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Abstract. We demonstrate how symmetrized Riemann integration recently introduced in [3]
can be employed in the evaluation of integrals of piecewise continuous differentiable functions.
A Romberg symmetrized integration method, with randomized intervals, is developed for
various possible applications. Integration error bounds are derived statistically for the
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1. Introduction

This work deals with the problem of integrating over I  a,b ⊂ R  −, the
piecewise continuous real function

fx ∑
l1

L

flxlx with lx 
1, x ∈ Il  al,bl−

0, x ∉ Il
, 1

bl− as the left-hand-side limit of bl, and flx is, ∀ l, either a monotonically increasing or a
monotonically decreasing differentiable function over Il.Clearly, the interval set Ill1L is here
a partition of I. It reports on a certain Romberg method of integration that utilizes the concept
of the symmetrized integration [3], over Il , of such flx functions. Due to the novely of this
concept, the rest of this section shall be a brief survey of it.
The Riemann integral of a function y  flxover an interval Il is

l  
Il
flx dx, 2
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is based on the projection of the curve of flx on the x − axis (y  0) of the Cartesian plane.
Let us assume that the range of flx, that corresponds to al,bl−, is flal,
flbl−  cl,dl− ⊂ R in order to state the definitions that follow.

Definition 1.1. The symmetrized integral [3] of the y  flx function is

l  
Jl
 l d, 3

with  l   z obtained from flx  y by means of a linear transformation Γ : R2 → R2, such

that Γx,yT  Cx,yT  , zT, with C  1
2

1 1
−1 1

, a rotation matrix, and

Jl   l,l satisfying the affine map

 l,lT  Cal,bl−T  1
2
cl − bl−,dl−  alT. 4

Clearly l is another Riemann integral of flx that is based on the projection of the curve
of flx, over the  l,l interval, on the median y  x of the first quadrant of the Cartesian
plane. This takes place instead of projection of flx on the y  0 axis in the l − integral. The
symmetrized l − integral should, nontheless, by no means be confused with a changed
variable form [7], for the same l of flx.

Lemma 1.1. [3] If flx is monotonically increasing or decreasing differentiable function over
al,bl− then  l is a one-to one map over l,l.

Definition 1.2. Let flx be a monotonically increasing or decreasing function over
al,bl−.Then an end point variation [3] of flx at x  al is
Ģal  Ģal, fal  1

4 al
2  al cl − cl2  1

4 al − cl  2 − 1al  cl  2  1. 5
Based on the fundamental theorem that follows, the previous Ģal number turns out to play

the role of a generalized integrated ”antiderivative” in the calculus of the l − l difference
integral.

Theorem 1.1. [3] (Differenced integral calculus) If l is the conventional integral of a
monotonically increasing or decreasing function flx over al,bl− and l is its pertaining
symmetrized integral, then
l − l  Ģbl− − Ģal . 6

This result is similar to, though different from, the Fundamental Theorem of Calculus. It
indicates remarkably that one needs to know or compute only one of the two integrals l or l
(whichever is easier) then use this theorem to find the other one. Nevertheless, the l − integral
can serve either as an alternative or a complement to the l − integral in some graphical or
charting applications. Indeed, the symmetrized-to-conventional integral ratio l/l could have
some specific technical applications. Indeed if
(i) l  0 and l  0, then the graph of flx is in the sector, of the first quadrant, which is
above the median,
(ii) l  0 and l  0, then the graph of flx is in the sector, of the first quadrant, which is
below the median,
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(iii) l  0 then l  l  0, the graph of flx is in the fourth quadrant.
Therefore the situations (i) and (iii) are characterized by a l/l  0 while the situation (ii)
corresponds to l/l  0.Moreover, computations of the l/l ratios can in principle have
some other useful applications in various fields. One of these applications, which will be
demonstrated later in this paper, shall aim at reducing the error in evaluating l by the
Romberg method of numerical integration.
The rest of the paper is organized as follows. Motivated by interest in symmetrized integral,

section 2 shall illustrate how the Romberg method, based on the trapezoid rule, turns out to be
ideal for the computation of this integral. Section 3 is a study on randomization of intervals in
Romberg integration as a way to elevate correlation coefficients for the Richardson
extrapolation lines with scatterplots of relatively small size. It reports, moreover, on statistical
error bounds for this novel method of integration. A possible enhancement of the computation
of the l − integral, which is based on utilization of Theorem 1.1 is provided in section 4 ; to
be followed in section 5 by some conclusions.

