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Abstract. The aim of this paper is to extend the -deterministic- Lorenz attractor to a stochastic
system and to numerically solve it. We propose and implement the Milstein scheme for solving
multidimensional nonlinear It0 stochastic differential systems, with particular emphasis on the
Lorenz attractor. In order to assure the first convergence order of the Milstein scheme, we use
Fourier series to approximate the double Itd integrals. Furthermore, numerical behaviors of
the stochastic Lorenz attractor solutions are presented and analyzed.
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1. Introduction

The Lorenz attractor invokes a solution of a three dimensional deterministic system of
differential equations given in [4]. It was first studied by Edward N. Lorenz, a meteorologist,
around 1963. The system was derived from a simplified model of convection in the earth’s
atmosphere. It also arises naturally in lasers and dynamos models. Its beautiful three
dimensional plots are most commonly expressed as a solution of the three coupled non-linear
differential equations, which are also popular in the field of Chaos. The equations describe the
flow of fluid in a box which is heated along the bottom. This model was intended to simulate
medium-scale atmospheric convection. Lorenz simplified in his model some of the
Navier-Stokes equations in the area of fluid dynamics, and obtained the following non-linear
three dimensional ordinary differential system:

Ot X = p(y(t) —x(1)), (1)
oty = rx() —y() —x®z(v),
Ot Z = X(t)y(t) —cz(1),
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where the parameter p is the Prandtl number in a dimensionless parameter of a convecting

system that characterizes the regime of convection. r = F?—;c is the quotient of the Rayleigh

number to the critical Rayleigh number and b is a geometric factor. In his study, Lorenz used
the valuesp = 10, r = 28 andc = <.

2. The Stochastic Lorenz Attracror (SLA)

In this section, we extend the Lorenz system to a stochastic one. For to, T € R*, we
examine the numerical solution of the stochastic differential system (SDE) given as:

dXt = a(t,Xt)dt + b(t,Xt) th , Xo = X, (2)

where a : [to,T] x RY —» IRY represents the drift vector, b : [to, T] x R - IR™ the diffusion
matriX, (W)tet,, 1 1S an m —dimensional Brownian motion (every coordinate is a Brownian
motion, and the coordinates are pairwise independent) and (Xt)[t, 1) IS @ d —dimensional real
valued stochastic process solution of the SDE (2). This is known as an Itd process. For more
details we refer to [1, 6, 5, 11].

Using the general form of 1t0 differential equations, like those studied in [7, 1, 6, 5, 11], we
can extend the deterministic system (1) to a stochastic one. Hence by setting

Xe = (x(), y(©), z (®)7,
let us define the drift vector (at,a?,a?), given in the general form of the SDE (2) as:

al(t,x(t),y(t),z(t)) = py(t) — x(t)), (3)
aZ(t,x(t),y(),z(t) := rx(t) —y(t) — x@®)z( ),

ad(t,x(),y(®),z(t) = x®y() - cz(v).
The stochastic Lorenz system can therefore be written in the form of a stochastic non-linear
differential system of equations (2) with a drift vector defined by (3), b(t, X;), a real-valued
diffusion matrix in IR33, and by Wy = (W¢, W2, W3?), a three dimensional Brownian motion.
For more details on the analysis and simulations of stochastic processes and SDEs, we suggest
the references [2, 3, 11].

3. Milstein Scheme for SLA

The simplest strong Taylor approximation for SDEs is the stochastic Euler-Maruyama
method, which has a convergence order y = 0.5. An other scheme is the Milstein, which is
weakly and strongly convergent with order y = 1. As for examples we refer to [5, 6, 1]. The
Milstein scheme is similar to the Euler-Maruyama method in the one dimensional case. It only
requires some additional terms, as it is detailed in [11]. But in the multi-dimensional case, the
order one is assured by application of the stochastic Taylor expansion developed by [5] as:

f(r.Xe) = 2 Lalfa(p. Xp)] + 20 Nalfal, X )]pe (4)
acA acB(A)
where the functional f : [to, T] x RY - IR, and all its differential is of smooth functions. p and
7 are two stopping time processes, « is a Multi-Index, A is a Hierarchical set and B(A) is the
corresponding Rest set. For details of such constructions, we refer for example to [5].
For the construction of Taylor schemes of higher order, one has to add more terms to the
Hierarchical set in equation (4). Thus the time discrete scheme, derived from the Taylor



