
Journal of Numerical Mathematics and Stochastics, 1 (1) : 45-55, 2009 © JNM@S
http://www.jnmas.org/jnmas1-5.pdf Euclidean Press, LLC

Online: ISSN 2151-2302

An Efficient Numerical Scheme for Simulation of
Mean-reverting Square-root Diffusions ∗

D. DING and C. I. CHAO

Department of Mathematics, Faculty of Science and Technology, University of Macau,
Macao, China, Email : dding@umac.mo

Abstract. An efficient numerical scheme, which is based on the splitting-step idea [20], for
simulation of mean-reverting square-root diffusions is presented in this paper. We prove
positivity preservation for this scheme and an estimate of its local error in the second moment.
A series of numerical experiments based on MATLAB programs is given to compare the
suggested scheme with the schemes of the balanced implicit method (BIM) and the balanced
Milstein method (BMM), which are reported in [15, 16, 19].
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1. Introduction

A mean-reverting square-root diffusion is a stochastic process Xt given by the following
stochastic differential equation (SDE):

dXt   − Xtdt   Xt dWt, 1

where the parameters ,  and  are strictly positive and Wt is a standard Brownian motion
defined on a filtered probability space ,F,Ft,P of standard notation. Mean-reverting
square-root diffusions play a central role in several important models in finance. For instance,
the mean-reverting short-time interest rate in the CIR model [6], and the variance processes in
the stochastic volatility (SV) models [11].

Application of the Yamada condition (e.g. see [14]) reveals that the SDE (1) has a unique
positive solution Xt for any given initial value X0  0, which possesses the following
properties [1, 2, 6, 8]:
____________________________
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∙ If 2 ≥ 2, then 0 is an unattainable boundary.
∙ If 2  2, then 0 is an attainable boundary. In this case, 0 is strongly reflecting in this
sense that the length of time spent at Xt  0 is of Lebesgue measure zero.
∙  is an unattainable boundary.
∙ For each 0 ≤ s  t, the conditional distribution of Xt given Xs is a non-central chi-square
distribution, and

EXt ∣ Xs     Xs −  e−t−s, 2

EXt
2 ∣ Xs   1

2 e−2t−s(et−s- 1) 2Xs  et−s − 1  2  2. 3

Many practical applications of SV models require the introduction of Monte Carlo methods,
which lead to the simulation of the mean-reverting square-root diffusions. However, this
involves two problems. The first problem is that the simulation can yield negative values in a
direct Euler discretization of SDE (1). The second one is that, since the square-root is not
globally Lipschitzian, the convergence of the Euler scheme for SDE (1) is not guaranteed.

Recently, several authors have been concerned with positivity preservation and with
efficiency of the simulation of mean-reverting square-root diffusions. Lord et al in [18]
considered different Euler schemes, in particular they investigated the rules to deal with the
fact that mean-reverting square-root diffusions can be become negative values in a direct Euler
discretization. Kahl and Jäckel in [15] analyzed and compared various numerical methods,
including the balanced BIM and BMM methods. Broadie and Kaya in [3] developed a
completely bias-free scheme that could simulate the Heston’s SV model from its exact
distribution. However, this scheme has a number of practical drawbacks, including complexity
and lack of computational speed (e.g. see [1, 10]). Some approximations to exact schemes are
also considered. Andersen in [1] approximated the non-central chi-square distribution by a
related distribution whose moments are matched with those of the exact distribution, and then
he developed two efficient schemes for the simulation of square-root diffusions. Haastrecht
and Pelsser in [10] showed an accurate and efficient sampling technique for the square-root
diffusions, and introduced a new and efficient simulation scheme for the Heston SV model.

In this paper, we consider a new algorithm for the simulation of the SDE (1). We
decompose the SDE (1) into two equations, a SDE:

dYt  1
4 

2dt   Yt dWt, 4

and an ordinary differential equation (ODE):

dZt   − Zt − 1
4 

2 dt. 5

The idea of this decomposition comes from the splitting-step algorithm for SDEs, which
was introduced by Moro and Schure in [20] to deal with the boundary preserving numerical
solution of some SDEs with bounded and smooth coefficients, and also applied to study the
simulations of some stochastic dynamics in mathematical finance. Some different splitting-step
algorithms for RSDEs were considered and presented by Ding and Zhang in [7]. The main
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advantage of the decomposition (4) and (5) is that both these two equations have exact
solutions for the given initial conditions, so that it is easier to perform the practical simulation
and to handle the positivity preservation problem. In fact, we can guarantee that this algorithm
possesses a positivity preservation property if 4 ≥ 2, which meets the requirement of the
mast practical financial markets [15, 18].