2. Evaluation of  l

In most activities involving a Riemann integration, flx would be a given analytical or
discrete function. In contrast,  , in the form
l, z  z −  l  0, 7
needs to be derived from
Hlx,y  y − flx  0, 8
by means of the Γ −map. This happens to lead to the result that follows.

Theorem 2.1. [4] The integrand z   l of the symmetrized integral (2) of a monotonically
increasing or decreasing differentiable flx over al,bl− is a solution to the functional
equation
fl 1

2
 − z  fl−1 1

2
  z  2 . 9

Example 2.1. For the straight line function
y  fl x  el x  ql,∣ el ∣≠ 1, the corresponding functional equation (9) is

el 1
2
 − z  ql 

1
el

1
2
  z − ql

el  2 , and this can easily be rearranged to

z   l 
el − 1
el  1

 
2

el  1
ql. 10

Example 2.2. Consider next the simplest nonlinear function, i.e. the monomial :
y  fl x  xk, x ≥ 0,with k  1. Its corresponding functional equation,

1
2
 − z

k
 1

2
  z

1/k
 2 , cannot be resolved analytically in z, as an explicit

function of  ; contrary to the situation in Example 1.
Unfortunately the same nonresolvable situation happens to hold as well for all other

nonlinear functions like, e.g., the exponential fl x  kx for which k
1
2
−z


logk 1

2
  z  2 .
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2.1. Broken line approximation to  l

In view of the previous examples and related facts, any analogue or digital nonlinear
y  fl x can be approximated to a system of broken lines vis

fl x ≈ ∑
i1

nl

flixlix, 11

where flix  eli x  hli , lix 
1, x ∈ Ili  ali,bli−

0, x ∉ Ili
, flali  cli and flbli−  dli− .

Making use of (10) allows directly for the corresponding broken-line approximate
representation

 l ≈ ∑
i1

nl

 li li, 12

in which  li 
eli − 1
eli  1

 
2

eli  1
qli ,  li 

1,  ∈ Jli   li,li
0,  ∉ Jli

, and

 li,liT  C ali,bli−T  1
2
cli − bli− ,dli−  aliT.

2.2. Approximate symmetrized-to-conventional integral ratio

The broken line representation (12) of  ldefines a certain sectioning scheme with an

effective step size of hl 
bl− − al
nl , even when the sectioning interval Ili is not uniform or

random. Obviously, utilization of (12) in (2) provides, when l 
1
nl , for an estimate for l,

as an alternative way for estimation of l via (9), which is

l nl  ll ∑
i1

nl


li

li eli − 1
eli  1

 
2

eli  1
qli  li d,

or

ll ∑
i1

nl 1
2
eli − 1
eli  1

li2 −  li2 
2

eli  1
qli li −  li.

A finer sectioning scheme involving the use of larger nl and smaller Ili intervals generates
the finer ll estimate which is expected to tend, in principle, to l when nl → , i.e., when
l → 0.
A practical approach to this objective consists of course in a standard application of the
equivalent Romberg integration [2] with a linear (or nonlinear) Richardson’s extrapolation [5]
on an l − ll plane, which yields l0  l.
In a similar fashion, it is possible to compute the symmetrized-to-conventional integral

ratio
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l
l l 

∑
i1

nl 1
2
eli − 1
eli  1

li2 −  li2 
2

eli  1
qlili −  li

∑
i1

nl 1
2 eli bli

−2 − ali2  qli bli− − ali

which is supposed to yield l
l 

l
l 0. Furthermore, it is anticipated that the value of

l
l 0 is less sensitive to the nature of the employed Richardson extrapolation scheme than
the value of l0 to enable utilization of the procedure that follows.

Proposition 2.1. If the error of computing l
l 0  the error of computing l0, then the

estimated accuracy of l0 is enhanced when

0  Ģbl− − Ģal/
l
l 0 − 1, 13

and l
l 0 is the only quantity to be computed.

Proof. This is in fact a corollary of Theorem 1.1, combined with realizing that if l0   and
0  , in the right hand side of (13), have the same error , then the corresponding ratio

result is l
l 0 


l0

. This would be the effective error of l0 in the left hand side of

(13), i.e., ending up with an error reduction by a factor of 1
l0

. 

