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Abstract. In this paper we discuss Milstein type methods with implicitness for solving 1t0
stochastic differential equations (SDEs). For different Milstein type methods, the regions of
mean-square (MS) stability are examined. The drift implicit balanced Milstein (DIBM) method
and the semi-implicit balanced Milstein (SIBM) method are proposed in this paper. The
obtained results show that the MS-stability of Milstein type methods with implicitness is better
than that of the classical Milstein method. This is also verified by some numerical examples.
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1. Introduction

The importance of numerical methods for stochastic differential equations (SDEs) cannot
be overemphasized as SDEs are used in the modeling of many biological, chemical, physical,

and economical systems. In this paper we consider numerical methods for the strong solution
of 1td SDEs

dy(t) = f(t,y()dt + g(t,y(t))dW(t), y(to) = Yo, (D)

where y(t) is a random variable with value in R™, f : R™ — R™ is called the drift function,
g: R™ > R™ is called the diffusion function, and W(t) is a one-dimensional Wiener process,
whose increment AW(t) = W(t + At) — W(t) is a Gaussian random variable N(0,At). For
simplicity in this paper numerical methods on a given time interval [to, T] are fixed by schemes
based on equidistant time discretization points t, = to+nh, n=0,1,---,N with step size
h=(T-t))/N, N=1,2,----- . We recall the concepts of accuracy for numerical integration of
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SDEs. A method is said to have a strong order p (respectively, weak order of v) if there exists a
constant C such that

E(y(r) —ynl) < ChP (strong), [E(p(yn)) —E(e(y(2)))l< ChY (weak)

for any fixed 7 =to+Nh € [t),T] and for all functions ¢ : R™ > R, 2(v+1) times
continuously differentiable and for which all partial derivatives have polynomial growth. In
this paper, we focus our attention on schemes that converge in the strong sense. For SDE (1),
the well-known Euler-Maruyama method with strong order 0.5 is given by

Your = Yn + f(tn,yn)h + g(tn, yn) AW, 2)
where AW, = W(tns1) = W(th),n = 1,2,---,N—1and yo = y(to), see [20, 4, 26]. By including
from the It6-Taylor expansion the additional term

a9 e _ 1 a9 2 _
O(tn,Yo) 5 (oY) [ [ dWWs = -(ta,yo) 52t yn) [(AWn)* = ]
Milstein has presented in [21] an important (Milstein) method with strong order 1.0, namely
0
Yier = Yn + f(ta,Yn)h + g(tn, yn) AW, + %g(tn,Yn)ﬁ_)g/(thn)[(AWn)z - h]. ()

By the multiplicative ergodic theorem of Osceledec (see [3]), SDE (1) is said to be stiff if its
linearized system, given by

dX(t) = AX(t)dt + BX(t)dW(t), X(to) = Xo,
has m negative Lyapunov exponents, Am < Am-1 <,--+,A; given by

A(Xo) = lim sup % In|X(t,Xo)|,
t—o0

such that An < A;. Stochastic stiffness is a generalization of the deterministic notion of
stiffness, so a stiff ordinary differential equation is also stiff in the stochastic sense [18, 2].

In recent years many efficient numerical methods are constructed for solving different types
of SDEs with different properties (for example, see [24, 19, 23, 12]). In particular, several
authors have presented different efficient implicit methods for stiff SDEs (see [22, 8, 9, 30,
27]). In addition, several authors have found some explicit methods with better stability for
SDE:s (see [1, 29]). In designing efficient numerical methods for SDEs, an important criterion
is that of stability. The Mean-square (MS) stability is a stochastic version of absolute stability,
and it is a very important concept in numerical simulation of SDEs. A suitable way to find
numerical schemes for stiff SDEs is analysis of MS-stability. In this paper we discuss
MS-stability of Milstein type methods with implicitness for solving Itd SDEs. In Section 2, we
study MS-stability of four methods which are derived from general Milstein method. The
MS-stability of balanced Milstein methods is considered in Section 3. Numerical results are
reported in Section 4.

2. Mean Square Stability of Milstein Type Methods

We begin this section with the definition of mean-square stability. Other notions of stability
can be found, for example, in [5, 14, 13, 6].
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Definition 2.1. The equilibrium position, y(t) = 0, is said to be mean-square stable if for every
€ > 0, there exists a 6; > 0 such that

| y(t) |I<e, forall t>0 and |yol< 61, 4)
where || y(t) ||= (E|y(t)|?) 2. If, in addition to (4), there exists a 5, > 0 such that
lim(ly(D)[|= 0, for all |yo|< 62,

then the equilibrium position is said to be asymptotically mean square stable.

