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1. Introduction

This paper focuses on the theoretical and numerical aspects of representation of the
singularity coefficient for a controlled Dirichlet problem in a polygonal domain. Our goal in
this work is two fold. On the one hand, we prove that the singularity coefficient of the
considered Dirichlet problem, in a polygonal domain can be expressed solely with the data of
the problem. To reach this goal, we utilize some results that have been established by P.
Grisvard [9,10] and by the Lax-Milgram theorem. On the other hand, we employ a topological
sensitivity analysis in order to represent the distribution of impact of the singularities in the
considered domain. The topological sensitivity analysis aims at providing an asymptotic
expansion of a shape functional on the neighborhood of a small hole created inside the domain.
The reported analysis shall be based on the principle that follows.

For a criterion j(QQ) = Jao(Ug), Q < R" , with Uq as the solution of a boundary value
problem (BVP) defined over €, the pertaining expansion can generally be written in the form:
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JQWoFem) () = p(e)g(x0) +0(p(e)), ple) > 0, limp(e) = o0.

In this expression, ¢ and Xo denote respectively the radius and the center of the hole, w is a
reference domain inside QQ and containing the origin. The function g(Xo) is called topological
derivative and will be used as descent direction in the optimization process.

The paper is organized as follows: in the second section we introduce some notations used
throughout the paper and present the problem to be addressed. In the third section, we report
on the main result of this paper and it’s detailed proof. In section 4 we study the topological
optimization problem associated with the optimal control problem (2) together with the
obtained numerical result. The paper concludes in section 5.

2. Notation and Presentation of Problem

Let Q be an open bounded domain in R?, Q has a polygonal boundary 6Q, which is the
union of the segments I'j forj € {0, 1, ...,N, N e N*}.
We denote by S; the vertex between ['j;; and [ forj € {0, 1, ...,N — 1} and Sy the vertex
between I'y and I'y. Let wj, forj € {0, 1, 2, ...,N — 1} be the measure of the angle between
the vertices I'j;1 and I'j, wn the measure of the angle between I'g and I'n. For M e R? we

denote by 0; the angle between S,—I\/I) and ['j;1, 1 < J < N -1 and 6y the angle between m
and I"o, as illustrated in Figure 1.

Additionally V j € J, J = {j € {0,1,...,N} / ®j > 7}, a nonempty set, we are able to
introduce a truncation function n; € D(Q) which depends only on the distance rj to Sj such
that n; = 1 near Sj, and nj vanishes near all Ty fork = jand k = j+ 1.

]

Figure 1: Sketch of a polygonal domain with vertices and angles

We suppose also that the support of nj does not intersect the I'k’s if j # k . Therefore
-, X —
0; = (SJM»FJH); oj = (I}, Tj1)

If we consider that U is a nonempty, closed and convex part of L?(Q), then for f € L?(QQ) and
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u € U, we can denote by y(u) the unique solution in H(Q) of the system

{—Ay(u) = f+u in Q

yyuy = 0 on 0Q. L

By applying the Lax-Milgram theorem, there is a unique solution y(u) of the variational
problem:

vV ve H)(Q), j Vy(u). Vvdx = j (f + u)vdx .
Q o
Moreover, let Yg be an element of L2(€Q) and o > 0 to define the cost functional
-1 _ 2 a 2
W) = [y -ya@)Pder £ [ wx,
and invoke the following optimal control problem

mingeey J(u) , subjectto :
—Ay(u) = f+u in Q 2)
y(y(u)) = 0 on 0Q.

When Q is regular (for example C?) y(u) € H2(Q) N H(Q) and if U = L2(Q), the control U
solution of (2) belongs in H2(Q2) N H(Q); see for example [12]. But if the boundary of Q is
polygonal, y(U) and U have a singular part, i.e. they don’t belong in H2(Q).

Our first aim here would be to find the singularity coefficient of the solution to the optimal
control problem (2).

Remark 2.1. Let g € L?(Q) to consider the following problem

—Ay(u) = g
y(y(u)) = 0 (3)
y(u) € Hy(Q) .