3. A randomized Romberg integration method over Il

Employment of Romberg integration, based on a composite trapezoid rule, for the

evaluation of the ll and/or the
l
l l ratios over Il implements a construction of a

Romberg table, which is known [2] to be designed to eliminate the systematic error gradually.
Despite the high accuracy of the Romberg method, it suffers from a serious problem of slow
convergence which calls for increased values of nl, number of discrete points.

To circumvent this problem we shall develop here a small size Romberg integration
scheme (over Il where the integral l of flx is symmetrizable to l which employs
randomization of the size of intervals for a finite set of values for nl as an alternative to
increasing the size of nl .

Consider then subdivision of the Il  al,bl− interval according to

xi −1,k,r  hl,i −1,k,r  xi,k,r 14

where i  1,2,3, . . . . . ,nl while k  k0,k0  1,k0  2,k0  3, . . . . . ,k0  Nl − 1 stands for the
number of subdivision intervals k  1  lnnl/ ln2 of nl  2k −1 and r  1,2,3, . . . . . ,Ml stands
for a number enumerating a stochastic set of arbitrary discrete random probabilities
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℘l  p1,p2,p3, . . . . . ,pr, . . . . ,pMl ⊂ 0,1. For consistency it is anticipated that k0 is a small
number between 5 and 10, say, and assuming that m  k − k0  1 provides a range of [1,Nl] for
the number of extrapolation points where for reasons of computational economy, Nl is
intended to be a sufficiently small number. The elements of ℘l , generated from a set of
appropriate random numbers, define Binomial [1] probability density distributions

l,j,k,r 
nl − 1
j

prj 1 − prnl−j −1 , j  i −1  0,1,2,3, . . . . . ,nl − 1 15

for the intervals

hl,j,k,r  l,j,k,rbl− − al, 16

in a randomized interval subdivision scheme (13) for which
Il,j,k,r  al,j,k,r,bl,j,k,r ∈ al,bl−, with hl,j,k,r  bl,j,k,r − al,j,k,r  xj1,k,r − xj,k,r and
x 0,k,r  al and x nl,k,r  bl

−,∀ k and r. 17
In this procedure j coincides, for any fixed r, with the number of successes out of nl − 1 trials
in a Bernoulli (Binomial) experiment with a probability of success equalling to pr .

Romberg integration of flx over Il, based on the composite trapezoid rule [2], allows in
the present context, for writing

l,k,r  1
2 hl,0,k,r fal  hl,nl −1,k,r fbl

− ∑
i1

nl −1

hl,i −1,k,r  hl,i,k,r f al ∑
j 0

i −1

hl,j,k,r  

with nl in the summation limit representing 2k −1 , and  being the error term
  O hl,0,k,r2 , hl,nl −1,k,r

2   − 1
12 h l,0,k,r

2 f l
′
al − hl,nl −1,k,r

2 f l
′
bl−  terms of higher orders

of hl,0,k,r and hl,nl −1,k,r . It should be noted here that in many situations the f l
′al and f l

′bl−
derivatives may not be known. It is clear, however, that for any fixed k,

l,k  ll  1
Ml ∑

r 1

Ml

l,k,r

 1
2Ml ∑

r 1

Ml

hl,0,k,r fal  hl,nl −1,k,r fbl
− ∑

i1

nl −1

hl,i −1,k,r  hl,i,k,r f al ∑
j 0

i −1

hl,j,k,r  ,

is an average overMl random subdivisions of the Il interval,

  O hl,0,k,r2 , hl,nl −1,k,r
2  ≈ − 1

2Ml ∑
r 1

Ml

h l,0,k,r
2 f l

′
al − hl,nl −1,k,r

2 f l
′
bl−       18

and   O hl,0,k,r2 , hl,nl −1,k,r
2  → 0, as nl (or k)→  and l0  l.

A unique feature of the present method is that l0 shall not be determined via increasing
k in a Romberg table [5] but statistically by means of a least squares regression line for a finite
number Nl of ll values. Obviously both l,k of (18) and associated standard deviation

sl,k  sll  ∑
r  1

Ml
l,k,r − l,k2 / Ml − 1

1/2

can be evaluated simultaneously.

