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Abstract. Recent studies through biological experiments have indicated that noise plays a very
important role in determining the dynamic behaviour of biological systems. The advances in
stochastic modelling of genetic regulatory networks and cell signalling transduction pathways
have proposed chemical reaction systems in which some key reactants have small copy
numbers. Over the last years extensive research has been carried out to develop effective
-leap methods and multiscale simulation methods to reduce the huge computational time of
the stochastic simulation algorithm. This paper gives a review of the recent progress in the
stochastic simulation methods for chemical reaction systems.
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1. Introduction

There is a growing body of experimental evidence which suggests that noise plays a very
important role in genetic regulation [22,37]. Experimental studies have demonstrated that noise
in cellular processes may result from the small copy number of molecular species, intermittent
gene activity and fluctuations of experimental conditions [38,55]. It has been proposed that
noise in the form of random fluctuations arises in biological networks in one of two ways:
namely as internal (intrinsic) noise or external (extrinsic) noise [50]. The internal noise is
mainly derived from the probabilistic events of biochemical reactions in the system due to the
small copy numbers of certain key molecular species. External noise mainly refers to the
environmental fluctuations or the noise propagation from the upstream biological pathways.
Empirical discoveries have stimulated explosive research interests in developing stochastic
models for a wide range of biological systems including genetic regulatory networks, cell
signalling transduction pathways and metabolic pathways [3, 10 39, 64, 69].
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The stochastic simulation algorithm (SSA) represents a discrete modelling approach and an
essentially exact procedure for simulating the time evolution of a well-stirred reaction system
[25]. However, the large computational time of the SSA is a barrier in the applications of this
method to large-scale biological systems. To reduce the computational time of the SSA,
Gillespie proposed the Poisson -leap method which allows for more reactions to fire in a
relatively larger time step [27]. In recent years there have been growing research interests in
developing effective simulation methods to address the issues arising from the applications of
the Poisson -leap methods [28, 49]. These issues include, for example, the stiffness in
chemical reaction systems where there are well-separated "fast" and "slow" time scales
present, possible negative molecular numbers in stochastic simulation, the simulation accuracy
and the selection of the optimal leap size. In addition, sophisticated computer software systems
have been developed not only for computational scientists but also for biological researchers.

This paper gives a review of the recent progress in the stochastic simulation methods for
chemical reaction systems. After the introduction of the exact simulation methods in Section 2,
Section 3 presents various -leap methods and discusses the issues arising from the application
of the -leap methods. The Langevin approach and multiscale simulation methods will be
addressed in Section 4. From Section 5, we concentrate on the simulation methods for
chemical systems with time delay. We will discuss the delay stochastic simulation algorithm in
Section 5, the delay Langevin approach in Section 6 and the delay -leap methods in Section 7.

2. Stochastic Simulation Algorithm

It is assumed that a chemical reaction system is a well-stirred mixture at constant
temperature in a fixed volume . This mixture consists of N molecular species S1,… ,SN
that chemically interact through M reaction channels R1,… ,RM. The dynamic state of this
system is denoted as xt ≡ x1t,… ,xNt, where xit is the molecular number of species
Si at time t. For each reaction channel Rj (j  1,… ,M), a propensity function ajx is defined
for a given state xt  x and the value of ajxdt represents the probability that one reaction
Rj will fire somewhere inside  in the infinitesimal time interval t, t  dt. In addition, a state
change vector j is defined to characterise the change of molecular numbers due to reaction Rj.
The element ij of j represents the change in the copy number of species Si due to reaction Rj.
The N  M matrix  with elements ij is called the stoichiometric matrix.

The SSA is a statistically exact procedure for generating the time and index of the next
occurring reaction in accordance with the current values of the propensity functions. There are
several forms of this algorithm. The widely used direct method works in the following manner.

