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Abstract. Based on the notion of relativemaximal monotonicity, a hybrid proximal point
algorithm is introduced and then it is applied to the approximation solvability of a general
class of variational inclusion problems, while achieving a linear convergence. The obtained
results generalize the celebrated work of Rockafellar (1976) where the Lipschitz continuity at 0
of the inverse of the set-valued mapping is considered.
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1. Introduction

Let X be a real Hilbert space with the inner product (-, ) and with the norm ||-|| on X. We
consider the inclusion problem: Determine a solution to

0 € M(x), @9)

where M : X - 2% is a set-valued mapping on X.

In ([5, Theorem 2), Rockafellar investigated the general convergence of the proximal point
algorithm in the context of solving (1), by showing for M maximal monotone, that the
sequence {x*} generated for an initial point x° by the proximal point algorithm

Kl Py(x) @

converges strongly to a solution of (1), provided the approximation is made sufficiently
accurate as the iteration proceeds, where Py = (I +ckM)™! is the resolvent operator for a
sequence {ck} of positive real numbers, that is bounded away from zero. We observe from (2)
that x**1 is an approximate solution to inclusion problem
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0 € M(X) + it (x — xX). (3)

We state the theorem of Rockafellar ([5], Theorem 2) for the sake of the completeness. This
work became very significant because the approach of the Lipschitz continuity of M~ instead
of applying the nonexpansiveness of the resolvent turned out to be quite remarkable.

Theorem 1.1. Let X be a real Hilbert space, and let M : X — 2% be maximal monotone. For an
arbitrarily chosen initial point x°, let the sequence {x*} be generated by the proximal point
algorithm

such that
X442 — Pr(xX¥)[|I< e,

where Py = (I + ckM)~2, and the scalar sequences {ex} and {cx}, respectively, satisfy
Y o€k < ooand {ck} is bounded away from zero.
We further suppose that sequence {x*} is generated by the proximal point algorithm

Xl o Pk(Xk) (5)
such that
X = P (XY | Sk [ X! = x¥,

where scalar sequences {6x} and {c«}, respectively, satisfy X’ ,6x < wand ck 1 ¢ < oo,
Also, assume that {x*} is bounded in the sense that there exists at least one solution to (1), and
that M1 is (a) —Lipschitz continuous at 0 for a>0. Let

= —2 <1,
Jaz+c?

Then the sequence {x¥} converges strongly to x*, a unique solution to (1) with

XK —x*|< o[ XK = x*[| VK > K, (6)

where

0<ap= BT gy, )
1-6k

and

ax - 0 ascg - . ©))

We observe that most the of variational problems, including minimization or maximization
of functions, variational inequality problems, quasivariational inequality problems, minimax
problems, and decision and management sciences can be unified into form (1), and
approximation solvability is achievable using some sort of resolvent techniques based on
suitable algorithmic procedures. However, general maximal monotonicity has played a crucial
role by providing a powerful framework to develop and use suitable proximal point algorithms
investigating convex programming and variational inequalities. This algorithm turned out to be
of more interest because of its role in certain computational methods based on duality, such as
the method of multipliers in nonlinear programming. For more details, we refer the reader
[1-15].

In this communication, we first derive some auxiliary results on relatively maximal
monotone and cocoercive mappings, and then examine the approximation solvability of
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variational inclusion problem (1). Our approach for the solvability of (1) differs than that of [5]
in the sense that M is without monotonicity assumption, there is no assumption of the Lipschitz
continuity on M=%, and the proof turns out to be simple and compact. Note that this new model
collapses when M is not relatively maximal monotone.

2. Relative Maximal Monotonicity

In this section, first we introduce the notion of the relative maximal monotonicity, and then
we discuss some basic properties along with some auxiliary results for the problem on hand. It
just happened that this notion sounds more application-oriented in the sense of applications to
variational inclusion problems.