Let us assume that ll follows, near l  0, a linear regression model,
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Yl  ll  All  Bl   l

in which  l is a normally distributed random error term allowing for the variability in Yl that
cannot be explained by a linear relationship between l and Yl. Implicit hypothetical
assumption that the variance l of  l is the same for all values of l implies that Yl is also a
normally distributed random variable and with the same variance for all vales of l. In practice
however this situation is not realistic since the variance in Yl is known from experience with
Romberg tables [5] to decrease with the decrease in l.This is actually our reason for designing
m  1 for the scatterplot Yl,m  ll,m to correspond to a reasonably large enough value of
k0. Correspondingly, Yl,m,r  l,k,r  l,rl,m leads to

sl,m  sll,m  ∑
r  1

Ml
Yl,m,r − Yl,m2 / Ml − 1

1/2

, 19

which illustrates that l can be estimated by 1
Nl
∑
m  1

Nl
sl,m . Moreover only when

E( l   l  0,

EYl  All  Bl.

The estimation of Al and Bl in the present context is a statistical process that employs an
estimated least squares regression line LSRL
Ŷl   l l   l 20
in which  l and  l are the sample statistics[6]:

 l  ∑
m  1

Nl
l,m − lYl,m − Ŷl  / ∑

m  1

Nl
l,m − l2 ,  l  Yl −  l l , with 21

l  1
Nl
∑
m 1

Nl
l,m, Yl  1

Nl
∑
m  1

Nl
Yl,m.

The LSRL is well known to minimize SSEYl  ∑
m  1

Nl
Yl,m − Ŷl,m2  ∑

m  1

Nl
Yl,m −  l

l,m −  l2   l, which eventually superimposes itself on the regression error

SSRYl  ∑
m  1

Nl
Ŷl,m − Ŷl2 to establish [6] the total error SSTYl  ∑

m  1

Nl
Yl,m − Ŷl2, vis

SSTYl  SSEYl  SSRYl.
If Al  0 then EYl  Bl; in this case EYl does not depend on l and we conclude that l

and Yl are not linearly related. Alternatively, if Al ≠ 0, we start with a hypothesis test to
determine whether Al  0. This requires an estimate of the variance of  l which is
sly2  SSEYl/Nl − 2, i.e.,

sly  ∑
m  1

Nl
Yl,m − Ŷl,m2/Nl − 21/2, 22

would be the standard error of the estimate which has Nl − 2 degrees of freedom [6] because of
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the two parameters Al and Bl.

3.1. t-test

The purpose of the t-test is to see whether the sample data set l,m,Yl,mm  1
Nl is usable to

conclude that Al ≠ 0, and the hypothesis to be tested is
H0 : Al  0 ; Ha : Al ≠ 0.
Clearly, the sampling distribution of  l has a mean E( l)  Al and a standard deviation

l  l /∑
m  1

Nl
l,m − l21/2.

Because we do not know l , we develop an estimate [6] of l , denoted sl , based on
estimating l with sly of (22) vis

sl  sly/∑
m  1

Nl
l,m − l21/2.

The pertaining test statistic

tl 
 l − Al
l

is assumed to follow a t-distribution with Nl − 2 degrees of freedom. If H0 is true then

tl 
 l
sl

. Alternatively, the rejection rule at level of significance  is : Reject H0 if tl  − t 2
or t  t 

2
. Accordingly, the confidence interval for Al is  l  t 2 sl .

Let us move now to evaluate the confidence interval estimate of E(Yl) when extrapolated
to l  0. For any particular value of l, say lo, E(Ylo) would be the corresponding expected
value of Yl while Ŷlo   l lo   l is the corresponding estimate of E(Ylo). In general we
should not expect Ŷlo to exactly equal E(Ylo). Moreover, in order to infer about how close Ŷlo is
to the true value E(Ylo), we will have to estimate the variance of Ŷlo or its standard deviation

sŶlo  sly
1
Nl

 lo − l2 / ∑
m  1

Nl
l,m − l2

1/2

.

The corresponding test statistic would be

tl 
Ŷlo − EYlo

sŶlo
,

and the confidence interval estimate of EYlo is Ŷlo  t 2 sŶlo . In particular application to the
present integrations, lo  0, EYlo  Bl and Ŷlo   l . Consequently the estimated standard
deviation of  l is

sl  minsly, slN 1
Nl
 l 2 / ∑

m  1

Nl
l,m − l2

1/2

, 23
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where

slN  ∑
r  1

Ml
l,rl,N − ll,N2 / Ml − 1

1/2

, while tl 
 l − Bl
sl , 24

and the confidence interval estimate of Bl  l0 is

 l  t 2 sl . 25

This fact has been based on the assumption that sl is fixed along the l line . In actual fact
it is possible to assume also that sl l follows, near l  0, a linear regression model,

