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Abstract. In this work, we study the anticipated backward doubly stochastic differential
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1. Introduction

Nonlinear Backward stochastic differential equations (BSDEs in short) have first been
introduced by Pardoux and Peng [3] in order to give a probabilistic interpretation for the
solutions to semi-linear partial differential equations (PDEs). Since then, and in recent years,
BSDEs have received considerable attention due to their wide applicability in a number of
different areas such as financial mathematics and partial differential equations. After their
formulation of the theory of BSDEs, Pardoux and Peng considered in [4] a new kind of
BSDEs, which is a class of backward doubly stochastic differential equations (BDSDESs) with
two different directions for the stochastic integrals. On one hand, they proved existence and
uniqueness of solutions to BDSDEs under uniform Lipschitz conditions on the coefficients.
Then Owo [2] discussed BDSDEs with a stochastic Lipschitz condition and proved the
existence and uniqueness of their solution.
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On the other hand, recently, Xu [6] studied the anticipated backward doubly stochastic
differential equations (ABDSDEs) of the following form:

—dY = f(t, Ve, Zt, Yoy, Zecwy )At + 9 Y, Zt, Yo, Zeery )dBy — ZidWy,
0<t<T,

Ye=¢, Zi=nt T<t<T+K,

where &, n. are given stochastic processes, and o(.), {(.) are given nonnegative deterministic
functions. In [6], the author formulated an existence and uniqueness result under Lipschitz
conditions, a comparison theorem for one-dimensional ABDSDEs and solved a stochastic
control problem using the duality between linear stochastic differential delay equations and
ABDSDEs.

In the present paper, we deal with a class of ABDSDEs under stochastic Lipschitz
conditions. Inspired by the works of Owo [2] and Xu [6], we prove that under stochastic
Lipschitz conditions, the solution of these ABDSDEs exists uniquely. The key point is an
iterated scheme on a suitable sequence. Based on [7], we establish a comparison theorem for
one dimensional ABDSDEs.

The paper is organized as follows. In section 2, we introduce some preliminaries. In section
3, we establish the existence and uniqueness of a solution for the ABDSDEs in the case of a
stochastic Lipschitz condition. A comparison theorem for the solutions of ABDSDEs is
reported in section 4.

2. Preliminaries

Let Q be a non-empty set, F a o —algebra of sets of Q and P a probability measure defined
on &. The triplet (QQ, &, P) defines a probability space, which is assumed to be complete. For
afixed real 0 < T < oo, we assume that we are given two mutually independent processes:

e a( —dimensional Brownian motion (Bt)o<t<T’

e ad —dimensional Brownian motion (Wt)O <t<T

Then we consider the family (F+) 1 given by
Fi=FV'VFH 0<t<T, Ge=FpsVFlru 0<s<T+K

where for any process {§t>tsg, For = o{dr— s, S<r <ty VN, F{=F%,. N denotes the
class of P —null sets of &. Note that (F't), < < does not constitute a classical filtration.
For every random process (a(t)),. , with positive values, such that a(t) is Gt —measurable

forany t > 0, we define an increasing process (A(t)), . , by setting A(t) = j; a(s)ds.

For k € N* and 8 > 0, we consider the following sets (where E denotes the mathematical
expectation with respect to the probability measure P):

. Lz(ﬂ, Gr, Rk) the space of Gt-measurable random variables such that
E[eﬁA(T)Ié‘TIZ} < +oo;
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8[20 T] (B,G, Rk) the space of Gt —adapted cadlag processes:

¥ [0,T]xQ — RK, II‘PIIS (BRY E( sup eﬂA(t)|‘Pt|2> < +00;

0<t<T

M[Z0 T] (B,a,G, Rk) the space of Gt —progressively measurable processes:

0TI x O — RK 2
V0T x0 = RE IR o o

M[z0 T] (B,G, RkXd) the space of Gt —progressively measurable processes

—E j (T) eBAM a(t)|\w¢|2 dt < +oo;

T
¥ :[0,T]xQ — RK*A g2 eﬁA(t)|qft|2 dt < -+oo;

=E
C%(ﬂ,a, [0,T], Rk) = [ ](ﬁ a,G, Rk) X fo.] (B, G, ka‘j) endowed with the norm

22 patr = MEesart * P02 o
+ BZ(B.alTRY = (M2 (8,2 GRNSE (8GR x M2 i (8,6,RVD
endowed with the norm

