
Journal of Numerical Mathematics and Stochastics, 10 (1) : 58-72, 2018 © JNM@S
http://www.jnmas.org/jnmas10-5.pdf Euclidean Press, LLC

Online: ISSN 2151-2302

Optimal Algorithm Re-Initialization for Combinatorial
Optimization

G.SEBASTIANI, and D.PALMIGIANI

Istituto per le Applicazioni del Calcolo “Mauro Picone”, CNR, Rome, and Istituto “Guido Castelnuovo”,
“Sapienza” Università di Roma, Italy, E-mail: sebastia@mat.uniroma1.it

Abstract. We propose a new iterative procedure to find the best time for re-initialization of
meta-heuristic algorithms to solve combinatorial optimization problems. The sequence of
algorithm executions with different random initializations evolves at each iteration by either
adding new independent executions or extending all existing ones up to the current maximum
execution time. This is done on the basis of a criterion that uses a surrogate of the algorithm
failure probability, where the optimal solution is replaced by the best so far one. Therefore, the
new procedure can be applied in practice. We prove that, with probability one, the maximum
time of current executions of the proposed procedure approaches, as the number of iterations
diverges, the optimal value minimizing the expected time to find the solution. We apply the new
procedure to several Traveling Salesman Problem instances with hundreds or thousands of
cities, whose solution is known, and to some instances of a pseudo-Boolean problem. As base
algorithm, we use different versions of an Ant Colony Optimization algorithm or a Genetic
Algorithm. We compare the results from the proposed procedure with those from the base
algorithm. This comparison shows that the failure probability estimated values of the new
procedure are several orders of magnitude lower than those of the base algorithm for equal
computational cost.

Key words : Optimization Methods, Re-Initialization, Probability, Stochastic Processes.

AMS Subject Classifications : 60C99, 68R05, 65Y10

1. Introduction

Solving a combinatorial optimization problem (COP) consists of finding an element, within
a finite search domain, which minimizes a given so called fitness function. The domain has
typically a combinatorial nature, e.g. the space of the Hamiltonian paths on a complete graph.
The COP prototype is the Traveling Salesman Problem (TSP), whose solution is a Hamiltonian

58

59 G. SEBASTIANI, and D. PALMIGIANI

cycle on a weighted graph with minimal total weight [1]. Although a solution of a COP always
exists, finding it may involve a very high computational cost. The study of the computational
cost of numerical algorithms started in the early 1940s with the first introduction of computers.
Two different kinds of algorithms can be used to solve a COP problem: exact or heuristic. A
method of the former type consists of a sequence of non-ambiguous and computable operations
producing a COP solution in a finite time. Unfortunately, it is often not possible to use exact
algorithms. This is the case for instances of an NP-complete COP. In fact, to establish with
certainty if any element of the search space is a solution, requires non-polynomial
computational cost. Alternatively, heuristic algorithms can be applied. Such type of algorithms
only guarantee either a solution in an infinite time or a suboptimal solution. Of great
importance are the meta-heuristic algorithms (MHA) [2]. They are independent of the
particular COP considered, and often stochastic. Among them, there are Simulated Annealing
[13], Tabu Search [8], Genetic Algorithms (GA) [9] and Ant Colony Optimization (ACO) [4].

A natural issue for MHA concerns their convergence [7], [17], [10], [15], [11]. Due to the
stochastic nature of such algorithms, they have to be studied probabilistically; unfortunately,
even when their convergence is theoretically guaranteed, it is often too slow to successfully
use them in practice. One possible way to cope with this problem is the so called restart
approach, which, aside from the present context, it is used more generally for simulating rare
events [5], [6], [14]. It consists of several independent executions of a given MHA: the
executions are randomly initialized and the best solution, among those produced, is chosen.
When implementing the restart on a non-parallel machine, the restart consists of periodic
re-initializations of the underlying MHA, the period T being called restart time.