This paper is structured as follows. After this introduction we present the efficient
numerical scheme, which is based on the decomposition (4) and (5), to simulate the solution of
SDE (1). We also discuss the convergence of this scheme in Section 2. Then, we give a series
of numerical experiments to compare this scheme with the BIM and the BMM schemes in
Section 3. Finally we make some conclusions in support of our scheme in Section 4.

2. An Efficient and Fast Algorithm

Let T  0 and n be a positive integer. Denote Δ  T / n, and set t0  0 and tk  kΔ for each
k  1,… ,n, i.e. t0  t1    tn is a partition of 0,T. Denote ΔWtk  Wtk − Wtk−1 for
k  1,… ,n. Then ΔWt1 ,… ,ΔWtn are n independent random variables having a common
normal distribution with the mean 0 and the variance Δ.

We present an algorithm for SDE (1), which is based on the decomposition (4) and (5). For
each k  1,… ,n, assume that we have known the value of Xtk−1 of SDE (1).
1. Let Xtk−1 be the initial condition. Solve the SDE (4) over tk−1, tk, i.e.

Yt  Xtk−1  
tk−1

t 1
4 

2ds  
tk−1

t
 Ys dWs, t ∈ tk−1, tk. 6

2. Let Ytk be the initial condition. Solve the ODE (5) over tk−1, tk, i.e.

Zt  Ytk  
tk−1

t
 − Zs − 1

4 
2 ds, t ∈ tk−1, tk. 7

Then, Zt is used as an approximation of Xt in tk−1, tk when Xtk−1 is given.
The main advantage of this algorithm is that SDE (6) and ODE (7) have the exact solutions:

By applying the Itô’s formula and a transform (e.g. see Section 4.4 in [17]) we can reduce SDE
(6) to a linear SDE, and then we obtain the exact solution:

Yt  Xtk−1 
1
2 ΔWt

2
, t ∈ tk−1, tk, 8

where ΔWt  Wt − Wtk−1 . And we can easily see the exact solution of ODE (7) is

Zt  e−ΔtYtk 
1
  − 1

4 
2 1 − e−Δt , t ∈ tk−1, tk, 9

where Δ t  t − tk−1. The following result shows that the approximation Zt is a positivity
preserving estimate for the local error.

Theorem 2.1. Suppose that Xtk is non-negative and 4  2. The approximation Zt is
strictly positive in tk−1, tk, and its local error has the following estimate:
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E Xtk − Ztk 
2 ∣ Xtk−1 ≤ c1Xtk−1Δ  c2Δ2, 10

where c1 and c2 are positive constants which only depend on the parameters  and  and
,and the time T.

Proof. Equations (8) and (9) demonstrate the strict positivity of the approximation Ztk . For the
given Xtk−1 , the SDE (1) becomes,

Xtk  Xtk−1  
tk−1

tk
 − Xs ds  

tk−1

tk
 Xs dWs.

Combining this with equations (6) and (7) we get

Xtk − Ztk 
2 ≤ 22 

tk−1

tk
Xs − Zs ds

2
 22 

tk−1

tk
Xs − Ys dWs

2
.

Using the Cauchy-Schwartz and the Burkhoder-Davis-Cundy inequalities leads to

E Xtk − Ztk 
2 ∣ Xtk−1

≤ 22Δ E 
tk−1

tk
Xs − Zs2ds ∣ Xtk−1  22 E 

tk−1

tk
Xs − Ys

2
ds ∣ Xtk−1

≤ 22Δ 
tk−1

tk
E Xs − Zs2 ∣ Xtk−1 ds  42 

tk−1

tk
EXs ∣ Xtk−1   EYs ∣ Xtk−1  ds.

On the other hand, from (2) and (8), we have

EXs ∣ Xtk−1   e−s−tkXtk−1  1 − e−s−tk  ≤ Xtk−1  Δ,

and

EYs ∣ Xtk−1   Xtk−1 
1
4 

2Δ,

for all s ∈ tk−1, tk. Thus, we get

E Xtk − Ztk 
2 ∣ Xtk−1 ≤ 22Δ 

tk−1

tk
E Xs − Zs2 ∣ Xtk−1 ds  c1Xtk−1Δ  c2Δ2,

where c1  82 and c2  42  1
4 

2. Apply then the Gronwall’s inequality to obtain

E Xtk − Ztk 
2 ∣ Xtk−1

≤ c1Xtk−1Δ  c2Δ2  22Δc1Xtk−1Δ  c2Δ2 
tk−1

tk
e22Δtk−sds

≤ c1Xtk−1Δ  c2Δ2  c1Xtk−1Δ  c2Δ2 e22Δ2 − 1 .