Definition 2.2. Suppose that the equilibrium position of Itd6’s SDE (1) is asymptotically
mean-square stable. Then a numerical scheme that produces the iterations Yy, to approximate
the solution y(t) of (1) is said to be asymptotically mean-square stable if

lim | ya [I= 0.

We apply one-step scheme to the scalar linear test equation
dy(t) = ay(f)dt + by(dW(t), y(to) = Yo, (5)
with known solution y(t) = yoe@D”2t+bW® which is represented by
yn+1 = R(a’ ba h’ ‘])yna

where J is the standard Gaussian random variable J = AW,/y/h ~ N(0, 1). Saito and Mitsui
[25] introduced the following definition of mean-square (MS) stability.

Definition [25] 2.3. The numerical method is said to be MS-stable for a, b, h if
R(a,b,h) = E(R?(a,b,h,J)) < I.

R(a,b,h) is called MS-stability function of the numerical method.
The Euler-Maruyama method (2) is an explicit method. In fact, there is no simple stochastic
counterpart of the deterministic implicit Euler method, i.e., the method

Yo+t = Yn + f(tn+1,Yn+1)h + g(the1, Yne1 ) AW,

fails because, for example, we have E|(1 —ah—bAW,) !|= +wo for linear SDE (5).
Nevertheless, a way to introduce implicitness in the numerical treatment could be to look at a
higher order explicit strong method and try to introduce implicitness there. For Milstein
method (3), by introducing implicitness in f(t,,yn)h, we arrive at a drift implicit Milstein
(DIM) method

Yner = Yn + f(toet, Yo DD + 9(tn, Yn) AW,
+ $9(tn,Yn) 5 (tn,Yn) [(AWn)? - h].

Applying the DIM method (6) to the linear test equation (5), we obtain
yn+1 =R 1 (pa q: J)yna

(6)

where p = ah, g = by/h and

Ri(p,q,J) =

1+q\]+%q2.]2—%q2
I-p )
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The MS-stability function of the DIM method is given by

_ 1+q%>+1qg

Ri(p,q) = ——3—
(1-p)?

The DIM method will be MS-stable if R1(p,q) < 1.

In addition, we can analyze the term

1 a9 2o L a9 2
3 g(tn,yn) Y (tn,Yn)[(AWp)* —h] = 3 g(tn,yn) B (tn,Yn)(AWy)

- %g(tnayn)g—g(tnayn)h

and introduce partial implicitness. This leads to a semi-implicit Milstein (SIM) method [22],
namely to

Yer = Yn + [f(the1,Yner) — %g(tn+l,Yn+l)Z—g(tn+l,yn+l)]h
+ $9(th,Yn) 5 (tn, Yn) (AWn)?.

Applying the SIM method (7) to the linear test equation (6), we obtain
yrH'l = Rz(pa qa‘]) yn 5

(7

where
1+9J+ £q2J?

R2(p» qo‘]) =

1-p++q?

Figurel: MS-stable regions of Milstein type methods
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The MS-stability function of the SIM method is given by

1+20%+ 3q*

(1-p+30%)*

The modified split-step backward Milstein (MSSBM) method will be MS-stable if

Ra(p,q) < 1.
Figure 1 gives the MS-stable regions of the Milstein, DIM and SIM methods. The

MS-stable regions are the areas under the plotted curves and symmetric about the p-axis. The
MS-stability property of the DIM method is better than that of Milstein method, and the
MS-stability property of the SIM method is better than that of the DIM method. The MS-stable
regions of DIM and SIM methods are semi-infinite.

Let us rewrite the SDE (1) in the following form:

dy(t) = f(y(®))dt + g(y(®)dW(t), y(to) = yo,t € [to, T],y € R™. (8)

For SDE (8), Higham, Mao and Stuart [15] presented a split-step backward Euler method,
namely

Vn = yn + hf(Vn),
Vi1 = Yn + AWg(Yn).

R2(p,q) =

€)

Furthermore, they proved the convergence of method (9) under the one-sided Lipschitz
condition.
Using the same implicit splitting technique, Wang [28] presented the drifting split-step
backward Milstein (DSSBM) method, given by
Vn = yn + hf(Vn),

g o 2 (10)
Yner = Yo+ AWng(Yn) + 59(Yn)g' (Yn)[(AWn)* —h].