Y. D2

1Y, 2112 +1212

= [IVIZ, +[IV]12 +iz|12

B2(8,aT,RY 1 "S?(BRY M2(B,a,R) M2(B,R¥*d)’
Define A = Q x [0,T] x R x R®*Y. For each t e [0,T], we assume that we are given two

functions:
f: AxC4(B,a[t,T+K],RY - LB, G, RY),
g:AxC&(Ba[tT+K],R" - L%B,G, R¥).
For notational simplicity we assume: h € {f,g}, h(r,0) = h(r,0,0,0,0) and for all
x,y € R we denote by |x| the Euclidean norm of x and by (x,y) denote the Euclidean inner

product.
Our ABDSDEs of interest are

T T T
Y=g+ f(s,®s,®§5’§)d8+]t g(s 05,03 C)st—jt ZsdWs, 0<t<T,

=¢t, Lt = nt, T<t<T+K, @H)

where K is a positive constant, @5 = (Ys,Zs), O3 = (Ysiss), Zsc(s)) and 0,¢ = [0, T] - R, are
continuous functions satisfying:
(Al:t+0o(t) <T+K, t+{(t) <T+K;

(A2) There exists M >T0Ksuch that for 0 < t < T and non negative integrable function h,
+

j h(s + ¢(s))ds < M j h(s)ds, ¢ € {5,().

Definition 2.1. A pair of processes (Y,Z) is called a solution to ABDSDEs (1) if
(Y,Z) € B&(B,a,[0, T + K],R¥) and satisfies (1).
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3. Anticipated BDSDEs

3.1. Assumptions

In the following, we assume that f and g satisfy assumptions (H1), namely
there exists constants 0 < a, < 1, and 0 < a, < 1/M satisfying 0 < a, + ;M < 1, and three
nonnegative processes {u(t)}o<i<r, {v(t)}o<t<r and {9(t)}o<t<r such that:
(H1.1) forany t € [0,T] u(t), v(t) and 9(t) are F, —measurable;
(H1.2) forall t € [0, T],
rr e[t T+K], (ty,z0),0), (ty,z,0(r), e () €AxCi(B a[tT+K]R",

If(t,y,z,0(n), () —f(t,y,z,0'(r),e'(r* < u®)(y —y'|* + E"[|0(r) - 0'(r?])
+v(®)(jz— 7>+ E"[lo(r) — ¢'(r?]),
lg(t.y,z,0(r),0(r) —g(ty,z,0'(r), e (r* < 9 (y —y'|>+ E™[|6(r) — 6'(r?])
+ oz — 7' + o, E"[|op(r) — ' (r?];
(HL3)forallt € [0,T+K], a(t) — a(t) + v(t) + 8(t) > 1:
(H1.4) E[ | ZeﬁA(S)lf(s,O)lzds o :eﬁA(5)|g(s,O)|2ds} < oo

3.2. Existence and uniqueness of solution

To solve our equations, we examine first the case, where the coefficients do not depend on
the variables. Namely, we consider the stochastic equation

Yy = &+ ItTf(s)ds + ItTg(s)st _ jtT ZsdWs, 0<t<T, @)

where &7 € LZ(g,GT,Rk), and (f, gr) e M%1(B,G,R¥) x M, 1(B, G, R¥") satisfy
(H1.4)" EU e/’A(S)lf(s)lzds+I eﬁA(s)lg(s)|2d5:| < 400,
0 0

Theorem 3.1. For p sufficiently large and &t € L2(B,Gr,R¥), there exists a unique solution,
(Y,Z) € B&(B,a,[0,T],RX), of (2).

Proof. The proof needs to be divided into several steps.
Step 1. Let us prove that (Y,Z) € C4(0,1,[0,T],RY). First, we show that
T T 2
3
EU¢§T+jO f(s)ds+jo g(s)st‘ J < +o0, 3)

We know that

2 T
E[ J < 3E|:|§T|2 + Uo f(s)ds

Since 0 = A(0) < A(t), forall t € [0, T], and for any 8 > 0, we obtain

Er + J.:f(s)ds + _[Z g(s)dBs

2 T
+ _[O|g(s)|2ds}.
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Ef leri? + jg|g(s)|2dsJ < £ ePAMjeri2 4 IZeﬂA(5)|g(s)|2ds:| < +o0, (@)

In view of Cauchy-Schwarz inequality and by integration, we have

2
B a(s) BA(S)
[U f(s)ds - [I /eBA(S (/ea(s) f(s))dS‘ ]

< E|: ( f g a(s)e—ﬂA(S)ds) ( j X eﬁ A(S) e If(s )|2ds> J

1 (T ePAD) 12
= E[ B o a(s) If(s)| ds}. o
Applying (H1.3), with (5), we deduce that

E|: U;— f(S)ds‘2:| < E[% j; eﬁA(S)|f(S)|2ds:| < 4o, ©

Furthermore, by utilizing (4) and (6) we obtain (3).

