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Abstract. Using a class of stochastic Euler and Runge-Kutta methods, we numerically solve a
reaction-diffusion equation with additive random excitation. By discretizing the space and the
associated stochastic differential system, we present a comparison of the diffusibility behaviors
between the schemes above. The model presented here consists of reaction-diffusion equations
describing the evolution of the concentration of a population, which we numerically solve
using the method of lines. Numerical experiments and Results are given in a two dimensional
space.
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1. Introduction

Many reaction-diffusion problems in systems biology, chemistry and ecology are modeled
either by partial differential equations (PDES) or by agents based models. These problems have
been extensively studied in literature and their numerical solution can be accurately computed
provided the diffusion coefficients, reaction excitations and initial data, and boundary
conditions. However, modeling real-life reaction-diffusion systems is complicated by
indeterminacy and high heterogeneity of the diffusion process, combined with insufficient
information characterizing the reactions or the causes. An example concerns the
spatio-temporal pattern formation in cell metabolism where the intact living cell is based on a
highly complex spatial organization of its constituents. The reactants mediating, and processed
by the chemical pathways of cell are heterogeneously distributed through the cytoplasm and
cell membranes. The diffusion of reactant species among localized reaction regions within the
cell is therefore a central feature of biochemistry.

A number of numerical methods have been developed to analyze self-organizing groups
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models. In [11] we have analyzed and simulated a rule model based on a local energy. In the
present work, we propose another approach to approximate numerical solutions of stochastic
reaction-problems, which can be applied to agents based model. The central idea is to
discretize the spatial variable and keep the time continuous in the considered problem. This
results in a semi-discrete system of 1t6 stochastic differential equations, which are solved using
numerical techniques developed and used in literature. The proposed approach, known as
method of lines, has been widely used to solve deterministic boundary-value problems. For
example we refer to [5,9,10]. The spatial discretization in this method can be carried out using
finite difference, finite element, or finite volume methods. The dimension of the derived
stochastic differential systems depends on the number of gridpoints used in the spatial
discretization. We formulate our approach for a second-order finite volume method which
incorporates slope limiters in its reconstruction to preserve monotonicity in the computed
solutions. We consider a class of stochastic Euler-Maruyama (EM) and Runge-Kutta (RK)
methods studied in [12,6,7] for the time integration of stochastic differential equations. The
emphasis is given to a second-order explicit RK method with two stages easy to implement and
linearly stable, provided the condition for linear stability for diffusion as well as for the
Courant-Friderichs-Lewy (CFL) condition are both satisfied.

This paper is structured as follows. Preliminaries on stochastic reaction-diffusion problems
are stated in section 2. In section 3, we formulate the stochastic integration schemes. This
section includes a passage from partial differential equation to stochastic Runge-Kutta scheme
for time integration. Numerical results are presented in section 4 while section 5 contains
concluding remarks.

2. Stochastic Reaction-Diffusion Problem

Let (©2, F,P) be a probability space, where Q is the space of basic outcomes, F is the
o-algebra associated with Q, and P is the (probability) measure on F. This c-algebra can be
interpreted as a collection of all possible events that could be derived from the basic outcomes
in Q, and that have a probability that is well defined with respect to P. A random variable X is
a mapping X : Q — R. The LP-norm of a random variable can be defined as| X||, = (|X|P),
for 0 < p < o, where () denotes the operation of mathematical expectation.

Equipped with this norm, the space LP is a Banach space of all random variables X defined on
(Q, F,P) and having a finite norm.

Our concern in the current work is on developing a novel numerical method for solving a
reaction-diffusion problem of with a right side stochastic excitation of the following form

ot u(t,x) — (D o%u(t,x)) = F(t,x)¢(t,x), (t,x) € (0,T] x D, N

where t is the time variable, x the space coordinate, 0; and 0x denote derivatives with respect to
t and x, respectively. The function u(t,x) represents for example, the concentration of a
self-organizing homogenous population, and F(t,x) is a linear flux function. Here, {(t,x) is a
random noise assumed to be either time-dependent or space-dependent with amplitude o. In
practice, the random process {(t,x) is Gaussian with zero mean and statistically homogeneous
with covariance

CXE(s,x)) = 2B(x = x)s(t-s),



Schemes for Stochastic Diffusion Problems 67

where B(x) is a smooth function and ¢ is the Dirac function. In (1), D is the diffusion
coefficient assumed to be a nonnegative constant. Note that the flux function F may depend on
space X, while the coefficient o can depend on the time t and the solution u as well.

