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Abstract. In this paper, we propose a new kernel adjusted method in nonparametric
conditional density estimation. Asymptotic properties of the new estimator are determined and
the optimal choice of the smoothing parameters is presented. In a simulation study, the
proposed method shows a good performance and indicates that it is better than existing
comparable methods for all sample sizes.
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1. Introduction

Let Xi,Yii ≥ 1 be a bivariate random variable (rv) with a common probability
density function f. , . . Our interest in this paper is in the estimation of the conditional density
function fy|x of Y given X. This function describes a comprehensive relationship between
responses and explanatory variables, and can be considered as general case of regression. We
can give a simple definition to the conditional density function as follows :

fy|x  fx,y
fx

, for fxx ≠ 0. 1

where f.  is a marginal density of X, and conceive the conditional density function as a source
for various statistical quantities such as : mean, prediction interval, moments, distribution,
quantile and so on.

The conditional density estimation was introduced by Rosenblatt in [12], and a bias
correction was proposed by Hyndman et al. in [8]. Fan et al. proposed in [4] a direct estimator
based on local polynomial estimation. The natural kernel estimator of fy|x, see [15], is

fny|x  f̂x,y
f̂x

, 2
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where

fnx,y  1
n ∑

i 1

n

Khx − XiHhy − Yi

is the kernel estimator of fx,y, and

fnx 
1
n ∑

i 1

n
Khx − Xi 3

is the kernel estimator of fx and Kh.  : K. /h, Hh.  : H. /h, where K.  and H.  are
known as Tow kernel functions (usually a bounded and symmetric pdf). Some examples of
very common kernel functions are the Epanechnikov and the Gaussian kernel. The parameter
h : hn is called the smoothing parameter, or the bandwidth, and it controls the smoothness of
the resulting estimation. In practice, the value of h depends on the sample size and satisfies the
condition h → 0 and nh →  as n → . From the principal properties of estimator (2) that are

usually studied, we mention only some of them. We start with recalling that, under standard
regularity conditions, the conditional density estimator has the asymptotic bias and variance:

biasfny|x  h2

2 K
2 2 f

′
x

fx
∂fy|x
∂x 

∂2fy|x
∂x2 

∂2fy|x
∂y2

 O h4  O1/nh, 4

and

varfny|x  K fy|x
nh2fx

K − hfy|x  O1/h, 5

where K : K2tdt and K
2 :  t2Ktdt  .

Adding the squared bias (4) to the variance (5) gives the asymptotic mean square error
AMSE :
AMSEfny|x : bias2fny|x  varfny|x.

The optimal choice of h minimizing the last expression satisfies hopt  cn−1/6 for c  0.

The most important of the previous facts is how to get an hopt , or in other words how to get
an appropriate c. There are some methods as to how to obtain the value of c. The first
possibility consists in getting the estimator of higher order derivatives of fx and fy|x by
putting the value subjectively preliminary of h. The second possibility is to apply the method
of cross-validation. It should be noted, in this respect, that Loader gave in [9] a brief discussion
about cross-validation. The previous two methods are considered as solutions to the problem of
searching for a suitable value for h, but they contain some shortcomings. In the first
possibility, the estimator is unstable when the sample size is small or moderate (see, [5]). With
all these difficulties, Srihera and Stute proposed and studied in [14] a new methodology on
density estimation, to extend in approach of regression, in aim to avoid the higher order
derivatives. Their methodology relies on the choice of h and also on the choice of K which
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plays a very important role in the efficiency of estimator when the kernel function satisfies the
sufficient usual conditions. More precisely, this methodology of density estimation, [14], [3],
was based on classical kernel density that will become a function of location scale family.

In this paper, we develop a new kernel type estimator of the conditional density function,
in which the kernel is adapted to the data but not fixed. The new method loads to an adaptive
choice of the smoothing parameters. The basic technique of construction of the proposed
estimator is kind of a location-scale transformation, with reduced bias and variance, which
produces good results in all studied situations.

In Section 2, the proposed estimator is reported and its bias, variance, mean squared error
and distribution behavior are determined and presented. In Section 3, simulation studies are
undertaken to test the performance of the proposed estimator, and compare it with the usual
conditional density estimator.

2. Main Results

2.1. The proposed estimator

We follow the same methodology as in [14] and [3], but specialize in this study in the
estimation of the conditional density function. Starting from the formula (2), we give a new
definition of the conditional density estimator. The procedure followed is to make a change on
the kernel function; let K0 be a kernel from the location-scale family associated with the
marginal density f. , that is
K0t : K0t,,  ft  . 6

The scaling factor  gives us more flexibility and the choice of the adjusted kernel K0 is based
on the minimization of the AMSE. Since the density f in (6) is not available, we have to replace
it by the usual estimator fn from above. Therefore, the classical density estimator (3) becomes
(see, [4])

f̂nx  
nh ∑

i 1

n

fn  x −Xi
h  

 
n2h2 ∑

i 1

n

∑
j 1

n

K
x −Xi  h − hXj

h2 .