Let X be a real Hilbert space with the norm ||+|| for X , and with the inner product (-, +).

Definition 2.1. Let X be a real Hilbert space, and let M : X » 2% be a multivalued mapping
and A : X —» X be a single-valued mapping on X. The map M is said to be:
(i) Monotone if

(U* =v*u—v) > 0V (u,u*),(v,v*) € graph(M).

(it) Strictly monotone if M is monotone and equality holds only if u = v.
(iii) (r) — strongly monotone if there exists a positive constant r such that

U* —v*, u—Vv) > r|u—v||?Vv(u,u*),(v,v*) € graph(M).

(iv) (r) — expanding if there exists a positive constant r such that
lu* = v*||> r|ju—Vv]| V (u,u*),(v,v*) € graph(M).
(v) (m) —cocoercive if there exists a positive constant m such that
U* —v*, u—Vv) > mju* —v*||2V (u,u*),(v,v*) € graph(M).

(vi) Monotone with respect to A if

u* =v* A(u) —A(v)) >0V (u,u*),(v,v*) e graph(M).
(vii) Strictly monotone with respect to A if M is monotone with respect to A and equality holds

only ifu =v.
(viii) (r) — strongly monotone with respect to A if there exists a positive constant r such that
(U* =v*, A(u) = AV)) = rllu—v[|?¥(u,u*),(v,v*) € graph(M).

(ix) (m) —cocoercive with respect to A if there exists a positive constant m such that
U* —=v*,AU) —A(V)) = mllu* —v*||2¥ (u,u*),(v,v*) € graph(M).

Definition 2.2. Let X be a real Hilbert space, and let M : X — 2X be a mapping on X.
Furthermore, let A : X — X be a single-valued mapping on X. The map M is said to be:
(i) Nonexpansive if



59 R. U. VERMA

lu* —v*||< lu=V| ¥ (u,u*),(v,v*) € graph(M).
(if) Cocoercive if
U* —v*,u—Vv) > |u* —v*||2 <)V (u,u*),(v,v*) € graph(M).
(iii) Cocoercive with respect to A if

(U —v*5, A@U) —A(V)) = [lu* = v*[|2V (u,u*), (v,v*) € graph(M).

Definition 2.3. Let X be a real Hilbert space. Let A : X — X be a single-valued mapping. The
map M : X - 2Xis said to be relative maximal monotone if
(i) M is monotone with respect to A, that is,

u* =v* A(u) —A(v)) >0V (u,u*),(v,v*) e graph(M),
(i) R(I+ pM) = X for p > 0.

Definition 2.4. Let X be a real Hilbert space. Let A : X — X be an (r) —strongly monotone
mapping, and let M : X — 2% be a relative maximal monotone mapping. Then the generalized
resolvent operator R}, : X — Xis defined by

Rpa(u) = (I+pM)~(u).

Proposition 2.1. Let X be a real Hilbert space. Let A : X - X be an (r) —strongly monotone
mapping, and let M : X — 2% be a relative maximal monotone mapping. Then the operator
RMa = (I + pM)~ is single-valued.

Proof. The proof follows from the definition of the resolvent operator. H

Definition 2.5. Let X be a real Hilbert space. A map M : X - 2* is said to be maximal
monotone if
(i) M is monotone, that is,

U* =v*,u—v) >0V (u,u*),(v,v*) € graph(M),
(i) R+ pM) = Xfor p > 0.

Definition 2.6. Let X be a real Hilbert space. Let M : X - 2* be a maximal monotone
mapping. Then the resolvent operator J : X — X is defined by

M) = (1+ pM)™L(u).

Next, we include some examples on the relative monotonicity, especially to the context of
Definition 2.3.