Despite the fact that the restart approach is widely used, very little work has been done to
study it theoretically for combinatorial optimization [12], [16]. In [12], the restart is studied in
its dynamic form instead of the static one considered here. Some results are provided for a
specific evolutionary algorithm, i.e. the so called (11)EA, used to minimize three
pseuso-Boolean functions. In [16] the fixed restart strategy is considered as done here. The
first two moments of the random time TR for the restart to find a solution (optimization time)
are studied as a function of T. An equation for T is derived, whose solution minimizes the
expected value of TR, i.e. ETR. However, this equation involves the distribution of the
optimization time of the underlying MHA, which is unknown.

In practice, the underlying MHA is very commonly restarted when there are negligible
differences in the fitness of the best-so-far solutions at consecutive iterations during a certain
time interval. This criterion may not be adequate when we want to really find the COP solution
and we are not satisfied with suboptimal ones.

Here we propose a new iterative procedure to optimize the restart. Each iteration of the
procedure consists of either adding new MHA executions or extending along time the existing
ones. Along the iterations, the procedure uses an estimate of the MHA failure probability
where the optimal solution is replaced by the best so far one. We recall that the failure
probability of a stochastic algorithm pk is the probability that the optimal solution has not
been found up to iteration k.

We prove that, with probability one, the restart time of the proposed procedure
approaches, as the number of iterations diverges, the value that minimizes ETR.

We also show the results of the application of the proposed restart procedure to several
TSP instances, whose solution is known, with hundreds or thousands of cities. As MHA we use

Optimal Algorithm Re-Initialization for Combinatorial Optimization 60

different versions of the ACO algorithm Max-Min Ant System (MMAS) [18]. Based on a large
number of experiments, we compare the results from the restart procedure with those from the
MMAS. This is done by considering the failure probability of the two approaches for the same
total computation cost. This comparison shows a significant gain when applying the proposed
restart procedure. Similar results are obtained when applying the RP to the MMAS or to a GA
for solving some instances of a pseudo-Boolean problem. The algorithms have been
implemented in MATLAB or in C.

2. The Procedure

In this section, we first give some mathematical details of the restart, that will be then used
to define the RP. In the following part, we present the procedure in details, also providing a
pseudocode.

Following [3], the failure probability at iteration k of the restart is the probability that the
optimization time of the restart TR is larger than k:

PTR  k  pT
k −1
T p k − k−1

T T , 1

where p is the failure probability of the underlying MHA. We notice that the first factor in
(1) is the probability that the optimal solution has not been found in each of the previous

k −1
T re-initializations. The second factor is the probability that the optimal solution has not

been found up to iteration k −  k −1
T T of the current re-initialization. The restart failure

probability is geometrically decreasing towards zero with the number k−1
T of

re-initializations, the base of such geometric sequence being pT. Therefore, a short restart
time T may result in a high value of pt and a slow convergence. On the contrary, if the restart
time T is high, we may end up with a low number of re-initializations k −1

T and a high
value of the restart failure probability. Then, a natural problem is to find an “optimal value” of
T when using a finite amount of computation time.

The restart could be optimized by choosing a value for T that minimizes the expected value
of the time TR:

ETR  ∑
k1


PTR  k . 2

In fact for any random variable not negative X it is possible to write
EX  

0


PX  tdt . 3

In our case, the random variable TR is discrete and the integral in (3) is replaced by a series
whose generic term is PTR  t.

We now derive an upper bound for the r.h.s. of (2):

ETR ≤ ∑
k1


pT

k −1
T ≤ ∑

k1


pT

k −1
T −1

 1
1−pT

1
T pT

. 4

61 G. SEBASTIANI, and D. PALMIGIANI

By means of this bound, we can then optimize the RP by minimizing the function
gx : 1 − px 1

x px
−1

.
Whenever this function does not have a global minimum, there is no advantage to use the

restart. In the other case, an optimal value for the restart time is provided by the first value tm
where the function g assumes its absolute minimum. However, this criterion cannot be applied
in practice since the MHA failure probability is unknown.