Now, we define the filtration {H, : t € [0, T+ K]} by
He = F 05 V Fork
and a Hy-square integrable martingale

M, — EH{gT +ij(s)ds+jTg(s)st] t e [0,T].
So, as in [6], we prove that (2) has a unique solution (Y,Z) € C%(0,1,[0, T],R¥).

Step 2. Let us prove that (Y,Z) € C%(B,a,[0,T],R¥).
It6’s formula applied to (2), for t € [0, T], yields

ePAMD Y2 + B J.:- ePAB)a(s)|vs|2ds + I:[r ePAB)|z5|2ds
= eBAM) 112 4 2 j tT eBA(S) (vs, f(s))ds — 2 j tT ePAGS)(Ys, ZsdWs)
2 jtT ePAG)(vs,g(s)dBs) + [ tT ePA®)g(s)2ds. M

Then, noting that

B 2 | |f(5)| ﬁ 2, 2 2
2(Ys,1(s)) = Sa()|Ys|* + ﬁ O a(s)|Ys|® + ﬂlf(s)l,

and taking expectations, we obtain
T T
Eg jt eBAB) a(s)|Ys|2ds + It eBA(S)|z512ds

AT z12 . 2 [T oA 2
< £ ePAMDier2 4 2 [ ePAO o) 20

+[ ePAOg(s)12s |, ®
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which, in view of (H1.4)" implies that (Y,Z) € C%(B,a,[0,T],R¥).

Step 3. Let us prove that (Y,Z) € B4(B,a,[0,T],R¥). From (7), we state, by
Burkholder-Davis-Gundy’s inequality, that for any ¢ > 0,

E( sup eﬁA(r)|Yr|2> < E{eﬁA(T)|§T|2 + % JJ e/3"*(5)|f(s)|2ds+J‘T eﬁA(5)|g(s)|2dsJ
t<r<t t t

j T eBAG) (Y., Z.dW,)

r

+ 2E sup

t<r<t

BAM) .12 4+ 2 [T eBAG)f(s)2ds + [ ePAG)|g(s)I2
< E[e |Er]% + 5 L e If(s)] ds+_[t e lg(s)| ds}

+ 2E sup

t<r<t

[ ePAOY,, g(s)dB,)

+ 2sE< sup eﬁA(”wrlZ) + 1E [ ePAOZds + LE [ ePAOg(s)ds.
t<rs<t t t

Hence, for ¢ < %,

E< sup eﬂA(r)|Yr|2> < K(s)E[eﬁA(T)|§T|2 + j Te/3A(S)|f(s)|Zo|s
0

t<r<r

there exists K(¢) > 0 such that for g > 1, we have

+ J.TeﬁA(S)lg(s)Fds} < +o0,
0

Therefore, the desired result is obtained. [ |

Our strategy in the proof of the existence of solutions to Equation (1) is to use the Picard
approximate sequence. To this end, we consider the sequence (®"),~, = (Y",Z"),-, given by
/

Y =0, 0<t<T+K,

2SR ftT f(s, @Q,@Q"s’g)ds + jtT g(s,@Q,@Q’(S’C)st - ftT z0+Lgws,
0<t<T,

Y=gzl =g TtsTHK 9

Q
Denote Yo" = Yo—Y., Zo™ = Z0 — D and for a function h € {f,g},

Ah®™(s) = h(s,00,05°°) —h(s,0F,05), forn,m > 0.

Then, it is obvious that (Y™™ Z™*™*) solves the following ABDSDE

_ T T T_
VeI = [A M s)ds + [ T agM )des - [ 28 M aws,  0<t<T,
7{1+1,m+1 o, z{]+l,m+l 0, T<t<T+K (10)
Next, we state the following result which will be useful in the sequel.