Zl  sll  Cl l  Dl  l

in which l is a normally distributed random error of this linear model. The corresponding
LSRL is Žl  l l  l. Furthermore, an implicit hypothetical assumption that the variance
l of l is the same for all values of l implies that Zl of the scatterplot Zl,m  sll,m is also a
normally distributed random variable and with the same variance for all vales of l,m. In
practice however this situation is not realistic since the variance in Zl is known from
experience with Romberg tables [5] to decrease with the decrease in l.Here also, only when
E(l  l  0,

EZl  Cll  Dl ,

and the corresponding statistic is

ţ l 
l − Dl
sl .

Theorem 3.1. Starting from a sufficiently large value of k0 for m  k − k0  1, if  l is the
Richardson extrapolated value for l0, then the  confidence interval for  l has a lower
bound of
 l t 2 minsl ,l  ţ 2 sl 26
and an upper bound of
 l t 2 maxsl ,l  ţ 2 sl, 27
where

sl  ∑
m  1

Nl
Zl,m − Žl,m2/Nl − 21/2 1

Nl
 l 2/ ∑

m  1

Nl
l,m − l2

1/2

. 28

Proof. The LSRL for Zl,m  sl l,m,∀m has

l  ∑
m  1

Nl
l,m − lZl,m − Zl  / ∑

m  1

Nl
l,m − l2 , l  Zl − l l,

with

l  1
Nl
∑
m 1

Nl
l,m , Zl  1

Nl
∑
m  1

Nl
Zl,m .
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Here SSEZl  ∑
m  1

Nl
Zl,m − Žm2  ∑

m  1

Nl
Zl,m − l l,m − l2  l and

slz2  SSEZl/Nl − 2 . 29

3.2. Second t-test

Before k0 , it is assumed that the pertaining points in the scatterplot are outliers to the
regression process. Now if Cl  0 then EZl  Dl; then l and Zl are not linearly related.
Alternatively, if Cl ≠ 0, we start with a hypothesis test to determine whether Cl  0. This
requires an estimate of the variance l and a hypothesis t-test,
H0 : Cl  0 ; Ha : Cl ≠ 0,
is needed again here to see whether l,m,Zl,mm  1

Nl is usable.
The sampling distribution of l has E(l)  Cl and the standard deviation

 l  l /∑
m  1

Nl
l,m − l21/2.

Since l is unknown, our estimate of  l , denoted s l , based on estimating l with slz of (29)
will be

s l  slz/∑
m  1

Nl
l,m − l21/2.

The pertaining test statistic

ţ l 
l − Cl
s l

is assumed, like tl, to follow a t-distribution with Nl − 2 degrees of freedom. If H0 is true then

ţ l 
l
s l . Alternatively, the rejection rule at level of significance  is : Reject H0 if ţ  − ţ 

2

or ţ  ţ 
2
. Accordingly, the confidence interval for Cl is l  ţ 

2
s l .

For any particular value of l, say lo, E(Zlo) would be the corresponding expected value of Zl
while Žlo  l lo  l is the corresponding estimate of E(Zlo). For inference about how close
Žlo is to the true value E(Zlo), we will have to estimate the variance of Žlo and of its standard
deviation

sŽlo  slz
1
Nl

 lo − 2 / ∑
m  1

Nl
l,m − l2

1/2

.

The corresponding test statistic is

ţ l 
Žlo − EZlo

sŽlo
,

and the confidence interval estimate of EZlo is Žlo  ţ 
2
sŽlo . In particular application to the
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present integrations lo  0, EZlo  Dl and Žlo  l . Consequently, the confidence interval
estimate of Dl  sl0 is l  ţ 

2
sl . Consideration finally of this result in (25)completes the

proof. 