The restart procedure (RP) starts by executing r0 independent replications of the
underlying MHA for a certain number of time steps T0. Let us denote by Xit the solution
produced by the replication i of the underlying algorithm at time t. Let Yit be the fitness
function value of the best solution found by the i-th replication until time t i.e.
Yit  minfXis, s  1, . . . , t, where f is the function to minimize. Each
Yit, t  1,2,…, i  1,2,… is an independent realization of the same process. Then, at the
end of iteration k, based on the criterion described later in this section, the RP either increases
the number of replications from rk to rk1 by executing rk1 − rk replications of the underlying
algorithm until time Tk, or it continues the execution of the existing rk replications until time
Tk1  Tk. Therefore, the RP can be described by a sequence YAk ,k  0,1,… of nested finite
matrices, extracted from the infinite matrix Y:

Y 

Y11 Y12  Y1t 

Y21    

    

Yi1   Yit 

    

,

where Ak : i, t : i  1,…, rk t  1,…,Tk. The matrix YAk corresponds to the first rk
rows and Tk columns of Y. Let Ỹk denote the minimum value of the matrix YAk at the end of
iteration k: Ỹk  minYAk 

i,t∈ Ak

min Yit. We estimate the failure probability sequence by means

of the empirical frequency

p̂kt 
1
rk
∑
i 1

rk

1
Yit Ỹk

t  1,…,Tk,

0 otherwise.
Next, consider the function gkt  1 − p̂kt

1
t p̂kt−1, t  1,… ,Tk, and define ̂k the first

time with a left and right increase of the function gk (local minimum). Let  be a number in
0,1. If ̂k    Tk, then the RP increases the number of replications by means of a certain
rule rk1 : frrk. Otherwise, the RP increases the restart time according to Tk 1 : fTTk.
We assume that ∀x we have frx  x and fTx  x. As a consequence, for any fixed x  0, it
holds fr

kx, fT
kx → , k denoting the consecutive application of a function for k times.

Therefore, the recursive formula for rk,Tk is

rk1,Tk1 
frrk,Tk if ̂k    Tk,
rk, fTTk otherwise.

Optimal Algorithm Re-Initialization for Combinatorial Optimization 62

Below there is the pseudocode for RP.

The RP pseudocode

r  r0;
T  T0;
for replication i  1,2,…, r do
perform execution A i of MHA until time T0;
save A iT0;
end for
save YA0 ;
compute ̂0 from YA0 ;
for iteration k  1,2,… do
if ̂k−1 ≥   Tk−1 then
Tk  fTTk−1;
rk  rk−1;
for replication i  1,2,…, rk do
continue the execution of A i until Tk;
save A iTk;
end for
else then
rk  frrk−1;
Tk  Tk−1;
for replication i  rk−1  1, rk−1  2,…, rk do
execute A i until Tk;
save A iTk;
end for
end if
save YAk;
compute ̂k from YAk;
end for

3. RP Convergence

In this section, we describe some theoretical properties of the RP. The main result, i.e.
theorem 3.2, concerns with the RP convergence. Specifically, we prove that, with probability
one, the restart time of the RP approaches, as the iteration number diverges, the value tm that
minimizes ETR. This is done as follows. In lemma 3.1, we prove that the number of
replications rk diverges, and that the RP eventually finds the optimal solution. This lemma is
then used to prove the technical lemma 3.2. Finally, this lemma and theorem 3.1 are used to
prove the main result.

We denote by fm the value of the solution of the optimization problem. Moreover, we recall
the functions gt  1 − pt

1
t pt−1, where pt is the failure probability and

63 G. SEBASTIANI, and D. PALMIGIANI

gkt  1 − p̂kt
1
t p̂kt−1, whose domain is 1,… ,Tk.

In order to derive the following results, we assume that
1. g admits absolute minimum at the time tm of its first local one, and it is strictly

decreasing for t ≤ tm,
2. p1  1.