One result due to P. Grisvard [9] shows in fact that there exists yr € H>(Q2) N H{(Q) and a real
Cj , J € J such that the solution could be written as

wloj -
y=yr+ jZJCjT]jrj ’sm(wijej)
where J = {j € {0,1,...,N} / oj > n}.
In addition, 3 K, a positive constant (which does not depend on @), such that
el + 2_ICiE Klgl.
jed

Also 3 functions wj € L2(Q2), V j € J,such that
Cj = J. g wj dx.
Q



15 K. FALL, A.SY and D. SECK

which are of the form, see e.g. [9],
wj = y(e "V rsinab; + ¢),

T<Wj<2m, 12<a<1, r= /x*+y?. where 0 < 0j < = and the construction of ¢
follows from several lemmas of [9].

3. Main Result

Let us consider the J functional defined by
- 1 _yq4l2 a 2
J() = 5 IQ|y(u) yal* dx + 2 IQ usdx,
where y(U) is the solution of the optimal control problem

mingey J(U) , subjectto :

“Ay(u) = f+u in Q 4)
yy(w) = 0 on 0Q,
and
—Azq = in Q
Zd Yd In (5)
yzg = 0 on 0Q),

with u as the control function. We are then directly led to the following main result of this
paper.

Theorem 3.1. The optimal control problem (4) admits a unique solution U € U, and the
optimal state corresponding to y(0) may be written as:

V(@ = ye(@ + Y, Cimyry ” sin( 26,
jed

where:
i) yr e H*(Q)N Hy(Q)
i) Cj = (4= +4) [ wi(f+ Fzg)dx,Vj € J,
and wj is defined in Remark 2.1.
Proof. Let us consider the optimal control problem (4). This problem admits a unique solution
U in U satisfying the following system

—Ay(0) f+0 in Q

—Ap y(@ —-yq in Q
<p + (XU,V — U>L2(Q) Z 0 VV (S U

Y@, p e Hy(Q).

In the case where U = L?(Q), we obtain

(6)
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( -Ay(m) = f+o in Q
—A = - i
p y(@ —ya in Q 7
p+ai = 0
LY@, p e Ho(Q).
Setting y(U) = ¥ leads to
e .
-Ay = f-1lp in Q
5 AP = 9-ys¢ in Q (3)
LV P e Hy(©.

Now if Z is a solution in H{(Q) of the equation

A7 = in Q
{ z7 =y in ©)

yz = 0 on 0Q,
then
- :
—Ay = f-Lip in Q
—Ap = -A(Z-12q9) in Q
< (10)
vz = y(Az) = 0 on 0Q
V. P Z za,€ Hy(Q).

The Laplacian is an injective operator from H{(Q) to H™1(Q), this implies thatp = Z — z4 .
From the equations (9) and (10) it follows that :

-A’7+ Lz = f+lzg inQ
vZ = v(Az) =0 on 0Q (11)
Z, Az, € H)(Q).

Letting V to be the space defined by:
V= {v e H3(Q) NHY(Q) / y(Av) = 0 on aQ} ,

allows using the Lax Milgram theorem to prove that equation (11) has a unique solution z in V.
Now, consider the equation

ANz+1z = f+1zg inQ
zeV,

together with F = f+ Lz4 — Lz,

A7 = y in Q
yz =0 =y(Az) on 0Q,

allows us to deduce that
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—Ay = F inQ
vy = 0 on oQ (12)
F e L2(Q)

One result of P. Grisvard [9] shows that there exist real Cj, j € Jand y, belonging to
H2(Q) N H{(Q) such that the solution could be written as:

wloj .
y=yr+ JZJ:CJ'UJFJ 'sin(-Z-0;)
with
T <wj<2n

We are going to use this decomposition and the linearity of the equation to obtain two
equations to be solved

B () (13)
yZi = 0 onoQ

This implies that

N
- m+227/kiniriz—i Sin(%go

i1 keZ
with
21 € HYQ) and rp sin(‘g)—ffei) e H3(Q) oy
and
-AZ; = njr}-(”/wj sin(420;) in Q