Stochastic Lorenz Attractor 3

expansion, is given as:

f(tnet, Yeu) = DO Valfaltn, Ye)ltntos + 2 Ll Y lten s (B)

acA aeB(A)
\ v ’ Main—Approximation . v ” Rest—Set

where |, are the multiple 1t0 integrals and Y, = (X(tn), y(tn), z( tn)) is the approximation of
the solution of the SLA at the time point t, € [to, T], and L the It differential operators
defined as follows

3 d 3 Liikki o2
10— % + Zk:l a'{ﬁ + % ZK’H Zj=1 biipki ax?axk 1 ©
j 3 i ..
L= Zi:lb"’ﬁ for i,j,k,=1,2,3. @)

However, for j; # jo, the independent one-dimensional Brownian motions (W) and
(W10, and the double 1t6 integrals 1, j,y which satisfy

t S1 . .
Lot = ft AW dWH, (8)

0% to

can not be exactly computed, see [5, 11]. Hence for its estimation we have used the Fourier
series in the inherent approximation. While the Stratonovich integral have the same properties
as the Riemann one, one has to approximate the Stratonovich integral J;, j,) for j» # j» and to
use the relationship between the 1t6 and Stratonovich integrals to arrive at a numerical
approximation to the double It integrals. The approximation rewrites as:

I%lyjz) - %Aejlqz + A,/pp (Ujyp€j, — Mo p€ijy)

p
+ % ; %(le,r(ﬁqz + Njor) = Cjz,r(ﬁejl + Mjur)), 9)

where for j1 # j> =1,...,m, r=1,...,p and p € IN, the random variables €j,,€j,, uj, p, Lj>.p,
Cinrs Ciars Mjor @nd nj, ¢ are pairwise independent and standard normally distributed. We have to
note that for j1 = j» = 1,...,m; p € IN. The approximation of the double 1t0 integrals I, j,).a
by 1, j,)r.a IS given in second moment as

IE<| IE)J'LJ'Z),A - I(J'lyjz),A |2) = ppA21 (10)

1 v 1
Pp = 272 Z F
r=p+1

For a numerical examination of this approximation using Fourier series, we refer for example
to the work [11], while for the computation of ;) for j = 0,1,2,3 we refer the reader to [5, 6,

11].
It should be noted that for a given f, as previously defined, the multiple 1t6 integrals are
L[ )]s = ﬁo l[f()]sds, ifl>1andj =0

I 1 f)lsdWE, if1> 1andji > 1,

where a — is the the multi-index without the last component, and | represents the number of
entries of a. Here are some examples of the multiple It6 integrals
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laa Ol = | [ @ dwiaws,
a2l = [, TanlfC)]osds

_ j: j: [ : f(s2)dWL dW2,ds.

The first order Milstein scheme is given for summation over all Multi-indicies of the
Hierarchical set A. The hierarchical set is in literature also called main set of the
approximation. In fact the Milstein scheme can be derived from the stochastic Taylor
expansion (5) for any system of equations to satisfy

3 3
Y = YE+ak(te, Ya)A + D bR (te, Y) AWL, + D Litbkiz(tn, Yo)l gy, (11)
i1 juj2=1
where A is a time step of the scheme. It should be underlined that we deal here only with a
fixed time step.