Proposition 3.1. Assume that (A1), (A2) and (H1) are true. There exists a constant K(g) > 0,
depending only on ¢ (with 0 < & < 1) such that for n,m > 1 we have
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E( sup eﬂA(r)|VP+1’m+1|2> < K(g)EU(T) ePAG)a(s)Yg M| 2ds

t<r<T

+ geﬁA(5)|ZQ'm|2dsJ. (11)
Proof. 1t6’s formula applied to (10), fort € [0, T], yields
eﬁA(t)lvp+l,m+1|2 +ﬂ~[tT eﬁA(s)a(s)|\72+1’m+1|2ds+jtT eﬂA(5)|ZQ+lvm+1|2ds
_ ZJ'tT eﬁA(5)<\7Q+1’m+l,Af(n'm)(s»ds _ ZJ'tT eﬁA(S)<\72+l’m+l,ZQ+1’m+ldW5>
12 jTeﬁA(S)<v“+11m+1 Ag(M) (s)dBs) + [ ePAG)|Ag(M) (524 12
t § g™ (5)dBs) + [ - ePAGag (MM (5) 20s. (12)

Using the fact that yb+d < /b + J/d and 2bd < %bz + £d? (where b,d,& > 0), we deduce
from assumptions (A1), (A2), (H1.1), (H1.2) and (H1.3) that

2E j " eBAG) (YT A (5))ds
t

T _ = =
< 28 [ ePAONIM ™ [u(s) (V3" + T [Valko D) ds

+2E | T ePAOITIE™ [u(s)(Z8™2 + ETS[1Z8%[2]) ds
< ¢E I: ePAS [u(s)(IVe™|2 + E7S[IVel5s)21) + (1Z5™12 + E7S[1Z3F[2])1ds
+1E j tT eBAG) (1 + v(s)|YT ™™ 2ds
<e(l+ M)E[ LT eBPAB) ()Y |2ds + LT eﬁA(S)|ZQ’m|2dsJ
+ % E LT eBABS) a(s)|YI ™ 24,
Similarly, we have
E| T ePAG)|Agnm (s)[2ds < E | T ePA®) 9(5)([Y¢ (2 + ETo[[Yers|2])ds
+E| T ePA®) (1|22 + 0o ETS[|Z5 %) [2])ds
< E[(l +M) I: eBAB)a(s)|YI™2ds + (a1 + aaM) JtT eﬂA(5)|22’m|2ds}
< E[(l +M) LT ePABS) a(s)|Y2™|2ds + LT eﬂA(S)lzg‘desJ.

Putting pieces together, we obtain
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E LT eBA(S) <72+1,m+1’ AF(M) (5))ds + I: eBAG) |Ag(NM) (5)|2ds
< Kl(g)EUtT eBA®) a(s)[YYM|2ds + I: eﬂA(S)|ZQ’m|2dsJ

+ 2| [ PAOa Ve M 25 | (13)
where Ki(¢) = (¢ + 1)(1 + M). Next, choosing 8 > 2 + 1, from (12), leads to
- T _
E | tTeﬁA(S)a(s)lY2+l’m+l|2ds o [ ePAOZEHM 205

< Kl(s)EUtT eﬂA(S)a(s)|Vg’m|2ds+ItTeﬂA(s)lzg’mFds} (14)

Moreover, from (12), we have
BA(r) yN+1,m+1,2 T BAGS) yN+1L M+l c(nm)
E| sup e Yy | <2E sup Ie (Yg , AfULT (s))ds
t<r<t t<r<t

+2E sup UTeﬁA(S)(\72+1’m+l,Ag(n’m)(s)st>‘
t<r<r

T - —
+2E sup ‘ f eBA(s)<Y2+1,m+l,ZQ+1,m+1dWS>‘
t<r<t 7

+E| tT eBA(S) |Ag (M) (5)[2ds. (15)
By Burkholder-Davis-Gundy’s inequality, there exists £ > 0 such that
2E sup UT eﬂA(S)<VQ+1’m+1,Ag(nvm) (S)st)‘ < %E|: sup eﬂA(r)|\7P+l’m+l|2 :|
t<r<t t<r<t
T
+2E j t ePAB)|Ag(NM) (5)|2ds,  (16)
and

T \V2 = i
2E sup U eﬂA(S)<Y2+1’m+1,ZQ+1’m+1dW5>‘ < %E[ sup eﬁA(r)|YP+l,m+l|2J

T _
+2E j : ePAE) ZIH LML 240 (17)

By gathering (16) and (17) from (15) we deduce that
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t=r<t t<r<t
T T -
+ %Ej.t eﬁA(S)|Ag(nfm)(s)|2ds+ %Ej't eﬂA(s)|ZQ+1,m+1|2ds

E[ sup eBA(r)|\7P+1’m+1|2} <2E sup U:eﬁA(S)<VQ+1’m+1,Af(”fm)(s))ds

+ gE[ sup eﬁA(r)|\7P+l’m+l|2 } (18)
t<r<t
Furthermore, by exploiting (13) we obtain