14
vz = yi(-r"sin(£6,)) on 00 (14)

withz = 77 + Z».
The solution of the problem (13) is

N 5 7
7 - E+227kiniriz—i 5in<(ko_7f9i>

i=0 k=3
Where 77y is the regular part of 77, z;, € H*(Q),and the sum from 3 to 5 follows from the fact
that :

rfsin(af) € H(Q) Ss-1<p<s —1

HS'(©@)
This implies

kn
ri sin(-06;) € H( Qe = 3-1 < F <4-1

20j 3wj 20; 3wi

= < k < = 2< =2 < ko< F<6
/3 /3 T N T
T < o < 2« 1 < - < 2.
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Thus2 < k < 6 = k = 3,4,5.
For the resolution of the equation (14), we look for at first a solution around crack ;

f :
—Awk; = 7 sin(&6;) in Q

VW'f,j = 0 on 0Q
we obtain
1 _+2 k7r
WIf,J' T T ke sm( 91) le € H? () h4 > (15)
4co_j +4

)

rj 7 sin(%@,—) e H( Q)i & 3-1< % +2<4-1.
It follows that

1 < 4 <2

V4

0<E,—’f§1@{o<k<%

=0<k<2=k=1.
We attempt then solving the boundary value problem

—AVj = n(jq)rfﬂ/szin(';—fej) in Q
YV = (rk”/m’51n<2)—’§0j>> on 0Q).

The second member 1s equal to zero around the crack Sj and is regular on 06Q2. So the solution
Zor belongs in H*(Q). Letting zr = Ziy + 22 =

- Z‘+ZZyk.n.r ' s1n( k”@)

el k=3
+ i(ﬁ)mrfjﬁsin(wﬂj&), Zr € HY(Q)
where
™ sin(46;) € H Q) o)
" sin(5:05) € H Qi)
and

||r||H4<w>+ZZ|yk.|+Z T < I e

i=0 k=3

Using the Riesz theorem and one result of P. Grisvard [9], we prove the existence of functions
wj € L2(Q) satisfying
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C- -
%ﬁ:fgwﬁ”%zd)dxa Vije J
This implies that
Ci= (45 +4) [ wi(T+ g za)ox. vie =

If we are going to consider only one vertex, we can set wj = o, 6j = 0,1; = 1, C; = C.
Consequently Z is written as f

5
7 = I+ Z yknrkT" sin(%&)
k=3

+ <4ic+4>nr%+2sin<%9>, Zr € H*(Q).

[0

Remark 3.1. Let u € H{(Q) be the solution of —Au = f, which is Fourier transformable to
~AT + &E20 = T in Q. This allows considering the problem with a complex parameter A;
~AV+ AV = g where v e H)(Q) with & = /1. For given A the mapping g — Cj is a
continuous linear functional on L2(Q). Therefore 3 wj € L2(Q) such that

Cj = J.Q g w; dxdy,

where Wj is defined as in Remark 2.1.

4. Topological Optimization

Topological optimization seems to be more general and efficient than other classical shape

optimization techniques such as global optimization methods, genetic algorithms or the level
set method [11]; which are all confined to a quite restricted field of application.
We present here a general framework for topological sensitivity which is based on a method
introduced by Schumacher [17] in shape optimization and applied by J. Cea, M. Masmoudi and
al. The beginning of our analysis is a presentation of the fundamental steps in this method and
we refer the interested reader to [4], [14], [12] for more details.

Topological sensitivity analysis aims at providing an asymptotic expansion of a shape
functional acting on the neighborhood of a small hole created inside the domain. The
underlying principe is the following : For a criterion j(Q) = Jo(Uq), Q@ < R" and ug is the
solution of a BVP defined over Q. The pertaining expansion of the cost function j(QQ) can be
generally written in the form:

JQXo Few) - j(©) = p(e)g(Xo) +0(p(e)),

lin(}p(g) =0, p(e)>o.

Remark 4.1. The function p(¢) depends on the boundary conditions and the dimension of the
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R" space, see [7].
For example, the results obtained for the homogenous Laplace equation with a cost function
defined on the boundary of the domain are displayed in the following table, see [14].