4. Enhanced Randomized Romberg Integration over Il

Enhancement of the accuracy of evaluating the l-integral, for a monotonically increasing
or decreasing function over Il  al,bl−, is conceived to take place as a result of application of

(13) of Proposition 1, which calls for a Romberg integration only of the l
l l ratio. When

evaluating the pertaining l −integral, we first consider random subdivisions of the
Jl   l,l interval according to

 i −1,k,r   l,i −1,k,r   i,k,r,

and follow the same steps taken earlier with flx overal,bl− to arrive at

l,k,r  1
2  l,0,k,r l   l,nl −1,k,r l∑

i1

nl −1

 l,i −1,k,r  l,i,k,r   l∑
j 0

i −1

 l,j,k,r 

O  l,0,k,r
2 ,  l,nl −1,k,r

2  ,

l,k  1
Ml ∑

r 1

Ml

l,k,r

 1
2Ml ∑

r 1

Ml

 l,0,k,r  l   l,nl −1,k,r l∑
i1

nl −1

 l,i −1,k,r  l,i,k,r   l ∑
j 0

i −1

 l,j,k,r  , 30

  O  l,0,k,r
2 ,  l,nl −1,k,r

2   − 1
12Ml ∑

r 1

Ml

 l,0,k,r
2  ′ l −  l,nl −1,k,r

2  ′l      

Clearly l,k is an average of Ml values of l,k,r and the associated standard deviation is

slk  ∑
r  1

Ml
l,k,r − l,k2 / Ml − 1

1/2

.

For reasons of computational economy we shall mean to use the same discretization data
of flx over al,bl− used in the evaluation of the l −integral.

Proposition 4.1. Let
gl,i,k,r  fl xi 1,k,r − fl xi,k,r, 31
then for i  1,2,3, . . . . . ,nl  2k −1 and ∀ k and r the following holds

 l  i,k,r  1
2

f al ∑
j 0

i −1

hl,j,k,r − ∑
j 0

i −1

hl,j,k,r − al . 32

Proof. For any point xi,k,r , flxi,k,ron the x − y plane, the corresponding point  i,k,r
, l i,k,r on the  − z plane can be shown graphically to satisfy
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 l  i,k,r  1
2
flxi,k,r − xi,k,r.

As
 i ,k,r  1

2
hi,k,r  gi,k,r , 33

the affine map (4) leads directly to
 i,k,r −  i −1,k,r  1

2
xi,k,r − xi −1,k,r  flxi,k,r − flxi −1,k,r ,

from which relations(31)-(32) directly follow. 

Making use now of this proposition in (30) yields

l,k  1
Ml ∑

r 1

Ml

l,k,r  1
4Ml ∑

r 1

Ml

h l,0,k,r  flal  h l,0,k,r − flalflal − al

flbl− − bl− hl,nl −1,k,r − flal  ∑
j 0

nl −2

hl,j,k,r  flbl−

∑
i1

nl −1

hl,i −1,k,r  hl,i,k,r  fl al ∑
j 0

i

hl,j,k,r

−flal ∑
j 0

i −2

hl,j,k,rfl al ∑
j 0

i −1

hl,j,k,r − ∑
j 0

i −1

hl,j,k,r − al   34

in terms of the same discretized data for l.The symmetrized-to-conventional integral ratio

is l,k
l,k 

l
l l with l,k of (34) , l,k of (18) and associated standard deviation

slk  sll  ∑
r  1

Ml

l,k,r
l,k,r −

l,k
l,k 

2 / Ml − 1
1/2

can all simultaneously be evaluated. Richardson extrapolation can be applied as before to

predict  l of
l
l 0 with the scatterplot Yl,m 

l
l l,m, for which Theorem 3.1 holds at it

stands. This is eventually used in the enhanced estimation of l0 by means of

l0  Ģbl−Ģal/
l
l 0 − 1.

Corollary 4.1. The Riemann integral over I of piecewise continous fx is the following
indirect sum

 ∑
l1

L

l0 ∑
l1

L

Ģbl−Ģal/
l
l 0 − 1 ,

over l symetrizable integrals, and it is not symmetrizable itself , i.e. ,
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 ≠ ∑
l1

L

l0.

Proof. Can be made graphically for fx of (1) over I  a,b. Indeed each l integral is defined
over a certain Jl   l,l but the set Jll1L is not a partition of a single larger set ; which
makes the concept of a  is meaningless. 

5. Conclusions

The Romberg method, based on the trapezoid rule, is demonstrated in this work to be ideal
for the computation of the symmetrized integral or the symmetrized-to-conventional integral
ratios. Randomization in Romberg integration and its enhancement, by means of the principle
of Corollary 4.2, indicates a tendency to produce Richardson extrapolation regression lines
with relatively elevated correlation coefficients. The comparison is with the fixed-step
conventional Romberg method having the same number of subdivisions. Statistical error
bounds have been established, for any desired level of significance, for this new
computationally economic method of integration.
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