The choice of h,  and  will be discussed later.

Next, we invoke formulas (1) and (2) to obtain our new estimator as follows

f̂ny|x 

∑
i 1

n

∑
j 1

n

fn x   Hh y −Yi

∑
i 1

n

∑
j 1

n

fn x  
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

∑
i 1

n
∑
j 1

n
K

x −Xi  h −hXj

h2 Hh y −Yi

∑
i 1

n
∑
j 1

n
K

x −Xi  h −hXj

h2

. 7

2.2. Asymptotic properties

As usual, in order to study the asymptotic properties (i.e., bias, variance and AMSE) of the
given estimator, we apply the following regularity assumptions:
A1 : EY2   and EX2  .
A2 : X has a density f, which is continuously differentiable in a neighborhood of x.
A3 : fy|x is twice continuously differentiable in a neighborhood of x.
A4 : K is a probability density satisfying K−u  Ku for all u ∈ . Furthermore, K has a
finite third moments :|u|3kudu  .

A5 : h → 0 and nh2 →  as n → .

Theorem 2.1. Under A1 − A5, we have

bias f̂ny|x  h2 2 f ′x f ′y|x  fx f ′′y|x varX
22fx

 O h3

: h2Bx  O h3 , 8

and

var f̂ny|x  1
nh2

 f y|x
f

2
x

K  f 2udu  O1/h

: 1
nh2 

2x  O1/h, 9

where K is the same as in (5). Accordingly, the asymptotic mean squared error AMSE is
AMSE f̂ny|x  h4B2x  1

nh2 
2x.

Thus, the estimator is consistent provided h → 0 and nh2 → , as n → .

Proof. Firstly, we consider the bias part. Using formula (15), we may write
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I2n :∑
i 1

n

∑
j 1

n

Wnxfy|Xi − fy|x

 1
f̂nx


n2h2 ∑

i 1

n

∑
j 1

n

K
x −Xi  h − hXj

h2 fy|Xi − fy|x.

We know that f̂n converge to f in probability (see, [14]). Moreover, the numerator is equivalent
to


n n −1 h2 ∑

i ≠ j
K x − Xi  h − hXj

h2 fy|z − fy|x. 10

Then in the following, we may consider any fixed  in (10) rather than n. The expectation
becomes


h2 K x − z  h − hy

h2 fy|z − fy|xfyfzdzdy

 Kv f x  h − vh2 − hy
 − fy|x

 fy f x  h − vh2 − hy


2
dydv.

By Taylor’s expansion, the last integral, up to a Oh3 term, equals :

Kv f ′y/x h − vh2 − hy
  1

2 f ′′y|x h − vh2 − hy


2

 fy fx  f ′x h − vh2 − hy
  1

2 f ′′x h − vh2 − hy


2
dydv

 Kvf ′y|x h − vh2 − hy
 dydv

 Kvf ′y|x h − vh2 − hy
 fyf ′x h − vh2 − hy

 dydv

 Kvf ′y|x h − vh2 − hy
2 f ′′xfy h − vh2 − hy


2
dydv

 1
2 Kvf ′′y|x h − vh2 − hy


2
fyfxdvdy

 1
2 Kvf ′′y|xf́x h − vh2 − hy

 fydvdy

 1
2 Kvf ′′y|xfyf ′′x h − vh2 − hy


2
dydv.

For   EX and  u Kudu  0, the first integral is neglected. If we take n  n−1∑
i 1

n
Xi,
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the first, third, fifth and sixth integrals are Oph3, as it is known, h  n−1/6. So we are left
with the calculation of the second and the fourth integrals. The second integral, at   EX,
equals,

f ′x f ′ y|x h2

2 varX  oh3.

For n , it equals :

f ′x f ′ y|x h2

2 n − y2fdy  Oh3.

As for the fourth integral, we obtain the expansion
f x f ′′ y|x h2var X

2  Oh3.

To conclude, when the variance of I2n is oh2, we get the bias term (8), i.e.

bias f̂ny|x  h2 2 f ′x f ′ y|x  f x f ′′ y|x var X
22 f x

 Oh3.

Secondly, the variance part (9) is determined as follow. For each h  0 and every   0, from
(15), we have

I1n :∑
i 1

n

∑
j 1

n

WnxHhy − Yi − fy|Xi.