Method 1: The direct method [25].
1 Calculate the values of propensity functions ajx based on the system state x at time t and
a0x  ∑ j1

M ajx.
2 Generate a sample r1 of the uniformly distributed random variable U0,1, and determine
the time of the next reaction

  1
a0x

ln 1
r1

. 1

3 Generate another sample r2 of U0,1 to determine the index k of the next reaction
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occurring in t, t  ,

∑
j1

k−1

ajx  r2 a0x ≤ ∑
j1

k

ajx. 2

4 Update the state of the system by

xt    xt  k. 3

5 Go to Step 1 if t   ≤ T, where T is the end time point. Otherwise, the system state at T is
xT  xt.

Another exact method is the first reaction method which uses M random numbers rj at
each time step to determine the possible reaction time j  − lnrj/ajx of each reaction
channel [24]. The reaction firing in the next step Rk is that requiring the smallest reaction time,
namely k  min1≤ j ≤ Mj. Compared with the direct method, the first reaction method is not
effective because M − 1 random numbers are abandoned at each time step. To improve the
efficiency, Gibson and Bruck [23] proposed the next reaction method by recycling the
generated random numbers. After the system is updated according to a selected reaction
channel Rk, the step size of the selected channel Rk is determined by a newly generated random
number. However, the putative step size of the other M − 1 channels will be updated based on
the stepsize of this channel at the previous step and values of the propensity function at these
two steps. In addition, a so-called dependency graph was designed to reduce the computing
time of propensity functions. Numerical results suggested that the next reaction method is
effective for simulating systems with many species and reaction channels.

3. Accelerating Tau-Leap Methods

Since the SSA may be very computationally inefficient, Gillespie proposed the Poisson
-leap methods in order to improve the efficiency of the SSA while maintaining acceptable
losses in accuracy [27]. The idea of the -leap methods is to take a larger time step and allow
for more reactions to take place in that step. In the Poisson -leap method, the number of times
that the reaction channel Rj will fire in the time interval t, t   is approximated by a Poisson
random variable Pajx (j  1,… ,M) with mean ajx. Here the leap size  should satisfy
the Leap Condition: a temporal leap by  will result in a state change  such that for every
reaction channel Rj, the change |ajx   − ajx| is “effectively infinitesimal” [27]. This
method is given below.
Method 2: The Poisson -leap method [27].
1 Calculate the values of the propensity functions ajx based on the system state x at time t.
2 Choose a value for the leap size  that satisfies the Leap Condition.
3 Generate a sample of the Poisson random variable Pajx for each reaction channel
(j  1,… ,M).
4 Perform the update of the system by
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xt    xt ∑
j1

M

jPajx. 4

A major step of the Poisson -leap method is to choose an appropriate stepsize that satisfies the
Leap condition. Gillespie first proposed a method to determine the leap size  [27. In this
method, the expected change of each propensity function ajx during t, t   should be
bounded by a0x with a given error control parameter ,

|ajx   − ajx|≤ a0x, 5

where  is the expected net change of the state x in t, t  , which is calculated by
  ∑ j1

M jajx. Later, more sophisticated methods have been proposed either to select the
optimal leap size or to avoid the possible negative molecular numbers in simulation [30, 17].
For example, by considering the mean and standard deviation of the expected change in the
propensity functions, the stepsize is determined by [30],

  min
j∈0,M

a0x
|jx|

, 
2a0

2x
j

2x
6

where jx  ∑k1
M fjkxakx, j

2x  ∑k1
M fjk

2 xakx, and fjkx  ∑ i1
N ∂ajx

∂xi
vik. This

method is an extension of the method (5) that only considered the mean of the expected change
of the propensity functions. It is worthy to note that the leap size is a pre-selected deterministic
value and is determined by the error control parameter . Similar to many other numerical
methods, the leap size  is related to the balance between the computational efficiency and
simulation accuracy. In addition, our simulation results suggested that the computing time for
selecting the leap size is about a half of the total computing time when method (6) was used in
the binomial -leap method [65].

Since the -leap method uses the initial state x at time t to approximate the states in the time
interval t, t  , the simulation accuracy can be improved by computing a better
approximation to the states in the given time interval. For example, by using an estimation of
the system state at the midpoint t  /2, the midpoint -leap method is given by [27

xt    xt ∑
j1

M

jPajx.

where x is the predicted system state at the midpiont

x  xt ∑
j1

M

j ajx 2 .