E| sup ePAMyfLm+l2 5LJ“ZKl(e)EUTeﬁA(S)a(s)|\72’m|2ds
t<r<t e(e+l) t

f oMo
+2E[ [T ePA®a@) TR LM 205 1 [T ePAW®)ZE LM 20
t t

E

t<r<t
Using (14) with (19) leads to

E[ sup eﬂA(r)IVP”’m”IZ} < Kz(s)EUtTeﬂA(S>a(s)|72’m|2ds
1<r<t

+IIeﬂA(5)|ZQ’m|2dsJ

+5E[ sup eﬂA(r)l\_(rr]Jrl’erllz]. (19)

+8E|: sup eﬂA(r)l\_(PJrl’erllz], (20)

t<r<t

+2)2
where Ky (¢) = fj(g+>1) K1(e).
Ko (&)

Hence, from (20), for ¢ < 1 and K(¢) = —=;-, we obtain (11). Therefore, the desired result is
reached. H

The following theorem is the main result of this section. In this theorem, with the help of
proposition 3.1, we can now prove our existence and uniqueness theorem.

Theorem 3.2. Assume that (Al), (A2) and (H1) are true. Then for S sufficiently large and
(&,n) € B&(B,a,[T,T+K],R*), the ABDSDE (1) has a unique solution
(Y,Z) € B&(B,a,[0, T +K],R").

Proof. i) Existence:
Let us invoke the following equation
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T T T
n+l j Af(”)(s)ols+jt Ag(M (s)dBs — jt 70+lgws, 0<t<T,
yml_o zZpl -0, T<t<T+K, (21)

where Y = Y+l —yn 7zl — 71 _ 70 “and for a function h € {f, g},

AR™(s) = h(s,08,05° ) — (s, O, 0% ).
It6’s formula applied to (21), fort € [0, T], yields

E[eA(t)lyn+1|2 N J’TeA(s)a(S)|ygl+1|2dS N I: eA(s)ler1+1|2ds}
_ E[zj eAG) VL, AF(M) (5))ds + | tT eA(S)|Ag(n)(S)|2ds:|. 22)
By the same computations as before, we have
T _ T _
E[(—%) j eA®)a(s)|Yr12ds + J eA(5)|ZQ+1|2dsJ
t t

(e+DH(A+M)
+ a1+ M(e+a2)

<[e+ai+ M(e+a2)]E[ eA(S)a(s)|Y”|2ds+I eA(5)|22|2dsJ.

Hence, if we choose & =g satisfying Co=¢o+ai1+M(so+ai) <1, let p

= £ + ) and denote Co = EHXER to write

E[COI eA(S)a(s)|Y2+1|2ds+I eA(S)|ZQ+1|2ds}
t t
— T _ T —
< COE[CO [ eA®a)vajzds + | eA(S)|zg|2ds]
t t
which implies
— T+K _ T+K _
ECOI eA®a(s)|Yr|2ds +J eA®)|Z8+2ds
t t
_ T+K _ T+K _
< COE[COI eA®a(s)|YD|2ds + j eA(5)|ZQ|2dsJ.

Here we are able to deduce that (Y",Z"),, ., is a Cauchy sequence in CZ(,a,[0, T + K],R¥).

It remains necessary to show that (Y",Z"),=1 is a Cauchy sequence in BZ(,a,[0, T + K], R¥).
Then, by proposition 3.1 we have

_ T+K _ T+K _
E|: sup eA(t)|Y?+1'm+1|2:| < K(e)EUO eAB)a(s)|yYem 2ds+_..O eA(S)lzé"mlzds}.

0<t<T+K

Since (Y",Z"), 5, is a Cauchy sequence in C&(B,a,[0,T + K], RY), we deduce that (YMnhs1 isa
Cauchy sequence in S o1k (B, G, RY). Hence, (Y",Z"),.; is a Cauchy sequence in
B%(B,a,[0,T +K],R¥). Then there exists (Y,Z) in BZ(B,a,[0, T+ K],R¥) being a limit of
(Y™ ZM) 51

Now, let us show that (Y, Z) is a solution to ABDSDE (1). Since (Y",Z"),-, converges in
B%(,a,[0,T + K],R¥) to (Y, Z), we have
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T T
lim E[ sup eAMDYD — v |2 +I eA)a(s)[Yn —YS|2ds+j eAd)|zn —ZS|2dsJ =0
0 0