The equation (1) is solved in a bounded spatial domain D with smooth boundary, for a time
interval (0, T], and equipped with the initial condition

u(0,x) = up(x), X € D, (2)

where up is a given initial data. In order to formulate a well-posed mathematical problem,
boundary conditions are required for the equation (1). These conditions are problem dependent
and their discussion is postponed for section 4 where numerical examples are discussed.

For two-dimensional reaction-diffusion problems, the equation (1) can be formulated in
analogous form as

at u- (a)z(xu + a)Zlyu) = F(LX,Y)C(LXJ), (3)

Notice that, the considered boundary-value equations have been widely used to model practical
problems from engineering and industrial applications. For instance, stochastic
advection-diffusion equations, stochastic Burgers equation, and stochastic Navier-Stokes
equations [1] are among others.

The reaction-diffusion equation as a stochastic differential equations is interpreted as following
du = (Dogu)dt + o(X)dW(t, x), (4)
where dW(t, x) is a white noise process satisfying
dW(t,x) dW(t,x") = 2B(x — x')dt.

It is important to note that in our numerical simulations, we have used only an additive white
noise as stochastic excitations. The case of multiplicative noise is more difficult to handle and
is not with the scope of the present work.

3. Stochastic Schemes for Time Integration

The passage from a system of equation carried out from the discretization of the
reaction-diffusion equation to a stochastic differential equation is subject of this section, we
use the method of lines proposed to solve the equations (1)-(2) and already tested by [9,10].
Notice that the space and time are treated separately, and a class of stochastic Euler and
Runge-Kutta schemes is used to solve the resulted system of differential equations, For more
details about these stochastic methods we refer to [6,7,12]. For convenience, we formulate our
method for the two-dimensional reaction-diffusion problem (1)-(2) using a finite volume
method. The spatial discretization of the equations (1)-(2) can be carried out using the finite
difference, finite element, or finite volume methods. In the current work, we adapt a
second-order finite volume method for the spatial discretization of (1)-(2). Hence, the spatial
domain D is discretizated into control volumes [Xi_12,Xi:12] With uniform dimension
AX = Xis2 — Xi-1/2. Integrating (1) with respect to x over the control volume and keeping the
time t continuous we obtain the following semi-discrete system
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duUij D Uiij — 2Uij2+ Uigj D Uiji1 — 2Uij2+ Uija _ i (X0 ;) )
dt (A%) (Ay)

where Uj; is the space average of a generic solution u in the cell [Xi—1/2, Xis12] % [Yi-1r2, Yis1/2] at
time t,

Xir12 (Yi+1/2
Uijt) = Axlij j u(t,x,y) dydx.

Xi-1/2 * Yi-1/2

The system (5) can be written as

du;; - (D Uinj — 2Uij2+ Ui1 +D Uiji1 — 2Uij2+ Uij1
(AX) (Ay)

)dt + (oid (t,xi,yj))dt (6)

Notice that the semi-discrete equations (6) can be formulated as a system of It6 stochastic
differential equations (SDES) rewritten in a compact form as

dXy = F(t, X)dt + G(t, X )dW,, (7)

where X; contains the unknown semi-discretized solution, F(t,X;) and G(t,X;) represent
respectively, the semi-discrete form of the deterministic differential operator and the stochastic
part in (5). If the spatial domain is discretized in M control volumes then, X;, W; and F are
M-valued vectors with entries

Ui+1,j — 2Ui‘j2+ Ui—l,j and D Ui,j+l - 2Ui,j2+ Ui,j—l
(AX) (Ay)

respectively. The second term G in the right-hand side of (7) is an M x M diagonal matrix with
entry o;. In what follows we denote by G¥, k = 1,...,M the kth column of the matrix G. Note
that, in the case of additive noise, G depends only of time variable i.e., G(t, X;) = G(t). It
should be stressed that the stochastic differential equation (7) can be obtained by directly
discretizing the space in the partial differential equation (4). For more details, we refer to
[9,10].