The Poisson -leap method, the midpoint -leap method, and the implicit -leap method
[56] are special cases of the Poisson Runge-Kutta methods (PRK) [12]. We also derived the
Heun PRK and the R2 PRK method [12]. It was intended to design more accurate methods by
choosing the free parameters in the PRK methods. In addition, these leap methods were placed
in the context of the numerical methods for the solution of stochastic differential equations
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(SDEs) driven by Poisson noise [11]. However, a fundamental issue of the discrete stochastic
simulation is the convergence property of the simulation methods. Li addressed this issue by
proving that a modified explicit -leap method has the mean-square strong convergence order
1/2 and weak convergence order 1 [42]. In addition, the higher order -leaping methods have
been constructed by adding a random correction to the primitive -leaping schemes in each
time step [36].

A number of approaches have been proposed to improve the efficiency and/or accuracy of
the Poisson -leap methods. The implicit -leap method was proposed to address the stiffness
in chemical reaction systems [56]. A composite approach was proposed later by combining the
explicit and implicit -leap methods [18]. The algorithm automatically selects between the
explicit and implicit -leap methods. In addition, the modified Poisson -leap method
introduced an additional control parameter in order to avoid possible negative molecular
numbers in stochastic simulation [16]. More accurate -leap methods have been proposed
either by calculating the mean and variance of the propensities during the leap [70] or by
adding a random correction to the primitive tau-leaping schemes [36].

Since the samples of a Poisson random variable are unbounded, negative molecular numbers
may be obtained if a reactant has small molecular number and a propensity function involving
that species has a large value. There are two possible ways of obtaining negative molecular
numbers in stochastic simulation [62]. First, the generated sample of reaction number is greater
than one of the molecular numbers of the reaction channel. In the second case, a species
involves a number of reaction channels and the total reaction number of these channels is
greater than the copy number of that species, though the reaction number of each channel is
smaller than the copy number of that species.

For tackling the problem of negative numbers, binomial random variables were introduced
to avoid the possible negative numbers of the first case by restricting the maximal reaction
number [62, 19]. In the binomial -leap method, the reaction number of channel Rj is defined
by a sample value of the binomial random variable BNj,ajx/Nj under the condition
0 ≤ ajx/Nj ≤ 1. The maximal possible reaction number Nj has been defined for the widely
used three types of elementary reactions. In addition, a sampling technique was designed for
sampling the total reaction number of a group of reaction channels in order to avoid the
negative numbers of the second case [62]. The binomial -leap method is given below.
Method 3: The binomial -leap method [62].
0 Define the maximal possible reaction number Nj for each reaction channel. If a species
involves two or more reaction channels Rj1,… ,Rjk, define a maximal total reaction number
Njk for these reaction channels.
1 Calculate the values of propensity functions ajx based on the system state x at time t.
2 Use a method to determine the value of leap size . Check the stepsize conditions
0 ≤ ajx/Nj ≤ 1 of the binomial random variables. If necessary, reduce the stepsize  to
satisfy these conditions.
3.1 Generate a sample Bj of the binomial random variable BNj,ajx/Nj for reaction
channels in which species involve one single reaction.
3.2 When a species involves two or more reaction channels, generate a total reaction number
BNjk,∑ l1

k ajlx/Njk for these reaction channels and then generate the reaction number Bj

for each reaction channel in this group.
4 Perform the updates of the system by
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xt    xt ∑
j1

M

jBj. 7

A number of approaches have been proposed to improve the performance of the binomial
-leap method. A modified binomial -leap method was introduced by considering the
maximal existing population in a leap [51]. In addition, the binomial distribution was extended
to the multinomial distribution in order to estimate the numbers of reactions occurring
simultaneously more accurately [52]. Recently, a generalized binomial -leap method was
proposed to overcome some of the difficulties associated with the binomial -leap methods
[41]. In addition, the binomial -leap method was applied to simulate chemical systems with
time delay [41] and spatio-temporal reaction systems [46].