Mmoo o<t<T

and YP =&, 27 = T<t<T+K
Hence, let us define a function h € {f,g}, h™(s) = h(s, Y2, Z8, Y05, 20 ) and

h(s) = h<5, Ys, Zs, Ysis(s)s Zs+§(s)>, to write
| :|

E‘j:(f(n)(s)-f(s))ds‘z - E[ jtT /eaA(?S)) (/eaA((SS)) (f(n)(s)—f(s))>ds

E|: G; a(s)e_A(S)ds) (Ig %H(”)(s) - f(s)|2ds> }

1 rT eA(s) T eA(s)
< <4 (1+M)E e
- ﬂ( ) [ J0 a(s) 0 a(s)

T T
L@+ mE| [ eAONE - vsi2as + [ eAG)Z0 - 2sf20s |

T T
1 eASa9IYE ~Ysf2ds + [ eAOZD 74205 | (23)

IA

H(S)YD = Ys|2ds + V(s)Zh - ZslzdsJ

IA

IA

%(1+M)E

Letting n — +oo in (23), we deduce that

E:‘j:(f(s,vg‘,ZQ,YQ+5(S),22+C(S)) —f(s,Ys,Zs,Ys+5(S),Zs+§(S)>)ds‘2:| L0, (24)

On Ehe other hand, we have
E UtT(g(n)(s) —g(s))st‘2:| < EUtT|g(n)(s) - g(s)|2ds:|

<1+ M)EHS eA®)a(s)|YD — Ys|2ds + jg eAS)|Z0 — Zs|2dsJ 50, (25)

as n - +oo, and
T 2 T
E[Ht (28 - Zs)dws | J < E[ [ Az - 252 | > 0, asn - e (26)

Furthermore, by utilizing (24), (25), (26) and passing to the limit in (9), we obtain

Y=+ J.:f(s,®s,®§'§>ds+j‘:g<s,®s,®§’§>d85 - I:ZSdWS, 0<t<T,
Yi =&, Zi =1y T<t<T+K

This shows that (Y,Z) € B4(B,a,[0, T + K], R¥) satisfy the ABDSDE (1).
if) Uniqueness:
Let (Y,Z) and (Y',Z') be two solutions of the ABDSDE (1). Then let
Ys=Ys—VYi, Zs = Zs - Z; inafunction h € {f,g},

Ah(s) = h<S, Ys, Zsy Ysus(s)s Zs+§(s)> - h<S, Yo, Zs, Yeis0s) le+§(s)>'
Here it is obvious that (Y, Z) is a solution in B(8,a,[0, T + K], R¥) to the following ABDSDE
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_ T T T -
Vi = jt Af(s,)o|s+jt Ag(s)dBs — jt ZsdWs, 0<t<T,

Yt =0, Zi=0, T<t<T+K (27)
It6’s formula applied to (27), for t € [0, T], yields

EePADTY2 1 | tT ePAO)a(s)[7s[2ds + | tT eBAG)|Z4]2ds
_ E[Z [ tT ePAE) (Y3, Af(s))ds + | tT eBAB) |Ag(s)[2ds } (28)

Using the fact that yb+d < /b + Jd and 2bd < %bz +¢d? (where b,d,e > 0), we
deduce from assumptions (Al), (A2), (H1.1), (H1.2) and (H1.3) that

2] [ ePAOT,, af)0s | < 26] [ ePAOIV Ju(e) (VP + ET [Vouaio 1) s |

+ 26[ [ PAOII [WOZI + E7 [ Zocio D) 5 |
< E[ [ PAO) (SuO:l? + 2Tl + E7s[Voraol?]) s |
==l eﬂA@( VOIS + 2 (2P + E*[ZucioD) )ds |
E[ ﬁA(S)a(s)w [2ds + 2 (1+ M) j ePAG)Z, |2ds}
+2(1+ M)E[ | ePAO.f2gs |
and
e[ [ ePAOgods | < E[ [ ePAOIS TP + E7*[IVewsol ] |
+E[ [ ePAO @IZi? + a2E 2o s |
< E[(l M) j: eBAG) a(s)|Vs[2ds + (a1 + aoM) j: eﬁA(S)|zs|2ds].
Putting pieces together, we obtain
E[eﬂA(t)|Yt|2 + B J: ePAS) a(s)|V4[2ds + jtT e.BA(S)|ZS|2ds:|
< E[(% £ 14+ M) j:eﬁA(S)a(s)h?SFds (o raM+ 2@+ M) j ePAG) |z, |2ds:|
v 2@+ M)EU: eﬂA(5)|\75|2ds].