Example 2.1. Let X = (-0, +x0), A(X) = —%x and M(x) = —x for all x € X. Then M is relative
monotone but not monotone.
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Example 2.2. Let X be a real Hilbert space, and let map M : X - 2% be maximal monotone.
Suppose that M, = p~1(I —JM) is the Yosida approximation corresponding to Definition 2.5.
Since M, (u) € M(IM)(u), it follows that M, is monotone with respect to J, that is,

My (u) =M, (v),IM(u) = IN(v)) >0VuveX

3. Generalizations

This section deals with a generalization to Rockafellar’s theorem ([5], Theorem 2) under the
framework of relative maximal monotonicity, while solving (1).

Theorem 3.1. Let X be a real Hilbert space, and let M : X — 2% be relative maximal
monotone. Then the following statements are mutually equivalent:

(i) Anelementu € X is a solution to (1).

(i) For anu € X, we have

u = RMa(u),
where
RYA(U) = (I + pM)~(u).
Proof. It follows from the definition of resolvent operator corresponding to M. |

Theorem 3.2. Let X be a real Hilbert space, let A : X - X be (r) — strongly monotone, and let

M : X — 2% be relative maximal monotone. Furthermore, suppose that AoRL\J"k‘A IS cocoercive
with respect to R)! 4.

(i) For an arbitrarily chosen initial point x°, suppose that the sequence {x*} is generated by
the proximal point algorithm

k
Xk‘i’lz RL\)/L’A(X )

such that

XK — R} A(X9)[I< ex, (9)

where 2 gex < oo, RM o = (I + pxM)~%, r> 1, and the scalar sequence {p} satisfies

pk T p =
Suppose that the sequence {x¥} is bounded in the sense that there exists at least one solution to

Q).

(i) In addition to assumptions in (i), we further suppose that, for an arbitrarily chosen initial
point x°, the sequence {x¥} is generated by the proximal point algorithm

k
)(k‘i’lz Rg/lk’A(X )
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such that
[k — RM A(X) 1< S [l — xK ], (10)

where 5k - 0, R) A = (I+ pkM)%, and the scalar sequences {6k} and {p«}, respectively,
satisfy Y0k < o, and pk 1 p < oo
Then the following implications hold:

(iii) The sequence {x¥} converges strongly to a solution of (1).

(iv) Rate of convergence

Sk + (N1

0 < limje.. 27—

<1,
where 1 < 1.

Proof. Suppose that x* is a zero of M. We start with the proof for
IRM ACK) = RMAG) IS - [IX< = X7

It follows from the definition of the generalized resolvent operator R , and the relative
monotonicity of M with respect to A that

pEXK —x* — (RM A(X) = RN A(X*), ARM A(X)) —ARM A(x*))) = 0.
It further follows that

PA

(X =x* ARpAK)) —ARP AX)))
> (R, a(X) = RE A, AR A(X)) — AR, AKX))).

Since A is (r) — strongly monotone (and hence (r) — expanding) and AoRY , is cocoercive with
respect to RpkA, the inequality follows.

Next, we move to estimate

PrA

X = x*[| < [IRP, A(X) = x*|| + ex
||RpkA(Xk) RpkA(X )” + €k

T||xk —X*|| + ex.

IA

Since r > 1, combining for all k, we have
k

Xkt —x*[| < X0 = Xx*[|+ D€ Vi
i=0

< Xt =Xl X0 —x* [+ e (11)
k=0

Hence, {x¥} is bounded.
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Next we turn our attention to the main proof. Since
X458 = x* < [Ix = R A(X)

+ R} ACK) =R A, (12)
and
X = R A< Sicl[x* — x|
< Sk IIXE = x|l xE = x 1], (13)
we have
XK —x|< x4 =R} A X
+ IRR(X) = RE A
< Sk IIXK = x|+ XK = x* 1]
+ L yixk — x| fork > K/,
where + < 1.
It follows that
-1
||Xk+1 —X* ||S (ri—_—gfk ||xk — X* || fork > k. (14)