In the -leap methods, it was assumed that, during a pre-selected deterministic time step ,
the reaction number of each channel is a sample of a Poisson/binomial random variable.
Another major type of leap methods is the k-leap method [27]. In an implementation of the
k-leap method, which is called the R-leap method [4], it was proposed to select a pre-defined
number of firings L that may span several reaction channels. Then the leap step L of these L
reactions is a sample of the gamma random variable ΓL, 1/a0x. Over the time interval
t, t  L, the number of firings of each reaction channel Kj (satisfying ∑ j1

M Kj  L) follows
the correlated binomial distributions. A number of techniques have been proposed in the
R-leap method to determine the total reaction number L and to sample the firing number Kj of
each reaction channel [4]. Another implementation of the k-leap method, which is called the
K-leap method, was also proposed to achieve the computing efficiency over the exact SSA
[15].

4. Chemical Langevin Equation and Multiscale Simulation Methods

The chemical master equation is a time evolution equation associated with the probability
of the system at a given state. Instead of simulating the trajectories of a discrete system, the
chemical master equation uses the continuous differential equations to accurately describe the
stochastic dynamics, given by

∂
∂t Px, t ∑

j1

M

ajx − jPx − j, t −∑
j1

M

ajxPx, t, 8

where Px, t is the probability of the system at the state xt  x. In general these parabolic
partial differential equations are difficult to solve either analytically or numerically. Therefore,
stochastic methods discussed in Sections 2 and 3 have been widely used to simulate the
trajectories of reaction systems and statistical properties of the system have been derived from
a large number of simulations. However, when the system has a finite number of distinct
population vectors or the number of species in the system is not large, the chemical master
equation can be solved analytically or numerically. The approximation methods includes, for
example, the sparse grid method [34], the finite state projection algorithm [48], and the
conjunction of the Krylov method and finite state projection algorithm [44, 45].

When the molecular numbers xi (i  1,… ,N) in a chemical reaction system are quite large,
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the value of ajx may be large for an appropriately selected step size . In this case, the
Poisson random variable Pajx can be approximated by a normal random variable with the
same mean and variance, given by [26],

Pajx ≈ Najx,ajx  ajx  ajx N0,1. 9

Then the Poisson -leap method (4) can be approximated by the following formula with
normal random variables, given by

xt    xt ∑
j1

M

jajx ∑
j1

M

j ajx Nj0,1, 10

where the M normal variables Nj0,1 are statistically independent. The above scheme is the
explicit Euler method [9] for solving the chemical Langevin equation

dxt ∑
j1

M

jajxdt ∑
j1

M

j ajx dWjt, 11

where Wjt is the Wiener process. If the molecular numbers in the system are very large, the
value of ajx may be still very large for a given stepsize . In this case, compared with the
drift term ajx, the diffusion terms ajx Nj0,1 in (10) are neglectable. Finally, we
obtained the explicit Euler method for solving the chemical rate equation

dxt
dt ∑

j1

M

jajx. 12

The chemical Langevin equation (11) links three types of important modelling regimes,
namely the discrete stochastic models simulated by the SSA or -leap method, continuous
stochastic models in terms of SDEs, and continuous deterministic models of ordinary
differential equations (ODEs). It also provides an approach to describe internal noise in the
continuous SDE regime [63]. The chemical Langevin equation was used to develop the
quasi-steady-state assumption which is the theoretical basis of the multiscale simulation
methods [54, 32].

The multiscale methods are promising methods for simulating chemical reaction systems.
Based on the molecular numbers and values of propensity functions, chemical reactions are
partitioned into different reaction subsets at different time steps, and different simulation
methods are employed to simulate different subsets of chemical reactions. For example,
Burrage et al [13] proposed an adaptive approach to divide a reaction system into slow,
intermediate and fast reaction subsets and used the SSA, the Poisson -leap method and a SDE
solver to simulate the reactions in different subsets. Different partitioning techniques and
different combinations of simulation methods have led to a number of effective methods and
software systems. The combinations of simulation methods include, for example, the SSA and
the Poisson -leap method [53], the SSA and a SDE solver [58, 59], the SSA and an ODE
solver [35, 68], the SSA, the Poisson -leap method and a SDE solver [13], together with the
SSA, the Poisson -leap method, a SDE and an ODE solvers [31]. In addition, a number of
well-developed computer software systems have been published on the internet [40, 43, 67,
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21]. These methods include a number of sophisticated approaches to address the stiffness in
chemical reaction systems. In addition, we may use a robust method such as the SSA to
simulate reactions that may generate negative molecular numbers and use a more efficient
method such as a -leap method or a SDE solver to simulate reactions with large molecular
numbers. In this way we may not only improve the computing efficiency but also solve the
problem of the possible negative molecular numbers in stochastic simulations.