This implies that the estimate (11) holds, and here the proof completes. 
According to the algorithm (6) and (7), and the expressions (8) and (9), it is natural to

represent a new scheme by:
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Xk  e− Xk−1  1
2  Δ k

2
 1
  − 1

4 
2 1 − e−Δ, 11

for each k  1,… ,n, where 1,… ,n are n independent random variables having a common
standard normal distribution. In order to make a comparison, we also invoke the numerical
schemes from the balanced implicit method, BIM, and the balanced Milstein method, BMM,
for SDE (1) in the following.
The BIM scheme is defined by

Xk
BIM  Xk−1

BIM   − Xk−1
BIMΔ   Xk−1

BIM Δ k  Xk−1
BIMXk−1

BIM − Xk
BIM, 12

for each k  1,… ,n, where

Xk−1
BIM  0Xk−1

BIMΔ  1Xk−1
BIM Δ |k |, 13

with the control functions:

0x   and 1x 
/ x , if x  ,

/  , if 0 ≤ x ≤ ,

for all x ≥ 0, where   0 is a constant. The BIM scheme was introduced in [19], and it was
shown in [21] that this scheme is able to preserve positivity of the solution of SDE (1). Also, it
can only achieve the same strong order of convergence as the Euler scheme, i.e. 1

2 .

The BMM scheme is given by
Xk

BMM  Xk−1
BMM  Δ − Xk−1

BMM   Xk−1
BMM Δ k  1

4 
2Δk

2 − 1

 ΔXk−1
BMM − Xk

BMM, 14

for each k  1,… ,n. It can been shown (e.g., see [16]) that the BMM scheme also preserves
positivity for the SDE (1), and achieves the strong order 1 of convergence.

3. Numerical Experiments

In this section, we will compare the new scheme (New S) (11) with the BIM scheme (12)
and the BMM scheme (14) via a series of numerical experiments. We consider SDE (1) in
T  1 and X0  0.5 with two cases of the parameters:
∙ Case 1:   0.5,   0.5 and   1, i.e., 2  2.
∙ Case 2:   0.5,   0.2 and   0.5, i.e., 2  2  4.
All numerical experiments are performed in MATLAB with the normal random number
generator randn and randn(m,n) . For a detail introduction to MATLAB programs for
numerical solution and simulation of SDEs, one can refer to Higham’s paper [12].

First, we show that the new scheme converges to the exact solution of SDE (1). Figure 1
generates the single path simulation to SDE (1) in Case 1 for the parameters, by three schemes
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with the step size Δ  2−10 and using the same random numbers. It is apparent that the
differences between these schemes are very slight. Tables 1 and 2 show that the errors between
the new scheme and the BMM scheme under different step sizes from 2−10 to 2−6 in two
respective cases for the parameters. The BMM scheme has been shown to be convergent to the
exact solution of SDE (1) in [16]. Subsequently from Tables 1 and 2 we may conclude that the
new scheme is also convergent. Here the errors for step sizes: Δ  2−10,… , 2−6, are given by

errorΔ  E |Xn
BMM − Xn

NewS |2 , 15

where Xn
BMM and Xn

NewS are the respective endpoints of corresponding schemes with same step
size.

Figure 1 : Single path of (1) by using three schemes in Case 1 for the

Δ 2−10 2−9 2−8 2−7 2−6

errorΔ 0.0550  10−3 0.1103  10−3 0.2209  10−3 0.4401  10−3 0.8775  10−3

Table 1: Errors of different step sizes over 20000 paths in Case 1 for the parameters.
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Δ 2−10 2−9 2−8 2−7 2−6

errorΔ 0.0402  10−3 0.0804  10−3 0.1631  10−3 0.3216  10−3 0.6473  10−3

Table 2: Errors of different step sizes over 20000 paths in Case 2 for the parameters.

Δ 2−10 2−9 2−8

BIM 13.016 6.125 3.047
BMM 3.531 1.593 0.797
New S 2.219 1.063 0.531

Δ 2−10 2−9 2−8

BIM 16.219 6.297 3.125
BMM 4.062 1.672 0.828
New S 2.188 1.078 0.532

(A) (B)

Table 3: CPU times (sec.) of three schemes over 20000 paths. (A) Case 1. (B) Case 2.