Boundary condition in the hole | p(¢) g(x)
Neumann 2D ne? —2VuVvp
4 3
Neumann 3D Smg’ | —5Vuvp
o . -1
Dirichlet 2D sriog | UP
Dirichlet 3D 4re u.p

The now posing problem consists in using topological optimization tools in order to
minimize the functional

) = IQ[W(U) —ya()* + Zu? Jdx, (16)
where y(u) is the solution of the BVP

-Ay(u) = f+u in Q (17)
yuy = 0 on o0Q=T.

The variational formulation associated with (17) is: find y(u) € H}(€) such that

j Vy(u)Vzdx = I f+wzdx, V z e H}Q). (18)
Q Q
Our further analysis shall require the additional notation.

ao(y,z) = IQ Vy(uw)vzdx, 1o(z) = IQ(f+ u)zdx.

4.1. A generalized adjoint method

The mathematical framework for domain parameterization introduced by the
Murat-Simon work [15] cannot be used here. Alternatively, it is possible however to invoke
the adjoint method, as described in [14], in application to topological optimization. A basic
feature of the adjoint method is its yield of an asymptotic expansion of a functional J(€2,uq)
which depends of a parameter Uq, using an adjoint state Vo which does not depend on the
parameter. This implies the need to solve a certain system of equations in order to obtain an
approximation of the topological gradient g(x), Vx € Q. Accordingly we let V be a fixed
Hilbert space and L£()) (respectively L£,())) denotes the spaces of linear (respectively
bilinear) forms on V. We are able then to state the following hypotheses:
eH-1: There exists a real function p, a bilinear form 6, € £2(V) and a linear form 6, € L(V)
such that:

p(e) = 0, ¢ — 0", (19)
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1a: = a0 = p(&)dall 2,0 = 0(p(e)), (20)

[1e = lo — p(€)dill vy = 0(p(€)). (21)
eH-2: The bilinear form ay is coercive: There exists a constant o > 0 such that
ao(y,y) = allyll?>, Vye.

According to (4), the bilinear form a, depends continuously on ¢, hence 3 €9 and > 0 such
that for € € [0, 0] the following uniform coercivity condition holds.

a:(y,y) = Bllyll*? VyeV.

Moreover, according to Lax-Milgram’s theorem, for & € [0,&0], the problem find y. € V ,
such that

a:(Ye,2) =1(2) VzeV. (22)
has a unique solution.
Lemma 4.1. [8] If the hypotheses H-1 and H-2 hold, then
Iys = Yoll= O(p(e)).

Proof. It follows from the coercivity of a, that

allye =Yoll* < @:(ye = Yo,Ye — Yo)
which implies that

allye = Yoll? < @c(Ye,Ye — Yo) — @:(Yo,Ye — Yo)
= le(Ye = Yo) — @:(Yo,Ye — Yo)
= lo(ys = Yo) + (Is = lo)(ye — Yo) — @:(Yo,Ye — Yo)
= ao(Yo,Ye = Yo) — as(Yo,Ye = Yo) + (I: = lo)(ys — Yo)

= f(e)(8alYo,Y: —Yo) +01(Ye = Y0)) + (Iyoll+1)(llys — Yoll)o(f(e)

eH-3: Consider a cost function j(¢) = J(Y.), where the functional J is differentiable. Fory € V
there exists a linear and continuous form DJ(y) € £(V) and 0; such that:

J(@) - I@y) = DIW)(z-Y) + p(e)ds(y) +o(llz - yllv). (23)

Here we may define the Lagrangian £, , when ¢ > 0, see for example [12,18], as
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L:(y,D) = a:(y,0) - (2 +I(y) vyzeV.
to be led to the next theorem which gives an asymptotic expansion for j(&).
Theorem 4.1. [8, 6, 18] If the hypotheses H-1, H-2, and H-3 are satisfied, then
(&) =J(0) = p()6L(Yo,20) + 0(p(e)), (24)

where y is the solution of (22) with ¢ = 0, z, is the solution to the adjoint problem : Find z,
such that

ao(w,zp) = -DI(yo)w Vw eV,
and

6L(Y,2) = ba(y,2) = 61(2) + d3(Y). (25)

Proof. Forallz € V, one has

i(€) = Le(Ye,Yo)

Hence

i(€) =(0) = L:(Ye,2) = Lo(Y0,2)

= a:(Ys,2) —@0(Y0,2) +Ja(Ys) — Jo(Yo) — Lo(ye) + lo(Yo).
It follows from (7) and the Lemma 4.1 that

J(y:) = I(yo) = DI(Yo)(Ye — Yo) +f(£)da(yo) + o(f(e).