5. Delay Stochastic Simulation Algorithm

The SSA assumes that the next reaction will fire in the next reaction time interval t, t  
with small values of . For systems including both fast and slow reactions, however, this
assumption may not be valid if the slow reactions take a much longer time than the fast
reactions. The large reaction time of slow reactions should be realized by time delay if we
hope to put both fast and slow reactions in a system consistently and to study the impact of
slow reactions on the system dynamics [47]. Recently, the delay stochastic simulation
algorithm (DSSA) was designed to simulate chemical reaction systems with time delays [8, 5].
These methods have been used to validate stochastic models for biological systems with slow
reactions [57,60]. However, compared with the significant progress in designing simulation
methods for biological systems without time delay [28, 49], the development of effective
methods for simulating chemical reaction systems with time delay is still in the very early
stage of development.
It is assumed that a well-stirred chemical reaction system contains N molecular species
S1,… ,SN with number xit of the species Si at time t. Among the M reaction channels, the
first M1 reactions R1,… ,RM1 are assumed to have time delay T1,… ,TM1, respectively,
and the last M − M1 reactions have no time delay. Reactions with delay are classified into
consuming reactions and nonconsuming reactions [5]. When a nonconsuming reaction fires,
the copy numbers of all the reactants do not change. Similar to the simulation methods for
reactions without delay, both nonconsuming and consuming reactions are within a single
framework by defining different state change vectors.

It is assumed that a delayed reaction with delay Tj initiates in an infinitesimal time interval
t  Δ, t  Δ  dΔ with the next reaction time Δ and finishes at t  Δ  Tj. Thus the firing of a
delayed reaction takes two steps, namely the initiation step and update step. Consequently, two
state change vectors (j and uj) are defined to represent the initiation process and update
process for each reaction channel. The key difference between the SSA and the DSSA is that,
after the time step Δ of the next reaction is determined in the DSSA, we need to check if there
is any scheduled update of delayed reactions in the time interval t, t  Δ. The DSSA is given
in detail as follows.
Method 4: The delay stochastic simulation algorithm [5].
1 Initialize. Determine the delay time and state change vectors for each delay reaction.
2 Calculate the values of propensity functions ajx of both delayed and nondelayed reactions
based on the system state x at time t and a0x  ∑ j1

M ajx.
3 Use a sample r1 of U0,1 to determine the time of the next reaction

Δ  1
a0x

ln 1
r1

. 13



Stochastic Simulation for Chemical Systems 93
4 Check if there is any update of delayed reaction that is scheduled to finish in t, t  Δ.
4.1 If the delayed reaction Rj has the earliest updating time and is scheduled to be updated at
t   (0    Δ), discard the next reaction time Δ, update the delayed reaction by using

xt    xt  uj, 14

and then go to Step 2.
4.2 If there is no scheduled update of delayed reaction in t, t  Δ, generate a sample r2 of
U0,1 to determine the index k of the next reaction occurring in t, t  Δ,

∑
j1

k−1

ajx  r2a0x ≤ ∑
j1

k

ajx. 15

5.1 If a nondelayed reaction is selected, update the state of the system by

xt  Δ  xt  k. 16

5.2 If a delayed reaction is selected, use (16) to update the initiation process and set a record
to finish the reaction at t  Δ  Tk.