We notice that if the absolute minimum of g is reached after the time tm of its first local one,
the RP restart time still converges to tm, so providing only a suboptimal value for the restart
time. Point 2 in practice does not give limitations. In fact, we can always aggregate the first
iteration of the algorithm with failure probability less than one and those before it into a single
one.

Remark 3.1. We notice that, by the assumptions on the functions fr and fT, and by the RP
definition, the probability that both the sequences rk and Tk are bounded is zero.

Lemma 3.1. Let pt be as above. Let rk,Tk be the sequence of random variables which
describes the RP. Then,
1. Prk →   1,
2. P∃k : Ỹk  fm  1,
should hold.

Proof. 1. If Prk →   1, then, with positive probability, the following three conditions hold
for a certain positive integer r:
i) rk  r eventually;
ii) Tk diverges (for remark 3.1);
iii) ̂k ≥ Tk eventually (from ii) and the definition of the RP).
Eventually, there are only two mutually exclusive possibilities: either the underlying r copies
of the algorithm have all reached the minimum or only some r′  r of them will have
experienced it. In both cases, it follows that, p̂ht as well as ght will not change for h large
enough. Hence, eventually ̂h does not change as h increases, which is a contradiction with iii).
Therefore Prk →   1.

2. By i), since p1  1, with probability one, there exists i such that Yi1  fm; for all
k so large that rk ≥ i it will be Ỹk  fm. This proves the point. 

Lemma 3.2. For each t ∈ N,

P
k

sup Tk  t 
k

sup Tk ≥ t ,
k →
lim p̂kt  pt  1,

holds .

Proof. Let us consider the case when the event Et :
k

sup Tk ≥ t happens, then we can

eventually compute p̂ks, for s  1,… , t. By point 1 of lemma 3.1 and the strong law of large
numbers, we get

Optimal Algorithm Re-Initialization for Combinatorial Optimization 64

P Ek ,
k →
lim 1

rk
∑
i 1

rk

1Yit fm
 pt  PEk.

Hence, using point 2 of lemma 3.1, we obtain that

P Ek ,
k →
lim 1

rk
∑
i 1

rk

1Yit fm
 pt

is equal to

P Ek ,
k →
lim 1

rk
∑
i 1

rk

1
Yit Ỹk

 pt

Since, by definition

p̂kt  1
rk
∑
i 1

rk

1
Yit Ỹk

,

we have

P Ek ,
k →
lim p̂kt  pt  PEk.

from which the thesis follows. 

Theorem 3.1. For the RP it holds that

P
k

sup Tk  tm
  1.

Proof. Let us assume that the thesis is not true. Then, there exists an integer number M such

that M ≤ tm
 and P

k
sup Tk  M  0. On the event supk Tk  M, by both lemma 3.2

and the continuous mapping, we have the convergence gkt → gt, for any t ≤ M. This means
that, for any   0 there is a positive probability that t1

M |gkt − gt|  , when k is large
enough. Let us define M̃ : minM, tm. We then have gkM̃  gM̃   and gkt  gt − 
for any 1 ≤ t  M̃. Subtracting the first inequality from the last one, we obtain
gkt − gkM̃  gt − gM̃ − 2.

Since g is strictly decreasing until tm, the r.h.s. of the last inequality is strictly larger than
gM̃ − 1 − gM̃ − 2. By taking  sufficiently small, we get gkt − gkM̃  0 for any t  M̃.
Hence, with a positive probability, we get eventually ̂k ≥ M̃.
If M ≤ tm, then M̃  M and with positive probability eventually we have ̂k ≥ M. Since
̂k ≤ Tk ≤

k
sup Tk  M, we have eventually ̂k  Tk  M. For one of such k, it holds

̂k
Tk

 1  , so that, by the definition of the RP, at the following iteration with positive
probability we have Tk1  Tk  M 

k
sup Tk, which is impossible.