Second, Tables 3(A) and 3(B) show that the CPU times of three schemes in two cases of
parameters, respectively. Here we use tic and toc in MATLAB to count the time of whole
process, which starts from the first path and stops after computing the mean of the end points
in these 20000 paths. From these tables, we see that the new scheme is the fastest one among
these three schemes in the different cases for the parameters.

Next, we compare the convergence rates of the three schemes via estimating the order p and
the constant C of

 : E |Xn − Xn
Δ |2 ≈ C  Δp, 16

where, for each scheme, Xn is the endpoint with step size Δ  2−10 and Xn
Δ are the endpoints

with different step sizes Δ  2−9,… , 2−4 of same scheme. Thus, p can be considered as the
convergence rate of the considered schemes. Taking logs in (16), we can plot Δ against Δ on a
log-log scale, and then we plot a linear least squares line:

logΔ ≈ c̃  p̃ logΔ, 17

to fit the points logΔ, logΔ at Δ  2−4,… , 2−9, where c̃ and p̃ are the least squares estimates
of the constant c  logC and the slope p, respectively. Figures 2 and 3 give log-log plots for
error Δ, as well as their linear least squares lines, for three schemes in two respective cases for
the parameters. In Figure 2, the slopes for the BIM scheme, the BMM scheme and the new
scheme are 0.6069, 1.0915 and 1.1220, respectively. In Figure 3, the slopes for the BIM
scheme, the BMM scheme and the new scheme are 0.5859, 1.0900 and 1.1164, respectively.
In these two figures, we see that the slope of the new scheme is little better than the BMM
scheme, and both of them are much better than the BIM scheme. Hence, we may conclude that
the new scheme is also the most efficient among three schemes for numerical simulation of
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SDE (1).
Last, we compare certain stabilities between these three schemes. Let q̃ be the least squares

residual of (17). Tables 4, 5 and 6 give values of p̃

 0.90 0.50 0.25 0.10
BIM p̃ 0.56531 0.60695 0.64927 0.69944

q̃ 0.20567 0.20425 0.18835 0.16469
BMM p̃ 0.8687 1.1035 1.1052 1.1062

q̃ 0.082626 0.16965 0.17369 0.17398
New S p̃ 0.92261 1.1258 1.123 1.1224

q̃ 0.071487 0.19938 0.19588 0.19374

Table 4: Values of p̃ and q̃ against different , where   0.5 and   0.5.

Figure 2: Log-log plots of errors for three schemes over 20000 paths with Case 1 for the
parameters.

and q̃ against different parameters ,  and , respectively. From these tables we see that the
new scheme is stable for different parameters, and still faster and more efficient than the other
ones under these different parameters.
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 0.8 0.5 0.25 0.1
BIM p̃ 0.64801 0.62214 0.60632 0.61286

q̃ 0.19148 0.19099 0.19318 0.20527
BMM p̃ 1.1168 1.0967 1.1076 1.1341

q̃ 0.19685 0.17012 0.18116 0.22805
New S p̃ 1.1255 1.1205 1.1234 1.1254

q̃ 0.20109 0.20026 0.20193 0.20388

Table 5: Values of p̃ and q̃ against different , where   0.4 and   0.7.

Figure 3: Log-log plots of errors for three schemes over 20000 paths with Case 2 for the
parameters.
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 0.8 0.5 0.25 0.1
BIM p̃ 0.64441 0.63218 0.62426 0.61713

q̃ 0.18868 0.19797 0.20236 0.20624
BMM p̃ 1.1088 1.1123 1.1156 1.0789

q̃ 0.18242 0.19621 0.19233 0.13965
New S p̃ 1.1191 1.1215 1.1225 1.0878

q̃ 0.19087 0.20406 0.19956 0.14831

Table 6: Values of p̃ and q̃ against different , where   0.45 and   0.8.

4. Some Conclusions

In this paper, we present a new scheme to numerically simulate the mean-reverting
square-root diffusion, i.e. the solution of SDE (1). Our idea is based on the splitting-step
method and the fact that SDE (4) and ODE (5) have the exact solutions. This scheme can
preserve positivity when the parameters satisfy: 2 ≤ 4. Furthermore, via numerical
experiments, this scheme is also shown to be more efficient and faster than the BIM and BMM
schemes. Actually, in order to maintain precision when applying Monte-Carlo methods, one
needs to use a large numbers of paths. Hence saving time becomes the most important factor
when addressing the pertaining problem. Our new scheme is illustrated in this respect to
provide for good efficiency and much time saving. The estimate of the local error of this new
scheme, in the 2nd moment, is thought to partially guarantee that this
scheme is theoretically convergent.
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