Next, choosing zy as the solution to (9), we obtain with (5)

J(&) =J(0) = as(ye,20) — ao(Yo,Zo) + DI(Yo)(Y: — Yo)
+1(£)(03(Yo) — 61(20)) +0(f(e))
= a:(Yz,20) — @0(Ye»20) — @0(Ye — Y0,20) + DI(Yo) (Y= — Yo)

+1(e)(63(yo) — 81(20)) +0(f(e))
Then, it follows from (3), (4) and the Lemma 4.1 (with ||y.| bounded) that

i(€) =1(0) = f(e)da(ye,20) + 1(£)(83(yo) — 81(20)) +0(f(e))

= f(&)(6a(Y0,20) + 8a(ys —Yo0,20)) +(€)(6a(yo) — 61(z0)) + 0o(f(e))
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i(&) —1(0) = f(&)d.(yo,20) + 0(f(e)). o

4.2. Perturbation of the domain

For all ¢ > 0, we set Q. = Q\w. where . = X + €0, @ € R" in a reference domain (see
figure 2). Let y.(u) be the solution of the set problem in the perturbed domain

-Ay.(u) = f+u in Q
y.:(uy = 0 on T (26)
y.(u) = 0 on OJw..

Our objective would then be to find the asymptotic expansion of y.(u) —y(u) when & goes to
Zero.

Remark 4.2. A Lagrangian method setup for ¢ > 0 cannot utilize the variational formulation
of (26). This is due to the fact that there is no bilinear and continuous form such that

2z — a0 — p(€)dall 2, mi)) = 0(p(€)) for some adequate function p. Moreover, if @, is defined
on H{(Q) x H}(Q) with functions of H}(Q) extended by zeros on ., we have for example for
n = 3 and smooth functions y, z,

a:(y,2) —ao(y,z) = —&3Vy(u)Vz(xo) _[ dx + o(g?).

But da(y,z) = Vy(Xo)Vz(Xo) cannot be continuously extended on H(Q2) x H}(QY). Besides, if
Y. is extended by zeros on w,, the behavior of [y — Yo|[1(q) is not of order &* but only of order
81/2, [8]

The method to be used here (truncation technique) can, however, be applied to the the case of
Neumann boundary conditions, or even to more general boundary conditions, and has two
advantages:

1.1t allows for construction of a fixed Hilbert space, required in order to apply the Lagrangian
method.

2.1t facilitates obtaining a bilinear and continuous form da, such that for some adequate p(e)
function, [[a; — a0 — p(€)dall i) = 0(p(€)) is satisfied and the associated y, will yield

same order ||y — Yolln1q) = 0(p(€)).
4.3. The truncated problem

As it is impossible to find an bilipschitzian mapping between Q and Q,, then the domain
parameterization presented in [15] can’t be used (as hinted before) when changing the topology
of the geometry. This objective can be reached, however, by the domain truncation new
method of [14].

This method can be motivated at least by the following two reasons. First, it allows the
analysis to be made in a fixed Hilbert space. Second, it validates the application of the
Lagrangian method. The variation of the Lagrangian can then be written as a continuous global
bilinear expression.
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inttial domain pertubed
l..UIIIIlTiTI

Truncated
dormain

Figure 2: Initial domain, the perturbed and the truncated domains

Let R > 0 such that o, < B(up,R) < Q,, D. = B(uo,R)\w, and ¢ the restriction of y(u)
through I'r = 0B(Uo,R) and yR(R), the solution of the perturbed problem.

~AY¥() = f+u in D,
yi’(W) = ¢ on g (27)
VW) = 0 on dw..
For ¢ = 0,y0”" is the solution of
—Agf"’(u) = f+u in B(uo,R) (28)
yo (u) = ¢ on Tk,

where y‘;"” = yfg’o + yg’(p.
For ¢ > 0, the Dirichlet-to-Neumann operator is defined by
Tg . Hl/Z(FR)n N Hfl/Z(FR)n
@ = TS(P = V(yf)v,
where v is chosen outward to D, on dw., and the function f, € H™"2(I'r) is defined by

fo = —Vyg’o.v.
Thus we have,

Wy = T —fe

Finally for € > 0 the function Y, is defined as the solution of the following problem.
Find y. such that:
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—Ay.(u) = f+u in Qg
V. (W.v—-Ty, = f. on Ig (29)
ye(u) = 0 on T.