The DSSA, which is also called the rejection method, abandons the random number and
next reaction time if a scheduled update of delay reaction is within the next time step. To
improve the efficiency, Cai proposed a direct method in which no random number was
discarded [14]. The difference between the DSSA and the direct method is the method to
determine the stepsize, namely Step 3 in Method 4. The direct method is based on the
simulation methods for reaction systems with time dependent propensity functions [1]. When
the propensities are functions of time t, the stepsize Δ of the next reaction has the following
distribution function

1 − exp −∑
k1

M


t

tΔ
akxs , s ds ≡ 1 − exp −

t

tΔ
a0xs , s ds . 17

Using a sample r of U0,1, the stepsize Δ is determined by solving


t

tΔ
a0xs , s ds  ln 1

r . 18

Note that the above formula is that in the SSA (1) if the propensity functions are constant
within t, t  Δ.

The propensity functions are piecewise constant if they are the functions of the system state
only. Assuming that the system state varies at time points t  t1 … tk  , the integral in
(18) is

I  t1 − ta0xt  t2 − t1a0xt1 …Δ − tka0xtk. 19

If the scheduled updating time points of delayed reactions are t1, t2,… , tk, the direct method
finds the first scheduled update at tj in order that

t1 − ta0xt  t2 − t1a0xt1 …tj1 − tja0xtj  ln 1
r . 20
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The direct method updates the scheduled delay reactions at t1,… , tj−1 and then the next
reaction will fire at

t∗  tj 
ln1/r − t1 − ta0xt −…−tj − tj−1a0xtj−1

a0xtj
.

If the first update time t1 is large or there is no scheduled update, the next reaction will fire at
t∗  t  ln1/r/a0xt, which is the method in the SSA.

By combining the DSSA and the next reaction method for simulating systems without
delays, Anderson proposed a modified next reaction method for systems with time dependent
propensities and time delay [1]. In the next reaction method, each reaction has a putative
reaction time and the reaction firing in the next step is that requiring the smallest reaction time.
In the modified next reaction method, the updating time of delay reactions is also regarded as
putative reaction time. An update of delayed reaction is selected if this updating time is the
smallest putative reaction time. Therefore the approach for selecting the next reaction in the
modified next reaction method is consistent with that in the rejection method. Then the
updated system state is used to calculate the putative reaction time of all reaction channels.

6. Delay Chemical Master Equation

The chemical master equation (8) can be used to write down a system of ODEs that
describes the deterministic behaviour of the mean associated with the SSA or an SDE that
represents the intrinsic noise in continuous form. In a similar manner the DSSA described in
Section 5 has corresponding representations as delay differential equations or stochastic delay
differential equations (SDDEs). In the DSSA, the state vector xt is a non-negative
N-dimensional jump stochastic process but is not a Markov process any more due to the time
delay. For reaction systems with time delay, the chemical master equation should be based on
the current system state at time t for reactions without time delay and the system state at t − Tj
for the reaction Rj with time delay Tj. The delay chemical master equation is given by [66] as

∂
∂t Px, t  −∑

j1

M1

∑
xi∈Ix

ajxiPx, t;xi, t − Tj ∑
j1

M1

∑
xi∈Ix

ajxiPx − j, t;xi, t − Tj

− ∑
jM11

M

ajxPx, t  ∑
jM11

M

ajx − jPx − j, t, 21

where Px, t;xi, t − Tj is the probability that the system is both in the state x at t and in the
state xi at t − Tj, and Ix is the set of all possible system states. When all molecular numbers
are very large and fluctuations are not important, we can get the delay reaction rate equation
from the chemical master equation (21), given by

dxt
dt ∑

j1

M1

jajxt − Tj  ∑
jM11

M

jajxt. 22

Note, if there are no delays, the delay reaction rate equation (22) is an ODE describing the
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standard chemical kinetics rate equations (12).