Let the time interval [0,T] be divided into N subintervals [t,,t,:1] Of length At such that
tn = nAT and T = NAt. We also use the notation Y, = Y(t,). Applied to the equation (7), the
canonical Euler-Maruyama method results

Uij, Wijt, D

YO = Xto;

Yo = Yo+ F(ta, Yo)At + GX(t)AW, n=0,1,...,N—1, (8)

where the Brownian increment AW is N(0O, /At). It is well-known that the Euler-Maruyama
method (8) is only O((At)%®) accurate. As described in the previous section, the spatial
discretization is O((Ax)?) accurate. Therefore, in order to preserve an overall second-order
accuracy in the presented method, it is necessary that the time integration of the stochastic
differential equations (8) should be at least O((At)?) accurate.

Actually, we apply a class of stochastic Runge-Kutta (SRK) methods studied in [6] for the
numerical solution of systems of stochastic differential equations. The methods exhibit a weak
convergence with second order in the case of additive noise. Thus, the considered error of the
SRK approximation Y is bounded as
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Ky (X0) = (w(Y(D))] < Cy (AD)?,

with some constant C,, > 0 for all functionals y € C§(R™,R) with polynomial growth and
sufficient small time step At. The s-stage SRK method applied to the SDE (7) is given by

Yo = Xy,
S M S
Yo = Yo+ D aiF(ta+ AL H) AL+ D ) Bi G (tn) T, 9)
i=1 k=1 i=1
where the SRK stages are defined fori = 1,...,sas
S M S
Hi =Y+ ZAij F(t, + Cj At, HJ)A'[ + Z Z Bij Gl(tn)T(D. (10)
=1 =1 j=1

The random variables Ty, used by the SRK method are, for example, independent identically
N(0, At) distributed or simply independent identically distributed with probabilities

P(T(k) = i,/ﬁ) = %, and P(T(k) = 0) = %, k=1,... M.

The coefficients appeared in the SRK method (9)-(10) are usually given by the following
extended Butcher tableau

Ci A1 ... Ai|Bur ... B
Cs Asl Ass le Bss
a1 Qs ﬁl ﬁs
Note that the considered SRK method (9) is a simplified version of the more general
second-order SRK methods introduced in [6,7]. Since only additive noise is considered, many
order conditions turn out to be automatically fulfilled. In the simulations presented in section 4,

we have implemented an explicit SRK method with the number of stages s = 2. Its associated
extended Butcher tableau is

0/0 000
1/1 0/10 (11)
\%%\10

It is evident that, due to the stochasticity in the SDE system (7), the SRK method (9)-(11) is
used to generate a number N of realizations. Thus, a Monte Carlo simulation is performed for
the solution samples Y " for m = 1,...,Ng, and we estimate the expectation of the solution
Yy at final time T by

NR
WY = g 2 v(YW).
m=1
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Note that other SRK methods as those studied in [7] can also be applied for solving the SDE
system (7). Their implementation for solving the considered stochastic boundary-value
problem (1) can be carried out using the same formalism as described above.

4. Numerical Results

We examine the performance of the proposed method of lines for the stochastic Euler and
Runge-Kutta schemes for a class of stochastic reaction-diffusion problems in two dimension
space. For each test example and for each scheme we perform Ng = 102 realizations and
statistical moments such as mean and standard deviation are computed. In all our simulations
we use variable time steps At adjusted at each step according to the canonical diffusion and
CFL conditions

At = Cmin( h 2_h?) h = min(Ax, Ay), (12)
A/max D

where Amax IS the spectral radius and C is a safety factor set to 0.75 for all test cases to ensure
the stability of the numerical scheme. Notice that the number of time steps (integer) is given as

NTS = [Alt} for T e R*. (13)

Reaction-diffusion equation. This example considers the stochastic Reaction-diffusion
problem of a uniform constant function one. The equation is of the form

owu(x,y,t) =V« (DVu(x,y,t)) = F(xy,t); XxyeRte]0T],

5
UO(X,y'O) = 1! F(X!ylt) =1 +Z5[aiybi]X[Ci,di](le)AWl (14)

i=1

where D = 5 .10 is a diffusion coefficient, W represents a space dependents random noise
and the initial solution is u°(x,0) is given a constant one for all our simulations. The term
Oaibilx[cidi] represents a local random excitation. The energy of each concentration is given as:

1 p1
E(t)2(w) = j 0 j SOy HW)dxdy, w e Q (15)

where by discritizing the computation domain, we compute in each time step the following
term

N N
EM)? == ) ) UAAxiAY;. (16)

i=1 i=1

The figure 1 illustrate the computational domain and the spatial positions of the randomness
sources, which we have called stochastic excitation.
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Figure 1 : Spatial positions of stochastic excitation sources.

We run our code to simulate synchronously Euler-Maruyama and Runge-Kutta schemes to

compute 1000 realizations solutions of (14). For each scheme, we observe the
numericalbehavior of the mean solutions of the 1000 realizations, and compute the standard
deviation and the energy.
Using Euler-Maruyama and Runge-Kutta schemes, we present in Figures 2 and 3 respectively,
three realizations and the corresponding means at time T =5, T = 150 and T = 200 of the
evolution of the diffusion of test (14). It should be pointed out that with a smaller diffusion
coefficient; the effect of uncertainties becomes more visible. This is due to the fact that a
stochastic forcing term adds extra diffusion to the reaction-diffusion problem, which could be
neglected if the physical diffusion D is large.

In Figures 4 and 5, we show the corresponding contour plots of the same results above. In

Figure 6 we present the cut plots of the obtained solutions along with those obtained for the
deterministic problem at t = 5, 150 and 200. Compared to the deterministic solution, it can be
observed that the presence of random perturbation introduces extra diffusion in the mean
solution. Note that for this particular type of random perturbation, fluctuations remain in the
mean solution at final time t = T, compare Figure 6. These fluctuations are inherited from the
stochastic structure of (14) and can be removed by increasing the number of realizations used
to calculate the mean solution in the method of lines. We should also mention that, one of the
key aspects of the present method of lines is that the mass conservation property is satisfied.
In Figure 7 we plot the energy of the solution using both schemes. Notice that the large
randomness behavior of realizations using Euler scheme in comparison of Runge-Kutta one is
due to its order of convergence. Figures 8 presents the corresponding standard divinations
using Euler and RK schemes. The highly indeterminacy of the euler schemes is clearly shown
on the first row.
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Figure 2: EM simulation (first row) and the corresponding mean solutions (second row).
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Figure 3: RK simulation (first row) and the corresponding mean solutions (second row).
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Figure 5: Contour of RK-simulation (first row) and the corresponding means (second row).

73



M. ZAHRI

T=150, EM and AK cut solutions T=200, EM and RK cut solutions

T=5, EM and RK cut solutions
5.l gl :
uﬁ"n- = uﬁ"n. /// J\\ \\\
1 7 NN 1 AN
o [ o s Spnanm o ar os o 1 o [ o s Spnanm o ar os o 1 o [ o s Spnanm o ar os o 1
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Figure 8: Standard deviation of all simulations EM (first row) RK (second row).
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5. Concluding Remarks

We have studied the performance of stochastic Euler-Maruyama and Runge-Kutta methods
for solving stochastic reaction-diffusion problems with additive noise. Using method of lines,
we implemented and numerically solved the stochastic reaction diffusion equation. Moreover,
a numerical comparison is done in order to compare not only the diffusibility behavior of the
solutions carried out by using the stochastic schemes mentioned above but also to observe the
irregularities of each scheme. We have observed that even if the diffusibility behavior of the
two schemes is similar, the Runge-Kutta solution are smoother than the Euler-Maruyama. This
is due to the fact that Runge-Kutta is second order scheme. It is important to note that
uncertainties in the considered stochastic reaction-diffusion problems have a smoothering
influence on the numerical solution. In addition, this procedure combines the attractive
attributes of the two methods to yield a procedure for linear or nonlinear stochastic
reaction-diffusion problems. The method retains all the attractive features of finite element
method such as monotonicity and conservation properties. Furthermore, the scheme does
require neither linear solvers for systems of algebraic equations nor special treatment of
random fields.
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