It looks favorably that (14) holds since + < 1 (seems to hold) and §¢ — O.
Hence, the sequence {x} converges strongly to x*.
Finally, to show the uniqueness of the solution to (1), assume that x* is a zero of M. Then
using [|Ix* — x*[|< [x® = x*[|+>_,", ek Yk, we have
a* = lim, inf ||xX — x*||
is nonnegative and finite, and as a result, || x — x*||- a*. Consider x; and x5 as two limit
points of {x>. Then we have
X =xi|l= a1, [Ix*-x3]= az
and both exist and are finite. If we express
X< =x3 12 = XK = x[12 + 2 = x{,x§ = x3) + [IXi = x3,
then it follows that

limics (K = X3, X5 = x3) = S-[a3 - af — |Ixi =312,

Since x; is a limit point of {x¥}, the left hand side limit must tend to zero. Therefore,
aj = af — [|Ixi —x3%

Similarly, we obtain
aj = a3 - |xi -x3)°

This results in x = x3. |
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4. Concluding Remark

It seems that the notion of relative maximal monotone mappings is significantly
application-enhanced in a way that it can be applied to generalize the Yosida approximation to
the context of first-order nonlinear evolution equations as well as evolution inclusions. We
define the generalized Yosida Approximation M, by

M, = p7t(l - (I + pM) L) forp > 0, (15)

where (I + pM)~1 is the resolvent operator correspondingto M : X — 2%,

References

[1] R. P. Agarwal, and R. U. Verma, Role of relative A —maximal monotonicity in overrelaxed
proximal point algorithms with applications, Journal of Optimization Theory and Applications
143 (1), (2009), 1-15.

[2] R. P. Agarwal, and R. U. Verma, The over-relaxed n —proximal point algorithm and
nonlinear variational inclusion problems, Nonlinear Functional Analysis and Applications, in
press.

[3] H. Y. Lan, Y. J. Cho, and R. U. Verma, Nonlinear relaxed cocoercive variational inclusions
involving (A, n) —accretive mappings in Banach spaces, Computers & Mathematics with
Applications 51, (2006), 1529-1538.

[4] A. Moudafi, and M. Thera, Finding a zero of the sum of two maximal monotone operators,
Journal of Optimization Theory and Applications 94, (1997), 425-448.

[5] R. T. Rockafellar, Monotone operators and the proximal point algorithm, SIAM Journal of
Control and Optimization 14, (1976), 877-898.

[6] R. T. Rockafellar, Augmented Lagrangians and applications of the proximal point
algorithm in convex programming, Mathematics of Operations Research 1, (1976), 97-116.

[7]1 R. T. Rockafellar, On the maximal monotonicity of subdifferential mappings, Pacific
Journal of Mathematics 33, (1970), 209-216.

[8] P. Tossings, The perturbed proximal point algorithm and some of its applications , Applied
Mathematics and Optimization 29, (1994), 125-159.

[9] R. U. Verma, A — monotonicity and its role in nonlinear variational inclusions, Journal of
Optimization Theory and Applications 129(3), (2006), 457-467.

[10] R. U. Verma, A —monotone nonlinear relaxed cocoercive variational inclusions, Central
European Journal of Mathematics 5(2), (2007), 386—-396.



Inexact Proximal Point Algorithms 64

[11] R. U. Verma, A generalization to variational convergence for operators, Advances in
Nonlinear Variational Inequalities 11(2), (2008), 97-101.

[12] R. U. Verma, Approximation solvability of a class of nonlinear set-valued inclusions
involving (A,n) — monotone mappings, Journal of Mathematical Analysis and Applications
337, (2008), 969-975.

[13] E. Zeidler, Nonlinear Functional Analysis and its Applications I, Springer-Verlag, New
York, 1986.

[14] E. Zeidler, Nonlinear Functional Analysis and its Applications IlI/A, Springer-Verlag,
New York, 1990.

[15] E. Zeidler, Nonlinear Functional Analysis and its Applications 111, Springer-Verlag, New
York, 1985.