To construct the numerical Milstein scheme, derived from the stochastic Taylor expansion
and the corresponding three dimensional Lorenz system of differential equations, let us
consider the three dimensional index set F = 0,1,2,3. The corresponding Hierarchical .4 and
Rest set 3 for the three dimensional system of equations are

A =4v,(0),(1),(2),(3),(1,1),(1,2),(1,3),(2,2),(2,1),(2,3),3,3),(3,1),3,2)}, (12)
B(A) = {(0,0),(0,1),(0,2),(0,3),(1,0),(2,0),(3,0),(0,1,1),(0,1,2),(1,2,2),
(0,1,3),(0,2,2),(0,2,1),(0,2,3),(0,3,3),(0,3,1),(0,3,2), (1,1,1), (1,1,2), (1,1, 3),
(1,2,1),(1,2,3),(1,3,3),(1,3,1),(1,3,2),(2,1,1),(2,1,2), (2, 1,3),(3,2,1), (2,2, 2),
(2,2,1),(2,2,3),(2,3,3),(2,3,1),(2,3,2),(3,1,1),(3,1,2),(3,1,3),(3,2,2), (3,2, 3),
(3,3,3)(3,3,1),(3,3,2)}, (13)

where v is the so called empty index, see [6, 5, 11]. The stochastic convergence order of the
Milstein scheme can be assured by considering some necessary conditions. The method which
defines the relationship between the multi-index and the convergence order are detailed in
several works; for instance those reported by Kloeden and Platen [5]. The following theorem
presents the conditions required to assure the convergence order one.

Theorem 3.1. Let Y2 = {Y?, t]to, T [} be a strong Milstein approximation of (2). If

IE(X[2) <o and (IE(Xi, — Y§[2))7 < KiAT; (14)
(Lipschitz condition)

la(t,x) —a(t,y)l< Kalx -], (15)

ol (t,x) — bl (t,y)|< Kolx -], (16)

|Lirhiz(t,x) — Litbl2(t,y)[< Kalx -], (17)

(Bounded increment)
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la(t, x)|+Lia(t,x)|< Ka(1 + |x]), (18)
o2 (t, ) [+HLIbI2 (t, y) < Ks(L + [x)), (19)
ILiLitbiz(t, x)|< Ka(1 + |X]), (20)

(Bound and Differentiability with resp.t)
[a(s,x) —a(t,x)|< Ka(1 +|x]|s — t|*, (21)
Ibiz(s,x) — bii(t,x)|< Ka(1 + [X])|s — t|*2, (22)
|Litbiz (s, ) — Lithiz(t,x)|< Ka(1 + X])|s — t|2/2, (23)

then for all st e [to,T],x,y € IR%,j=0,...,m and ji,j» = 1,...,m, where the constants
Ki > 0,i = 1,...,4 are independent of A. There exists a positive constant and independent of A,
Ks, such that

IE(IXT - Y§]) < KsA, (24)

i.e. The Milstein-Approximation converges (first moment convergence) with convergence order
y = 1to the exact solution of (2).
For the proof of this theorem we refer to [5] or [11].

Lemma 3.1. The components of the drift vector of the SLA satisfy the Lipschitz condition (15),
the bounded increment condition (18), and the bound-differential condition (21).

Proof. Similar constructions are given by [5]. For this reason the computational details are left
to the reader. |

Note finally that since the drift vector satisfies the convergence conditions required in the
lemma above and under a suitable choice of the the diffusion matrix, we can assure the
convergence order one, y = 1, of the SLA.

4. Numerical Results

Here we numerically examine the performance of the Milstein scheme for solving the
stochastic Lorenz system. The drift is the usual deterministic part of the Lorenz system of
differential equations (3). For our simulations, the diffusion matrix is given as:

111
b:TxIR® - IR¥S, b(t,x(t),y®),z(t)) = 2(x® +y® +z())| 1 1 1 |, (25)
111

where 4 << 1 is a stabilization factor. Equations (12), (13) and the It6-Taylor expansion lead
to the one-step Milstein scheme for a three dimensional stochastic differential system. To solve
the system (2), with a drift vector (3), and a diffusion matrix (25), we use the sets (12) and
(13). The double Itd integrals (8) are approximated using the truncated Fourier series method
given by equation (9). We refer, for example to [5], for more details.