In addition, using the fully splitting technique for deterministic terms, Wang [28] obtained the
following modified split-step backward Milstein (MSSBM) method, namely

Y = Yo +h[f(Yn) = 39(Yn)g'(Yn)],

Yot = Yo+ AWng(Vn) + $9(Yn)g'(Vn) (AWn)2. (1D

The convergence of methods (10) and (11) is proved in [28]. Applying the DSSBM method
(10) and the MSSBM method (11) to linear test equation (5), we can obtain that the
MS-stability function and the MS-stable region of the DSSBM method are the same as those
of the DIM method, and the same is true for the MSSBM and SIM methods.

3. Mean Square Stability of Balanced Milstein Methods

Milstein, Platen and Schurz [22] presented the class of balanced implicit (BI) methods for
stiff SDEs

Vet = Yn + f(ta, Yn)h + 9(tn, Yn) AW, + Ch(Yn — Yns1), (12)
where
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Ch = Co(tn,yn)h + C1(tn,yn)|AWn|.

In this method the functions Co and C; are called control functions. The control functions must
be bounded and have to satisfy the inequality

1 + CO(tn,yn)h + C] (tn,yn)|AWn|> 0
Using the idea of the BI method and combining it with the Milstein method, Kahl [16]
presented a balanced Milstein (BM) method (see also Kahl and Schurz [17]), namely

Yier = Yn + f(th,Yn)h + g(tn, yn) AW,

1 o 2 (13)
+ jg(tnayn)g(tnayn)[(AWn) —h] + Cn(yn = Yn+1),
where
Cn = co(tn,yn)h + Cz(tn,Yn)[(AWn)z - h], (14)
is restricted by
1 + Co(tn,Yn)h + C2(tn,Yn)[(AWn)* —h] > 0. (15)

Applying the BM method (13) — (14) with ¢co = —a and ¢, = 0 to the linear test equation (5),
we obtain that the MS-stability function and the MS-stable region of the BM method are the
same as for the DIM method.

For the BM method (13) — (14), introducing implicitness in f(yn)h, leads to the drift implicit
Milstein (DIBM) method, namely to

Yner = Yn + f(taer, Yo DD+ 9(tn, Yn) AW,

16
+ %g(tnayn)%g(tnayn)[(AWn)z —h] + Ca(yn = Yns1), (1

where

Cn = Co(tn,Yn)h + Ca(tn,Yn)[(AW,)? = h]. 17)

The control functions Cy, C, satisfy the inequality (15). Applying the DIBM method (16) — (17)
with ¢p = —a and ¢, = 0 to the linear test equation (5), we can obtain

Yn+1 = R3(p9 qa J)Yna

where

1+p+qgd+21qg2)?-Lg?
R3(p,q,J) = T —22p 2

The MS-stability function of the DIBM method is given by
_ 1+2p+p?+q>++qg*
R = 2
The DIBM method will be MS-stable if R3(p,q) < 1.

Similar to the SIM method (7), introducing partial implicitness in the BM method (13) —
(14), we obtain the semi-implicit balanced Milstein (SIBM) method

Yoer = Yo+ [fCtas, Vo) = $0C0s, Y ) S (e, Yo

| o , (18)
+ 79(tnayn)g(tn»yn)(AWn) +Cn(Yn — Yns1),
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where
Cn = Co(tn,Yn)h + C2(tn,Yn)[(AWn)? — h]. (19)

The control functions Cy,C» also satisfy the inequality (15). Applying the SIBM method (18) —
(19) with cp = —a and ¢, = 0 to the linear test equation (5), we obtain

Yn+1 = R4(p> q:‘])yna
where
1+p+0qd+L1qg2J?
R ,J) = 2
4(p>q ) 1_2p+%q2

The MS-stability function of SIBM method is given by
_ 1+2p+p?+29>+pg?+ g
Ra4(p,q) = L 42)2 —
(1-2p+309°)
The SIBM method will be MS-stable if R4(p,q) < 1.

Figure 2: MS-stable regions of balanced Milstein methods

Figure 2 illustrates the MS-stable regions of the BM, DIBM and SIBM methods. The
MS-stabe regions are the areas under the plotted curves and symmetric about the p-axis. The
SMS-stability property of the DIBM method is better than that of the BM method. So is the
MS-stability property of the SIBM when compared with that of the DIBM method. The
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MS-stability regions of the BM, DM and SIM methods are semi-infinite.