Based on the numerical methods for solving the delay differential equations (22), we can
use the general modelling approach [64] to develop effective stochastic simulation methods.
Similar to the concept of Poisson -leap methods to speed up the computational performance
of the SSA, we can adopt the same approach for the DSSA and this gives rise to the delay
Poisson -leap method, given by [66]

xtn  h  xtn ∑
j1

M1

vjPajxtn − Tjh  ∑
jM11

M

vjPajxtnh. 23

If the mean of the Poisson random variables in (23) is very large, the Poisson random
variable Pajxth can be approximated by the Gaussian random variable
Najxth,ajxth [26]. Then the discrete stochastic processes xt in (23) can be
approximated by the continuous processes with Gaussian random variables, which is the
explicit Euler scheme for solving the SDDEs that describe the evolution of reaction systems
with time delay
dx  ∑ j1

M1 vjajxt − Tjdt ∑ jM11
M vjajxtdt

∑
j1

M1

vj ajxt − Tj dWjt  ∑
jM11

M

vj ajxt dWjt. 24

In the case that there are no delays this corresponds to the chemical Langevin equation (11).

7. Binomial -DSSA Method

Because of the issue of the possible negative molecular numbers in stochastic simulation,
the proposed Poisson delay -leap method (23) has not been implemented for simulating
reaction systems with time delay. Recently the binomial -DSSA method was proposed to
improve the efficiency of the DSSA [41]. Based on the binomial -leap method [62] and the
modified binomial -leap method [51], a generalized binomial -leap method was first
proposed to overcome some of the difficulties associated with the binomial -leap methods
[41. The binomial -DSSA method was then developed from the generalized binomial -leap
method to simulate reaction systems with time delay. The additional step in the binomial
-DSSA method is to determine the exact firing time of each delayed reaction. Once the
reaction number Bj of a delay reaction firing in t, t   is determined, we need to determine
the Bj firing time points in the time interval t, t  . It was proposed that the Bj delay
reactions initiate at t  rj (j  1,… ,Bj), where rj is a sample of U0,1. Thus the scheduled
updating time points of this delayed reaction with delay Tj are t  rj  Tj. In addition, the final
step for updating the system should include the delayed reactions whose products are
scheduled to be manifested within the leap step. Thus the update of the system is given by

xt    xt ∑
j1

M0

ujBj
1  ∑

jM01

M1

ujBj
2  ∑

jM11

M

jBj
3,

which represents the update of consuming delayed reactions, nonconsuming delayed reactions
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and nondelayed reactions [41].
The binomial -DSSA method maintains a queue structure of the delayed reactions for

update. At each leap step, the queue is checked to determine whether the product of the
delayed reactions ought to be manifested. Simultaneously, delay reactions initiated at that step
are added to the queue and the time points of manifestation are determined by random numbers
generated from U0,1. To minimize the computational effect, Bayati et al [7] proposed the
D-leap method which was aimed at reducing the time to generate and store the firing time of
delayed reactions. Instead of generating and recording the updating time points of delayed
reaction Rj in a leap step t, t  , the D-leap method records the number of delayed reactions
Bj, the first possible execution time of these delayed reactions t    Tj and the leap size 
which is called span. When the earlier possible updating time is within the interval of the
current time step, the number of reactions that will be executed in the current time step will be
determined by the overlap of the span of these Bj reactions with the current leap step [7].

7. Conclusion

This paper gave an overview for the recent progress in the development of effective
stochastic methods for simulating chemical reaction systems. The -leap methods and
multiscale simulation methods are two major types of efficient methods that have been
extensively studied since the development of the Poisson -leap methods. In addition, a
number of simulation methods have been designed to simulate chemical reaction systems with
time delay. However, compared with the significant progress in designing simulation methods
for biological systems without time delay, the development of simulation methods for chemical
reaction systems with time delay is still at the very early stage of development. This will be
one of the interesting topics for future research. In addition, more work is needed to design
adaptive simulation methods that can be used to simulate a wide range of chemical reaction
systems. Further, there are a number of theoretical issues that are related to the convergence
property of simulation methods. The progress in this area may lead to simulation methods with
higher order accuracy. Finally, the huge computational time of the spatio-temporal stochastic
simulation is a significant challenge in stochastic simulation. Although substantial progress has
been achieved in this area [6, 10, 2, 33, 29, 20, 61], the spatio-temporal stochastic simulation is
also one of the interesting topics for future research.
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