The variational formulation associated with (29) is the following.
Find y. such that:

a:(y,2) = 1:(2), Vz € VW, (30)

where the functional space, Vg, the bilinear form a, and the linear form |, are defined by

Ve={y € H(Qr) y=0 € T}, (31)
a.(y,z) = IQ Vy.Vzdx + Ir T.yz dy(x), (32)
1.(2) = jQ (f + u)zdx + jr f,zdy(%). (33)

Here u.v denote the usual dot product of R" and dy(u) is the Lebesgue measure on the
boundary.

Remark 4.3. Symmetry, continuity and coercivity of a., and continuity of |, follow directly
from:

j Tgwdy(U)=f vy vy v dx, (34)
I'r D.

| foydy@ = fy2¥au -
I'r D,

Proposition 4.1. Let Jo(y) be the objective functional defined by (16). Then there exist 6J
and a function p(g) > 0 such that

Ja,(Ye) = Ja(y) = DI(Y:)(Y: —Y) + p(e)dI(y) + 0o(p(e)) (36)
Proof. Let

Ja@y) = [_[yW) ~yaGoP + & luf Jdx,

Jo.(y2) = 3a) = [ [ye -yol* + & P Jox

&

= [y yel* + % lu? Jox
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= fQS {!ys — Yyal?dx - JQS ly - ydlde}
] {ly=yel + & P} ox

= | 0o +y-2y0de- [ {ly-yal? + & upox

Let DJ(y;:) = IQ (e —y)zdu Vz € Vg and using the mean value theorem, it follows that

| LAy =yol? + 0P pox = [yo) =yal* + SHuol® Jp() + 0(p(@)).
To end the proof, we set

8I(y) = [ Iy(u) = ya* + & Jui? ]. u

Theorem 4.2. Let j(¢) = Jo,(y), the functional defined by (16), a. and |, are respectively the
bilinear form and the linear form associated with (29), then there exist a bilinear form da and
a linear form ol such that

1) lla: —ao0 — p()dall £,y = 0(p(e)),

2) [[1: =10 — p(&)d1ll .oy = 0(p(e)),
and j has the following asymptotic expansion:

i(e) —§(0) = p(e)[sa(yo,z0) — 61(2) +8I(yo)] +0(p(e)),

where z, is the solution of the adjoint problem,
Find w such that:

a:(w,zg) = -DJ(yo)w, Vw € Vg.

Proof. We will utilize the fact that the variation of the Lagrangian is equal to the variation of
the cost function.

According to the variational formulation of (29) and relations (34) and (35), the variations of
the bilinear form and the linear form are

2:(y,2) —ao(y,2) = IF (Te = To)yz dy (%),

1.(2) = lo(2) = LR(fg ~f)z dy(x).

The problem reduces to the analysis of (T, — T¢)¢ for ¢ € H?(T'r) and of
fo —fo € HV2(I'R). It is shown in [8] that there exists a function 6T € L(H"2(T'r);H?('r))
and 6f € H™V2(I'r) such that

[Te =To— p(e)oT| LH2(TR);H2(TR)) = O(p(e)),
Ife = fo = p(&)0F | gy = O(p(e)),
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Setting

sa = j STyzdy(u), Y v,z € Vi, (37)
I'r

5|=j Sfzdy(u), Vz e Vg, (38)
I'r

will yield the hypothesis (1) and (2) of the theorem.
By realizing that (37), (38) ,(36) and the fundamental hypothesis of the adjoint method are
satisfied, we can apply Theorem 6 to end the proof. |

4.4 Numerical results

In order to illustrate the theoretical result, we present here some numerical applications.
In this respect, we consider a polygonal domain Q in which we solve a Dirichlet problem and
we represent the adjoint state and the topological derivative. The corresponding equations are:

-Ay(m) = f+0 in Q
y(uy = 0 on 0Q,

{—Av (Y@ —yq)—20 in Q 49)
vV = 0 on 0Q.