4. Numerical Results

Numerical results are reported in this section to confirm the convergence properties and
stability properties of several Milstein type methods. Denoting yin as the numerical
approximation to Y;(ty) at step point ty in the i-th simulation of all 5000 simulations, we use
means of absolute errors M, strong order 1.0 convergence rates R, defined by

5000

_ 1 _ _ M
M = 3000 ;WIN —Vyi(tn)], Rio = H,

to measure the accuracy and convergence property of Milstein type methods.
The test equation is a 2-dimensional linear SDE system whose [td form is given by

dy(t) = Uy(t)dt + Vy(t)dw(t), y(to) = yo.t € [0, 1],y € R?, (20)

where U and V are the matrices

U<UU>,V<VO>. @1)
u -u 0 v

Table 1 : Errors and convergence rate for (20) and (21) (u = 5,v = 10)

Milstein SIM SIBM

h M Rio M Rio M Rio

271 8.30c-3 1.66c—2 1.20c—-3 2.40c—-3 1.10c-3 2.20c-3

272 5.90c-3 2.36c—-2 1.30c—3 5.20c-3 1.20c-3 4.80c-3

273 4.30c-3 3.44c-2 1.30c-3 1.04c-2 1.20c-3 9.60c -3

274 2.80c—3 4.48c-2 9.73c—4 1.56c-2 8.71c—4 1.39c-2

275 1.40c—3 4.48c-2 4.16c—4 1.33c-2 3.30c—4 1.05c-2
2% 6.05c—4 3.87c—-2 9.25¢c-5 5.92c-3 4.99c-5 3.19c-3

The exact solution of this equation is given by [19]

xp(p () 0 L1
- P P-lyy, P = -
" ( 0 exp(p"(®) ) T ( -1 )

where p*(t) = (-u— % Vv? £ u)t +vW(t) and P! = P.

This equation is stiff in the deterministic (or stochastic) component if U (or V) is large. The
stiffness of this linear system increases quadratically in terms of v. Suitable numerical results
can be obtained only with smaller stepsize if this stochastic system is stiff (see [27,7]). Table 1
gives the errors and strong convergence rates of Milstein, SIM and SIBM methods when
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solving (20) and (21) with u = 5, v = 10 and yo = (1,2)". The accuracy of the SIM method is
better than that of Milstein method. Clearly, the accuracy of the SIBM method is better than
that of the SIM method.

Milstein method with h=0.025, alpha=1.9, gamma=0.1

-0.1 -0.05 4] 0.05 0.1 015

Figure 3: Numerical simulation of the system (22) by Milstein method

SIBM method with h=0.025, alpha=1.9, gamma=0.1

0.1 -0.05 [§] 0.05 0.1 015
Ll

Figure 4: Numerical simulation of the system (22) by SIBM method
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The second test equation is a stochastic version of the Brusselator system (see [10,11,19])

dyi(t) = ((@ = DY1 (1) +ayi(®) + (Y1) + D2y2(0)dt + yy1 (1 + Y1 (1) dW(D),

22
dy2(t) = (=ay1(®) — ayi(t) = (y1(®) + D?y2(0)dt — yy1 ()1 +yi (D) dW(D), 22
which model unforced periodic oscillations in certain chemical reactions
Using Milstein and SIBM methods with h = 0.025, in Figure 3 and in Figure 4,
respectively, we give the numerical simulation of equation (22) with ¢ = 1.9, v = 0.1,
0 <t< 125 starting at (y;1(0),y2(0)) = (-0.1,0). We observe in Figure 4 for the
semi-implicit balanced Milstein method the approximate trajectories stay close to the origin
(0,0), which replicates the behavior of the exact solution. Here, the semi-implicit balanced
Milstein method yields a better approximation than the Milstein method where the
approximation is more damped and thus approaches the origin too fast.

5. Conclusions

In this paper we have analyzed mean-square stability of Milstein type methods with
implicitness for solving Itd SDEs. The drift implicit balanced Milstein (DIBM) method and the
semi-implicit balanced Milstein (SIBM) method are proposed in this paper. By comparing the
MS-stability of these different methods, we have demonstrated that the semi-implicit balanced
Milstein method is more suitable for stiff SDEs. This is also verified by a numerical example.
We will consider constructing methods with better stability properties in future work.
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