?* = Y. (Zim — @1 V1m — w1)?* ~ {;and
m=1 m=1

s?2 = SSE(Z))/(N;-2) . (29)
3.2. Second t-test

Before kit is assumed that the pertaining points in the scatterplot are outliers to the

regression process. Now if C; = 0 then E(Z;) = Dy; then v; and Z; are not linearly related.
Alternatively, if C; # 0, we start with a hypothesis test to determine whether C; = 0. This
requires an estimate of the variance o, and a hypothesis t-test,

Hy:Ci=0; H,: C; #0,

is needed again here to see whether {v l,m,Zl,m}fnh: , is usable.

The sampling distribution of ®; has E(w;) = C; and the standard deviation

Ny
O, = 0e/[ D (Vim — 7))V,

m=1

Since o¢, is unknown, our estimate of ¢,,, denoted s, ,based on estimating o¢, with s;. of (29)
will be

Ny
So; = St/ D (Vim — 01?12
-1

The pertaining test statistic

a)/—Cz

El = Sw/

is assumed, like ¢, to follow a t-distribution with N; — 2 degrees of freedom. If Hy is true then

t = Sﬂwl Alternatively, the rejection rule at level of significance v is : Reject Ho if t < —tx
!

ort>ty. Accordingly, the confidence interval for C;isw; £ty so, .

2
For any particular value of v;, say v;,, E(Z;,) would be the corresponding expected value of Z;
while Z;, = w; vj, + v, 1s the corresponding estimate of E(Z,). For inference about how close
Zi, 1s to the true value E(Z;,), we will have to estimate the variance of Zj, and of its standard
deviation

N, 12
Sz, = SIZ|:NL1 + (e —0)?/ Z (Vim — 171)2:| )
m=1

The corresponding test statistic is

Zlo - E(Zlo)

t, = -
1 SZIU

2

and the confidence interval estimate of E(Z},) is Zio * ty sy, .In particular application to the
2
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present integrations v, = 0, E(Zj;,) = D; and Zi = v . Consequently, the confidence interval
estimate of D; = 5,(0) is w; + t, s,, . Consideration finally of this result in (25)completes the
2

proof. H

4. Enhanced Randomized Romberg Integration over I,

Enhancement of the accuracy of evaluating the p;-integral, for a monotonically increasing
or decreasing function over /; = [a;, b7 ], is conceived to take place as a result of application of

(13) of Proposition 1, which calls for a Romberg integration only of the ﬂ(v;) ratio. When
g g y D1

evaluating the pertaining y;—integral, we first consider random subdivisions of the
Ji = [ay, Bi] interval according to

Ticigr + 5l,i—l,k,r = Tikrs

and follow the same steps taken earlier with f;(x) over[a;, b7 ] to arrive at
n -1 i-1

Yikr = % 0 ok M0r) + 51,n,—1,k,r n(B)+ Z(5l,i—l,k,r+ Olikr) 1 [al+z5l,i,k,r] +

i=1 j=0
O @, 871s) ]
M;

Vik = M% Z Y Lkr

M ¢ n -1 il
= 2;M/ Z 0 o4 Nar) + O 1) —1 ko n(B)+ 2(51,5—1,k,r+ Orikr) N [01 +Z51J,k,r] +¢e,  (30)

r=l1 " i=1 J=0
&€= 5[(521,0,k,r ’ 5l2,n1—1,k,r):| = 125\4, 2[521,0,k,r n'(@) = 87, 15 ,(ﬂ’):l oo

r=l

Clearly y 4 1s an average of M; values of ¥, and the associated standard deviation is

" 12
Stk = |:Z(7’1,k,r —yi)? /(M - 1):| .
r=1

For reasons of computational economy we shall mean to use the same discretization data
of f1(x) over [a;,b7] used in the evaluation of the p; —integral.

Proposition 4.1. Let

Gurikr = J1 (%) —S1 (Kikr), (31
then fori=1,2,3,..... ,n;=2Yand ¥ k and r the following holds
i1 i1
N Tixr) = % Sflar+ 2 hijir] = D hijgr — al}- (32)
j=0 j=0

Proof. For any point (x;x, , fi(xix,))on the x —y plane, the corresponding point (7;x,
,N1(tix,)) on the T — z plane can be shown graphically to satisfy
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Ni( Tiky) = %Eﬁ(xi,k,r) — Xifr]-

As

5[ kr = ﬁ <h1‘,k,r + gi,k,r>a (33)
the affine map (4) leads directly to

Tikor = Ti-lhyr = f {[xi,k,r _xi—l,k,r] + [f1Cxins) _f/(xi—l,k,r)]}a

from which relations(31)-(32) directly follow. |

Makmg use now of this proposmon in (30) yields

Yik= 5 Zmr— i Z{ Lok + filar+ 1) —filanlfiar) — ai)

ny—2
+/1(b1) - b7 ] |:h1,n1—1,k,r —filar+ 22 hujir] +fl(bz):|
j=0
n;—1

+Z{hll lkr+hllkr +fl a1+2hl,]kr

~filai + Zhl,/,k,r]}{fz [ar + Zhl,j,k,r] - th,/,k,r - az}} +e (34)
j=0 =0 j=0

in terms of the same discretized data for p(v;). The symmetrized-to-conventional integral ratio

is % = %(v;) with y 1 of (34) , pix of (18) and associated standard deviation

1/2
s = s/(vy) = |:Z(gll:r /7;7]:)2/(M—1):|

can all simultaneously be evaluated. Richardson extrapolation can be applied as before to

predict ¢; of %(0) with the scatterplot Vi, = %(vz,m), for which Theorem 3.1 holds at it

stands. This is eventually used in the enhanced estimation of p;(0) by means of

pi0) = (G, ~G, V50— 1].

Corollary 4.1. The Riemann integral over I of piecewise continous f(x) is the following
indirect sum

L L
p=2pi0) = 3G, -G, IO - 1],
=1 =1

over v symetrizable integrals, and it is not symmetrizable itself ,i.e.,
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L
Y * Z 7:(0).
=1

Proof. Can be made graphically for f{x) of (1) over I = [a, b]. Indeed each y; integral is defined
over a certain J; = [ay, ;] but the set {J;}%, is not a partition of a single larger set ; which
makes the concept of a y is meaningless. |

5. Conclusions

The Romberg method, based on the trapezoid rule, is demonstrated in this work to be ideal
for the computation of the symmetrized integral or the symmetrized-to-conventional integral
ratios. Randomization in Romberg integration and its enhancement, by means of the principle
of Corollary 4.2, indicates a tendency to produce Richardson extrapolation regression lines
with relatively elevated correlation coefficients. The comparison is with the fixed-step
conventional Romberg method having the same number of subdivisions. Statistical error
bounds have been established, for any desired level of significance, for this new
computationally economic method of integration.
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