Hence if we choose & =g satisfying Co=-3(1+M)+ai+a:M<land B >

Co+ 8% +1+ M, where Cy = 1 — Co, we deduce that
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E[ePAOIY2] + COE[ [ tTeﬁA(S)a(s)|\?s|2ds + tTe:BA(S)|Zs|2dsJ

< 2@+ M)E[ j:eﬁA(S)|\?s|2dsJ. (29)
This leads to
E[ePAOV] = 2@+ ME[[ " efAOYPds]  0=t<T+K
Hence by applying Gronwall’s inequality, we arrive at
E[ePAO 2] =0, 0<t<T+K

Therefore, Yy = 0, as., Vt e [0,T+K], and from inequality (29), we obtain Z; = 0, as.,
Vvt € [0, T + K]. Here the proof completes. |

4. Comparison Theorem

In this section, we shall formulate and prove a comparison theorem for some ABDSDEs
with stochastic Lipschitz coefficients. From now on, we only consider the following
1-dimensional ABDSDEs (i.e. k = 1):

(0<t<T,
T
) T I (S ®3’ s+5(s) S+§i(s))ds+ It g(s ®S’ s+5(s) s+§‘(s))dBS
—I: ZLdws,
\Y{:g{, z! = ql, T<t<T+K, (30)

where i = 1,2, and (£,') € B&(B,a,[T,T+K],R), (5(.),¢'(.)) satisfy (A1) and (A2), and
(f',g) satisfy (H1). Then, by theorem 3.2, equation (30) has a unique solution.

Our objective is to obtain a comparison result for subsequent two equations. For this
purpose, we first consider a simple case when the coefficients f' and g do not depend on the
future value of (Y',Z) via

- 'l'~ - - . T - . T -
_ gl i i 7i ~ i 7i i
I jt i (s,\(s,zs)o|s+jt g(s.v4,zL)dBs - jt Zldws, 0<t<T, (31)
where i = 1,2, when f'and g do not depend on §,¢.
Now we assume that f and g satisfy assumptions (B). In particular
(B.1) Condition (H1.1) holds;
(B.2) forall t € [0,T] and (y,2),(y',z") € R x RY,
[fty,2) -ty 2% < ply - y'? + vz - 2'|
a(ty,2) — Gty 2% < SOy —y'|* + aalz - 2%
(B.3) for aIIt e [0,T], a(t) = u(t) +v(t) + 9(t) > 1;
(B.4) E[ j ePAO)fi(s,0,0)|2ds + j ePAOg(s, 0, O)|2ds} < 400,
The next theorem will be useful in the sequel.
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Theorem 4.1. Suppose that f*, § and 2 satisfy (B) and (&},¢2) e L2(B,Gr,R) x L?(B,Gr,R).
Let (Y1, Z)) € S31(B.G,R) x M4 1;(B,G,R?) (i = 1,2) be the unique solutions to BDSDEs
(31) respectively. If & > £2, a.s., and for any (t,y,z) € [0,T] x R x RY,

'ty =Py, as.,
then
Y} > Y¢ as., forallte [0,T].

Proof. Let Ys = Y2 =Y}, Zo =272-7%, & = &2 — &L Af(s) = T2(s,Y2,22) — fi(s, YL, Z2) and
Ag(s) = §(s,Y2,22) —§(s, Y, Z%). Then consider the following equation

_ T T T _
¥ = j Af(s)ds + j Ag(s)dBs — j ZdWs, 0<t<T,
t t t
Ytzo, Zt:O, T<t<T+K
Applying 1t6’s formula to e#AM|Y¢|2 and noting that £3 > &2, we have
AL 7+ 2 T BA(s I+2 T A(S) (512
EeB Yl +ﬁjt eB )a(s)lel ds+_[t ﬂ{Yg ZYé} eB |Zs|<ds

_ E[Z [ tTeﬁA(S)\?gAf(s)dH [ tT vy eﬁA(5)|Ag(s)|2ds:|. (32)

Now, for any & > 0, we obtain from assumption (B.2)

E[Z [ :eﬁA(S)YgAf(s)ds} < 25[ [ :eﬂA(S)|\?;|(Ju(s)|\?;|2 + VO )ds}

E[ [ ePAOWpds + [ ePAO) gy 1205

<5
+ ZE[ [ ePAOu(s) + vo)ITsls |

and
EUtT flevzovsy eﬁA(5)|Ag(S)|2dsJ < EUtT ePAG) 9(s)|Y¢|2ds

+a1f: ePAS) 1 1veany |ZS|2ds}.