The predictable quadratic variation of I1n is given as

∑
i 1

n

Wni
2x1

2Xi  1
f̂n

2
x

2

nh 4 ∑
i 1

n

∑
j 1

n

1
2Xi

 ∑
i 1

n

K
x −Xi  h − hXj

h2

2

.

f̂n → f in probability, see here also [14]. Under the assumption A5, the numerator takes the
value

2

n2 n −1 n −2 h4 ∑
i ≠ j≠ k

1
2XiK

x − Xi  h − hXj

h2

 K x − Xi  h − hXk

h2 , 11

with   EX. This is the U-statistic of degree three with a kernel depending on h,  and .
Its prediction equals
2

h4n
   1

2y K x −y  h − hz
h2

 K x −y  h − hu
h2 fyfzfudydzdu.

The last term is equivalent to
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1
nh2

f y|x
f 2

x
K  f 2udu  O1/h.

This completes the proof. 

The following result concerns the distribution convergence of our estimator f̂ny|x.

Theorem 2.2. Under the assumptions of theorem 2.1, if   EX and h  on−1/6, then
nh21/2 f̂ny|x − fy|x → N0,2x
in distribution, where as before

2x 
f y|x
f 2

x
K  f 2udu.

Proof. Note that, by [14], f̂n converge to f in probability. Therefore, the study of the variance
and the distribution behavior of f̂ny|x, is based on that of the joint density function fy,x.
Hence we introduce its Hájek projection (see, e.g. [6]) f̂n

0y,x, defined by


nh3 ∑

i1

n

 K x − Xi  h − hz
h2 Hy − sfz, sdzds

  K x − t  h − hXi
h2 Hy − sft, sdtds

−   K x − t  h − hz
h2 Hy − sfz, tftfsdzdtds .

Note that f̂n
0y,x is a sum of i. i. d. rv’s with E f̂n

0y,x  E f̂ny,x . Its variance equals

Var f̂n
0y,x  2

nh6  K x − Xi  h − hz
h2 Hy − sfz, sdzds

  K x − t  h − hXi
h2 Hy − sft, sdtds

− 2  K x − t  h − hz
h2 Hy − s

 fz, tftfsdzdtds 2.

Then it follows from arguments similar to those used in the proof of Lemma 4.1. in [3], that

nh2Var f̂n
0
y,x 

 fy|x
f 2x

K  f 2udu  o1. 12

Under the assumption of theorem 2.2 and by definition of f̂ny,x and f̂n
0y,x, we have

f̂ny,x − f̂n
0y,x  

n n−1 h2 ∑
i≠j

K x−Xi h − hXj

h2 Hy − Yi
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− K x − Xi  h − hz
h2 Hy − Yifx, zdxdz

− K x − t  h − hXj

h2 Hy − Yifx, tdxdt

 K x − t  h − hs
h2 Hy − Yifyfsftdydsdt

: 
nn − 1h2 ∑

i≠j

LhXi,Xj,Yi.

It is readily seen that the last sum is a degenerate U-statistic of degree two, i.e.,
ELhXi,Xj,YiLhXk,Xj,Yk|Xj   0,

and
ELhXi,Xj,YiLhXi,Xk,Yi|Xi   0,

for i ≠ j ≠ k. As a conclusion we get

E f̂ny/x − f̂ n
∘
y/x

2
 2

n n −1 h3 ELh
2X1,X2,Y1.

Note that, each terms in Lh admits a second moment of the order Oh2. Then

nh2E f̂ny,x − f̂n
∘
y,x

2
 O n−1h−2  o1. 13

The convergence of f̂ny,x to fy,x follow immediately from (12) and (13). Also we can
verify Lindeberg’s condition (see, Corollary 1 in [1] by Brown and Eagleson). Considering the
variance term in (15), the variance of (11) tends to zero as n → , and the predictable
quadratic variation of I1n equals

1
nh2

f y|x
f 2

x
K  f 2udu  o 1

nh2
: 2x  on−1h−2.

Then nh21/2I1n → N0,2x in distribution as n → .
Here the proof completes. 

2.3. Optimal choice of smoothing parameters

In the classical kernel estimation literature, the optimal bandwidth hopt can be derived by
minimizing the AMSE expression. This optimal bandwidth gives a trade-off between bias and
variance (e.g.). In the case of adjusted kernel estimation, the AMSE depends on h and  only.
Therefore, the new method loads to an adaptive choice of both smoothing parameters h and .
Firstly, the optimal bandwidth hopt can be derived by differentiating the AMSE of f̂n with
respect to h and setting the derivatives to 0. Taking these derivatives and simplifying we
obtain the following expression :

hopt  2
3n

2x
B2

x

−1/6

: cn−1/6.