65 G. SEBASTIANI, and D. PALMIGIANI

In the other case, tm  M ≤ tm
 , we have M̃  tm, and there is a positive probability that

tm  M̃ ≤ ̂k ≤ Tk ≤
k

sup Tk  M for k large enough; for any of these values of k, we get

̂k
Tk
≥ tm

Tk
≥ tm

M ≥ . As a consequence, with positive probability eventually we have
Tk1  fTTk  Tk, which is a contradiction with

k
sup Tk  M. 

Theorem 3.2. If we define T : tm
 , then

1. P 
t 1

T

k →
lim p̂kt  pt  1,

2. P
k →
lim ̂k  tm  1.

Proof. 1. By theorem 3.1, for any t  1,2,…,T, with probability one we can eventually
compute p̂kt. Hence, by the two statements of lemma 3.1 and the strong law of large
numbers, we get

P 
t 1

T

k →
lim p̂kt  pt  1,

that completes the proof of this point.
2. From 1 and the continuous mapping, with probability one, we have

k→
lim gkt  gt,

for t  1,… ,T, with T  tm. Therefore, the sequence ̂k converges to tm. 

Remark 3.2. The efficiency of the RP depends on the expected value of the ratio
k

sup Tk/tm.

Although we do not have derived upper-bounds for this ratio, in all applications we performed,
it remains sufficiently close to one.

4. Numerical Results

Below, we describe some results of the application of the RP to solve different instances
of the TSP studied in [18] and two instances of a pseudo-Boolean problem. The underlying
algorithm used here in the RP is mainly the ACO proposed in [18], known as MMAS; for the
TSP instances, it is combined with different local search procedures [18]. In addition, for the
pseudo-Boolean problem, we also use a GA with a population of 20 individuals. At each GA
iteration, first the individuals are ordered accordingly to the value of the fitness function. Then,
the first half individuals of the list are kept. The remaining individuals are replaced by new
ones, obtained from the first group in the following way: we first draw without replacement

Optimal Algorithm Re-Initialization for Combinatorial Optimization 66

random pairs of individuals; for each pair, two new individuals are produced by using
single-point crossover. The new population is finally obtained by flipping a component of the
binary string chosen uniformly and independently for each individual, in the case that this
decreases the value of the fitness function.

The RP setting is as follows: rk1  frrk : c1  rk and Tk1  fTTk : c2  Tk where
c1  1.2,c2  1.1. The initial values for r0 and T0 are 20 and 100, respectively. Finally, we
set   4

5 .
For both the TSP instances and the pseudo-Boolean problem considered here, the optimal

solution is known. This information can be used to estimate the failure probability of the RP
and of the underlying algorithm. However, obviously this information cannot be used when
applying the RP.

In order to compare the results from the two algorithms with the same computational effort,
we consider for the RP a pseudo-time t, defined as follows: for the initial RP iteration, the first
T0 instants of the pseudo-time correspond to the first T0 iterations of the first replication of the
underlying algorithm; the following T0 pseudo-time instants correspond to the first T0
iterations of the second replication and so on until replication r0. At the end of the k-th RP
iteration, we have produced rk executions (replications) for Tk times and the final pseudo-time
instant is t  rk  Tk. At the k  1-th iteration, we have a certain rk1,Tk1, with either
rk1  rk and Tk1  Tk or rk1  rk and Tk1  Tk. In the first case, the pseudo-time instant
t  Tk  rk  1 corresponds to the first iteration time of the rk  1 replication and it is increased
until the end of that replication. We proceed in the same way until the end of rk1 replication.
In the second case, the pseudo-time instant t  Tk  rk  1 corresponds to the iteration time
Tk  1 of the first replication and is then increased until the iteration time Tk1 of that
replication. Then, the same procedure is applied for the remaining replications based on their
number.

We denote by Ȳt (t  1,2,…) the process describing the best so far solution of the RP
(MMAS or GA) corresponding to the pseudo-time (time) instant t. Hence, based on a set of m
independent replications of the RP, we can estimate the failure probability pRP t by using the
classical estimator

p̂RP t  1
m ∑

i 1

m
1Ȳit fm

, 5

and analogously with p̂t for the MMAS or GA. By the law of large numbers this estimator
converges to the failure probability pRP t (to pt for the MMAS or GA).