When 2 =5.10"3, 5.1072, 10, we simulate 1000 realizations of the SLA. For further
analysis, statistical moments, such as the mean and standard deviation, need also to be
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Figure 1: SLA simulation (first column) and the corresponding mean solutions (second

column).
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Figure 2: (first column) First component (x(t)) of SLA (solid line) and the corresponding mean

(dotted line). (second row) the corresponding standard deviation of x(t).
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Figure 3: (first row) Second component (y(t)) of SLA (solid line) and the corresponding mean

(dotted line). (second column) the corresponding standard deviation of y(t).



06

D4pF

ozpF

]

z(t)

02k

~04p

06k

-08F

o8 |
06
D4pF

ozpF

a

z(t)

02k

~04p

06k

-08F

]S

oaF |
il

D4pF

oz

z(t)

o

02k

~04p

06k

-08F

o8 |

= L L L L L L L L L
o 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Stochastic Lorenz Attractor 9

A=0.005

A=0.05

= L L L L L L L L L
o 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
t

A=0.1

L L L L L L L L L
o 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Std[z]

Stdlz)

Std[z]

ogp

o8

o7

06

0sp

o4f

oar

ozp

£=0.005

ogp

o8

o7

06

05p

o4f

oar

ozp

L n L L L L L L
500 1000 1500 2000 2500 3000 8500 4000 4500 5000
t

2=0.05

ogp

o8

o7

06

0sp

o4f

oar

ozp

N I L L L L L L L
500 1000 1500 2000 2500 3000 8500 4000 4500 5000

A=01

i

lSClJ 20:0 25(0 su:o SHII -tow 49?0 5000
t

Figure 4: (first row) Third component (z(t)) of SLA (solid line) and corresponding mean
(dotted line). (second row) the corresponding standard deviation of z(t).
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computed. In all our simulations, we use a fixed time step A = 5. 1072 and the same number
of time iterations T = 5 . 104. The numerical solutions are summarized as follows.

Figure 1 presents for A = 5.1073,5 . 1072 and 10! one simulation on the first row and the
mean of 1000 realizations of the stochastic Lorenz system. We remark that even if the
realizations have the behavior of the Lorenz Attractor, the mean solution is totaly different.
This result is expected, since the lorenz system is a coupled one.

In Figures 2, 3 and 4 we plot the time dependent components of SLA x(t), y(t) and z(t)
respectively. The corresponding means are also shown. The dotted red line represent the means
of 1000 realizations. In the second column of Figure 2, 3 and 4 we show time series of the
standard deviation of the corresponding four simulations. It is clearly shown that the first one
has a larger deviation than the second and third.

According to these numerical results, we remark that the mean solution of the numerical
stochastic approach to the SLA does not necessarily have the same behavior as the beautiful
one of the deterministic Lorenz attractor. The stochastic system in the Lorenz attractor context
asymptotically converges to a single point. This can be seen at the second row of Figure 1.

It is important to note that the components of the diffusion matrix (25) are correlated.
Consequently the mean behavior of the SLA tends to converge to a stationary state.

5. Concluding Remarks

We have presented the Milstein scheme to numerically solve the stochastic Lorenz
differential system. Owing to the fact that the solution is coupled and because of the
correlation between the diffusion matrix entries, the Lorenz system is perturbed. We believe
that the mean solution of the stochastic system is an attractor of another type and therefore the
numerical approach of SLA has in general different behaviors. The Milstein scheme has a
strong convergence order one. For its implementation, we have used an extension of the
deterministic approach and the Fourier series method to approximate the double It6 integrals.
We also have to note that our approach is more academic than practical. A realistic
interpretation of this extension is nevertheless helpful in explaining realistic phenomena that
can be modeled by a SLA.
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