Next, we note that, if h  on−1/6, the bias is negligible. In such a situation, the scale
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parameter  should be chosen as small as possible to make 2x also small. Therefore, the
optimal choice of  minimizing the AMSE f̂n may be achieved by setting h  n−1/6, then

opt
1/5 

2 2 f
′
x f ′y|x  f x f ′′y|xvarX

2

fy|x K  f 2u du
. 14

The difference between this classical methodology and the new methodology becomes clear.
The classical kernel focuses on hopt

1 , whereas the new methodology gives the principal role to
the scale parameter .

Note also that our estimator can be rewritten as follow

f̂ny|x : ∑
i 1

n

∑
j 1

n

WnxHhy − Yi,

where Wnx : Wijnx, and

Wijnx  K
x −Xi  h − hXj

h2 ∑
i 1

n

∑
j 1

n

K
x −Xi  h − hXj

h2

−1

are called the weights functions. They are non negative and satisfy :

∑
i 1

n

∑
j 1

n

Wnx  1, for all x ∈ .

As a result we end up with the expression

f̂ny|x − fy|x  ∑
i 1

n
∑
j 1

n
WnxHhy − Yi − fy|Xi

∑
i 1

n
∑
j 1

n
Wnxfy|Xi − fy|x,

: I1n  I2n. 15
To find an adaptive choice of , we don’t focus on the analytic form of Bx and 2x in

(8) and (9) respectively. As I1n and Yi − fy|Xi are conditionally centred, and since 1
2Xi is

unknown, we give ∑
i1

n

∑
j1

n

Wn
2x1

2Xi a predictable quadratic variation of I1n, so as to

replace it by Yi − fy|Xi2 with h  n−1/6. As a conclusion, we can say that, the bias term of
 is

bias ∑
i 1

n

∑
j 1

n

Wnxfny|Xi − fy|x.

The variance of  is found by
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var ∑
i 1

n

∑
j 1

n

Wn
2xYi − fy|Xi2.

As a result, we obtain the adaptive scale parameter  by minimizing the AMSE expression :
AMSE  bias2  var.

3. Simulation Study

In this section we present a simulation study to illustrate the performance of our new
estimator f̂n , given by Eq. (7), to establish the appropriate choice of the scale parameter . We
will conduct the study by taking the data from the simple model Yj  Xj  j, j  1, . . . ,n,
where Xj and j are i. i.d. standard normal rv’s. We will clarify the performance of our
estimator f̂n by assuring the present results by using the Monte Carlo simulation, for small and
moderate sample sizes in certain points of x. The conditional density function of Y given X is
given by
fy|x  1

− 4
exp 1

4 1  
2x2 − 2xy1    y2   x2

2 .

Table 1: Bias, Var and AMSE values over the boundary region.
f̂n fn

n x |Bias| Var AMSE |Bias| Var AMSE

. 001 .2030 .0412 .0825 .2464 .0607 .1215

25 .05 .2039 .0416 .0832 .2230 .0497 .0994

.2 . 2009 .0403 .0807 .2368 .0561 .1122

.001 .2061 .0425 .0849 .2373 .0563 .1126

50 .05 .2048 .0419 .0839 .2527 .0638 .1277

.2 . 2036 .0414 .0829 .2306 .0532 .1064

.001 .2076 .0431 .0862 .2625 .0689 .1378

100 .05 .2083 .0433 .0867 .2367 .0560 .1120

.2 . 2057 .0423 .0846 .2343 .0549 .1098

.001 .2099 .0440 .0881 .2357 .0555 .1111

200 .05 .2096 .0439 .0879 .2458 .0604 .1208

.2 . 2062 .0425 .0851 .2399 .0575 .1151
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We measure the performance of the estimators by the asymptotic mean squared error
(AMSE). The simulation is based on 1000 replications, in each replication the sample sizes is:
n  25,50,100 and 200 was used. For the kernel, we choose a Gaussian kernel. The choice of
bandwidth is very important for a good performance of any kernel estimator. In all cases, we
consider the asymptotic optimal global bandwidth hopt  n−1/6, ̂  X̄n and the optimal scale
parameter opt is as defined in Eq.(14).

For each value of x ∈ 0.001, 0.05, 0.2 we have calculated the absolute bias |Bias|,
variance Var and the AMSE values of the two considered estimators and have displayed the
results in Table 1. The comparison shows that the proposed estimator exhibits the best
performance. This is due to the fact that it is locally adaptive and produces good results in all
studied situations. The main results of our simulation studies is that the proposed estimator can
be recommended for bias and variance reduction and for improved boundary effects.
Apparently the overall f̂n is the best choice among the two estimators considered. The usual
estimator fn is clearly the worst, and this is undoubtedly due to the boundary effect.
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