We start with the example where we want to minimize the following pseudo-Boolean
function

fx  − ∑
i 1

N
xi −

N−1
2 , 6

with respect to all binary strings of length N. In Figure 1, this function is plotted versus the
number of 1s in the case of N  50 considered now.

This function has two local minima but only one of them is global. The first base algorithm
considered is the MMAS, for which the pheromone bounds min and max ensure that at any
time, there is a positive probability to visit each configuration, e.g. the global
minimum.Therefore, with probability one this algorithm will find the solution. However, if it

67 G. SEBASTIANI, and D. PALMIGIANI

reaches a configuration with few 1s, it takes in average an enormous amount of time, not
available in practice, to move towards the global minimum.

Figure 1: Plot of the considered pseudo- Figure 2: Pseudo-Boolean problem instance
Boolean function value versus the number with N  50 (Boolean 50) solved by the RP
of 1s of the binary string of length N  50. applied to MMAS (a single ant is used and

we set min  0.4, max  1 − min, and  
. 01).The estimated f.p. as function of pseudo
-time or time for the RP (thin line) and the
MMAS (thick line) are computed by the
estimator in (5) based on 500 and 1000
replications, respectively.

Therefore, we expect that in this case the restart will be successful.
In Figure 2, we show the estimated failure probability (f.p.) p̂t for the MMAS algorithm

to minimize the pseudo-boolean function of Figure 1 (thick line). In the same figure, the
estimated f.p. p̂RP t of the RP is plotted versus the pseudo-time (thin line). We notice that
there is a clear advantage to use the RP when compared to the standard MMAS.

For this problem, we also use the GA described before. In this case we have N  300
(boolean300). The curves obtained are very similar to those in Figure 2. The f.p. estimated
values are shown in Table 1.

We consider now an instance of the TSP with 532 cities (att532) solved by MMAS with
the same settings as in [18]. After five hundreds of thousands of iterations, the underlying
algorithm has an estimated f.p. of 0.38 ca. Instead, at the same value of the pseudo-time, the RP
has a significantly lower f.p. (0.004 ca), as clearly shown in Fig. 3. We remark that, until the
value 3900 ca for the time or pseudo-time, the f.p. of the underlying algorithm is lower than the
one of the RP. This is due to the fact that the RP is still learning the optimal value of the restart
time. After that, the trend is inverted: the RP overcomes the MMAS and gains two orders of
magnitude for very large values of the pseudo-time.

Optimal Algorithm Re-Initialization for Combinatorial Optimization 68

Figure 3: The TSP instance with 532 cities (att Figure 4:The TSP instance with 532 cities
532) solved by the RP applied to MMAS (sett- (att 532) solved by the RP applied to MM
ings as in [18]). The estimated f.p. as function AS.The denominator of the function gkt
of pseudo-time or time for the RP (thin line) at the end of a single RP replication.
and the MMAS (thick line) are computed
by the estimator in (5) based both on 500
replications. The vertical segment shows the
interval for 99% confidence level.

Figure 5: The TSP instance with 532 cities (att 532) solved by the RP applied
to MMAS. Comparison between the failure probability curve of the RP that
appears in Fig. 3 (thin line) and the one obtained by applying the standard
restart with the optimal restart time (thick line). The f.p. curves of both the
RP and the standard restart are computed by the estimator in (5) based on
500 replications.

69 G. SEBASTIANI, and D. PALMIGIANI

We notice that the value ̂k approaches the optimal restart time tm. In fact, as an example,
in Figure 4, we show the denominator of the function gkt at the end of a single RP execution.
A global maximum appears at approximately the value of 430, the difference with the value of
tm, computed from the estimate p̂t, being less than 1%.

Finally in Figure 5, we compare the f.p. curve for the RP with the one obtained applying
the standard restart with the estimated optimal restart time. We remark that to use this
approach in practice would require much longer computation than to execute the RP. In fact,
we need to provide first an estimate of tm by means of a sufficiently large sample of
independent runs of the base algorithm.