Consequently, performing the same computation as before, allows for
_ T _ T —
E[eﬂA(t)|Yt+|2+ﬂI ePAB)a(s)|Y¢|2ds + j vz vty eﬂA(5)|Zs|2ds]
t t

2 T BA 7+ T .BA >

< E|:(? +1) It ePAB)a(s)|Y¢|2ds + (% +ar) J.t eBA(S) M ovgoviy |Zs|2ds:|

T
£ A(S)|7+]2
; ZEHt ePAG)V1] ds].

Choosing & = o such that £ < 1— a1, and taking > - + 1, we obtain
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T —
E[ePAO2] < & j E[ePAG)|Ys2]ds, 0<t<T.
Now we can use Gronwall’s inequality to get [Y{|2 = 0, a.s., 0<t<T.
This shows that
Yt >Y¢ as, 0<t<T.
The proof is therefore complete. |

Next, let us turn to the study of the comparison theorem for ABDSDEs (30). For this
purpose, we assume in addition (H2) that
(H2.1) for all te[0,T], zeRY and ¢(s) € LB, G, R), @(s) € L2(B,Gs, RY),
e [t,T+K], f(t,.,z,¢(s),0(s)) is nondecreasing.
(H2.2) for all te[0,T], (v,z2) € RxRY and ¢(s) € L2(B,G,, RY), se[t,T+K],
f2(t,y,z,.,9(s)) is nondecreasing.
Then, we are in position to prove the main result of this section.

Theorem 4.2. Under (H1)and (H2), assume that
(i) & > &, as, T<t<T+K
(i) fL(t,y, 2, ¢(s), 2% b)) = f2(t,y,z ¢(s),Zt+§z(t)), as.te[0,T],se[tT+K],yeR,zeRY

Then vi>vy?2 as, 0<t<T+K.

Proof. Let us introduce the following equation

From the proof of theorem 3.2, there exists a unique  pair
= (Y%,2%) € B(B,a,[0,T+K],R) that satisfies the above ABDSDE.

If we set f2(s, y,z) = 2(s,y,2, YS+5(S) S+C (S)) and §2(s,y,2) = 9(s,V,z, YS+5(S) S+§2(S)),
then this equation is equivalent to

;
VP = g2y j (s, Yg,z3)ds+j (s,Y?,Z?)dBS—J.t Z3dw,, 0<t<T.

On the other hand, if we set fl(s,Yg,Zg)=f1(s,Y§,Z§,Y§+5(S),ZS+§ «) and
gi(s,Y:,ZY) = g(s, Vi Z%,Ys+5(s), sl then (Y1,ZY) is also the unique solution of
Yi=ch+ [[Ts, Y8 Zhds + [ g(s, Y2, Z)dBs - [ Zidws, 0<t<T.

From the assumptions (i) and (ii) it follows that &} > ¢£2, as., and
fl(t Yi,z3) > 2(t, Y3, Z}) for all t € [0, T]. By theorem 4.1, we obtain Y} > Y3 a.s., for all most
€ [0, T]. Thus, we have

Ytl >Y3, as., 0<t<T+K.
Then set
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T
2<S ®S!Ys+6(s)’ s+§2(s)>ds +J. g<sf®§’Y§+E(s)’Z§+§2(s)>dBS o IO Z3dWs,

Since, fort € [0,T], y € R, z € RY, f2 satisfies (H2), and Y} > Y, by theorem 4.1, we know
that

Y?>Yi as,, 0<t<T+K
Now, for n = 4,5,6,..., we consider the following equation

(0<t<T,
N+l _ 2 T
J Y=ot .[ (S g,y s+5(s) s+§ (s))dS +I g(s g,y s+5(s) s+§2(s))st
—j Z0+1dws,
YnH 52 ZPH = ntz, T<t<T+K (33)

.
Thanks to theorem 4.1, by induction we have Y > Y° >..> Y™ > Y], as., 0 <t < T+K.
Therefore, forn > 5,

YL > YD, as., 0<t<T+K
From the proof of theorem 3.2, we know that (Y",Z") is a Cauchy sequences in

B&(B,4a,[0,T],R). Hence we may denote their limits by (Y,Z), and take limits in (33), to obtain
that (Y, Z) satisfies the following ABDSDE

0<t<T,
T T T
Yi = é‘zl' + -[t f2<S,®S1Ys+5(s),zs+§2(s)>d3 + J.t g(S,®51Ys+5(s),Z§+§2(5)>st - It ZsdWs,
Yi =&, Zi=n?, T<t<T+K

Then the uniqueness part of theorem 3.2 leads to
Y? =Yy, as., 0<t<T+K,

which impliesthat v > v5 > >vyM>vyp as, 0<t<T+K

This leads to the required result
Yt > Y?, as., 0<t<T+K |
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