We notice that the RP curve starts to decrease significantly after the other one. This is due
to the fact that the RP is still searching for the optimal value of the restart, whereas it is set
from the beginning in the other (ideal) case. At about pseudo-time 7000, the two f.p. s become
almost equal. After that, the f.p. of the standard restart goes to zero faster, even if the
difference between the two f.p. s remains less than 0.05 ca. Finally, at pseudo-time 5  105, the
estimated f.p. value of the RP is 4  10−3, comparable to the estimated f.p. value of the standard
restart at same time.
We notice that curves similar to those as in Figures 3, 4 and 5 were obtained for all the other
TSP instances considered. The corresponding results are shown in Table 1.

By looking at the results in Table 1, it is evident the advantage of using the RP instead of
the underlying algorithm. In fact, for each case, the estimated f.p. value of the RP is several
orders of magnitude lower than the one of the base MHA.

Table 1: Results for the application of the RP and the base MHA
to TSP Instances with known optimal solution and the instances of
a pseudo-Boolean problem. The estimated f.p. values are computed
at the time Tc reported in the third column (pseudo-time for the RP)
based on at least 500 elements.

Instance Base MHA Tc Base MHA f.p. RP f.p.
Boolean50 MMAS 300000 0.34 2.110−3

Boolean300 GA 10000 0.43 0

pcb442 MMAS3opt 100000 0.22 4.010−3

att532 MMAS3opt 500000 0.38 4.010−3

lin318 MMAS2.5opt 30000 0.44 0

d1291 MMAS3opt 700000 0.57 2.010−3

d198 MMAS2.5opt 100000 0.67 0

5. Conclusions

Given a combinatorial optimization problem, it is often needed to apply stochastic

Optimal Algorithm Re-Initialization for Combinatorial Optimization 70

algorithms exploring the space using a general criterion independent of the problem.
Unfortunately, usually there is a positive probability that the algorithm remains in a
sub-optimal solution. This drawback can be coped by applying periodic algorithm
re-initializations. This strategy is called restart. Although it is often applied in practice, there
are few works studying it theoretically. In particular, there are no theoretical information to be
used in practice to choose a convenient value for the restart time.

In this paper, we propose a new procedure to optimize the restart (RP) and we study it
theoretically. The iterative procedure starts by executing a certain number r0 of independent
replications of the underlying algorithm for a predefined time T0. At the end of any iteration k
of the RP, we have rk independent replications each composed by Tk iterations of the
underlying algorithm. We then compute the minimum value Ỹk of the objective function f on
these rkTk points. Hence, for each time t  1,… ,Tk, we compute an estimate p̂kt of the
failure probability pt, i.e. the probability that we have not yet reached the value Ỹk. We now
consider the function gkt  1 − p̂kt

1
t p̂kt−1, that is the analogous of the function

gt  1 − pt
1
t pt−1. We recall that the first time tm at which the absolute minimum of

gt is reached corresponds to an “optimal value” of the restart time, that minimizes the
expected time to find a solution. We then compute the position ̂k of the first minimum of
gkt. If ̂k is close to the end of the current execution time frame Tk of the underlying
algorithm, Tk is increased; otherwise this is done for the number of replications rk. This is
controlled by the parameter  ∈ 0,1.

The theory predicts that the RP eventually will find the optimal value of the restart time. In
fact, the theorems prove that, with probability one, p̂kt, gkt and ̂k converge to pt, gt
and tm, respectively.

In this paper, we illustrate some results obtained by applying the RP to two versions of the
MMAS ACO algorithm [18] for solving several TSP instances, whose solution is known, with
hundreds or thousands of cities. We also present some results using the RP with MMAS and a
GA for solving two instances of a pseudo-Boolean problem. The results obtained show that the
estimated values of the failure probability of the RP are several orders of magnitude lower than
those of the underlying algorithms, for equal computational cost. Therefore, given a certain
computation resource, by applying the RP, we are far more confident that the result obtained is
a solution of the COP instance analyzed. The procedure proposed could be improved
preserving its performance and decreasing the computational cost. A possible way to do it is to
increase the parameter  along iterations. In fact, once we have a reasonably good estimate of
gt, we would like to reduce the possibility that, by chance, we increase too much the time
interval length. This can be done by increasing the value of .

Acknowledgments
The authors are very thankful to Professor Mauro Piccioni for his very useful comments and
suggestions and to Professor Thomas Stützle for the ACOTSP code.

References

[1] D. L. Applegate, R. M. Bixby, V. Chvátal, and W. J. Cook, The Traveling Salesman
Problem, Princeton University Press, Princeton, 2006.

[2] C. Blum, and A. Roli, Metaheuristics in combinatorial optimization: overview and

71 G. SEBASTIANI, and D. PALMIGIANI

conceptual comparison, ACM Computing Surveys 35(3), (2003), 268–308.

[3] L. Carvelli, and G. Sebastiani, Some issues of aco algorithm convergence, In: Ant Colony
Optimization - Methods and Applications, A. Ostfeld, ed. IntechOpen, (2011), 39–52.

[4] M. Dorigo, and T. Stützle, Ant Colony Optimization, MIT Press,Massachucetts, 2004.

[5] M. Garvels, and D. Kroese, A comparison of restart implementations, In: WSC’98
Proceedings of the 30th Conference on Winter Simulation, IEEE Computer Society Press, CA,
(1998), 601–608.

[6] ——, On the entrance distribution in restart simulation, In: RESIM ’99 Proceedings of the
Rare Event Simulation Workshop, University of Twente, The Netherlands, (1999), 65–88.

[7] S. Geman, and D. Geman, Stochastic relaxation, Gibbs distributions, and the Bayesian
restoration of images, IEEE Transactions on Pattern Analysis and Machine Intelligence 6(6),
(1984), 721–741.

[8] F. Glover, Tabu search-part 1, ORSA Journal of Computing 1(3), (1989), 190–206.

[9] D. Goldberg, B. Korb, and K. Deb, Messy genetic algorithms: motivation, analysis, and
first results, Complex Systems 3, (1989), 493–530.

[10] W. Gutjhar, A generalized convergence result for the graph-based ant system, Probability
in the Engineering and Informational Sciences 17, (2003), 545–569.

[11] W. Gutjhar, and G. Sebastiani, Runtime analysis of ant colony optimization with
best-so-far reinforcement, Methodology and Computing in Applied Probability 10, (2008),
409–433.

[12] T. Hansen, On the analysis of dynamic restart strategies for evolutionary algorithms, In:
Proceedings of the 7th International Conference on Parallel Problem Solving from Nature,
London, Springer-Verlag, (2002), 33–43.

[13] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, Optimization by simulated annealing,
Science 220(4598), (1983), 671–680.

[14] A. Misevicius, Restart-based genetic algorithm for the quadratic assignment problem, In:
Research and Development in Intelligent Systems XXV, M. Bramer, M. Petridis, and F.
Coenen, eds. Springer-Verlag, Berlin-Hidelberg, (2009), 91–104.

[15] F. Neumann, and C. Witt, Runtime analysis of a simple ant colony optimization
algorithm, Algorithmica 54, (2007), 243–255.

[16] A. Van Moorsel, and K. Wolter, Analysis and algorithms for restart, In: QEST ’04

Optimal Algorithm Re-Initialization for Combinatorial Optimization 72

Proceedings of the 1st International Conference on the Quantitative Evaluation of Systems,
Munich, Germany, (2004), 195–204.

[17] L. T. Schmitt, Theory of genetic algorithms, Theoretical Computer Science 259, (2001),
1–61.

[18] T. Stützle, and H. Hoos, Max-min ant system, Future Generation Computer Systems 16,
(2000), 889–914.

Article history: Submitted November, 23, 2018; Accepted January, 04, 2019.