When o, = B(Ug, &), using potential theory and the mean value theorem allow for an
explicit computation of all integrals (see [8]) . We therefore have

i®) = §(0) = ~47p(&) (Ya@E)V(X0) + L[a(0)]) +0(p(e),

Vv being the solution of the adjoint problem. The numerical code we use is written in Getfem ++
[16]. Getfem ++ is a free software which uses C++ language and can be used as toolbox in
Matlab, Python and Scilab.

The main theorem (2) gives for C; the expression

Ci = (4%,- +4) jgw,-(n LTa)dx, Ve J (40)

wj = y(e V% rsin abj + ¢) is given in Remark 3. In the applications, we set in the first case
J = 1, and in the second J = 2. Throughout
o= yo=f=1,a=%2=2,r=[x+y?,y =1, ¢ = 0and 74 of (51) is determined

40
by a numerical solution of the following BVP.

—-AZqg = VYd in Q
zg = 0 on 0Q.
The numerical approximation of C;j proceeds as follows. The optimal control U is given by
U = —-L1pwherep =z-12q4and z with z4 satisfying the BVP
ANz+Ltz = f+Lzg in Q
v(2) = y(Az) on 0Q.

Next we insert a hole in the initial polygonal domain, where the topological derivative is most
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negative. Correspondingly

_ (43m 37 9e"r 1 sin(3
Cj = (43Z +4)IQ(1+ 3-20)e "1+ sin(2-0)drdo

1 2
- 7L(1 + %zd)e—rr%drjﬂ sin(%e)de

1 : 1 . 2
= 7|:J'% e'radr+ J.% %zde—rrfdr:| L s1n(%0)d0.
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- 0
-1 -5 0 0.5 1 1.5
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I .r:l 2
o )
©-0E
-1,5 I'U 8
-1
-1

-1 -IJI.S- a 0.6 1I Ij5
f=1;yq=0.1415

Figure 3: Domain without hole: on the top, we have direct state, in the middle, the adjoint
state, on the bottom, the topological derivative.
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Some symbolic calculus in Matlab gives the following approximation

1
jl e-'r¥dr = 0,02197,
2

3 ! N =12 x 1073, 1in the first case
T j Zgeredr = ,
1 = 15 x 107*, in the second case
Izn sin(2-0)dg = i[—cosie:r?r = i[cos“—” - cosg—”] ~5.9x1073
. 3 4 371, 4 3 3 ’ ’
[Hrect slate
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Figure 4: Domain with a hole where the topological derivative is the most negative: on the top,
we have direct state, in the middle, the adjoint state, on the bottom, the topological derivative.
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It follows that

1,4 x 1073 in the first case

23 x 10~ in the second case

The different cases correspond to the different values of yq in the pertaining numerical work.

[hirect atais

015
LN
iR
|:| -
05| .05
o 1 A
-2 1 0 1 a2
adjoint state
1 03
ﬂ:.l B 0.2
o o1
G 0
- 1 0 1 )
topologeal denvative
1 -
0.5
05 -
-1.5
|:. L
-2
05 25
i -3
A L L i
-2 -1 il 1 2

f=1;y4=eYsin(x+y)

Figure 5: Domain without hole: on the top, we have direct state, in the middle, the adjoint
state, on the bottom, the topological derivative.
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[irsct s1aie
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002
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i
oL 0.05
ot ' Ln
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0,1
.1 1 I i i
2 1} Li] 1 2

Topoleegiceal cerivativa

]

f=1;yq=eYsin(x+y)

Figure 6: Domain with a hole where the topological derivative is the most negative: on the top,
we have direct state, in the middle, the adjoint state, on the bottom, the topological derivative.

5. Conclusion and Extensions

In this paper, we have proven that the coefficients of singularity for a controlled Dirichlet
problem in a polygonal domain can be expressed solely with the data of the problem.
Moreover with the help of topological optimization tools, we have built an algorithm which
allows calculating this coefficients and representation of its effects in the polygonal domain.

In a forthcoming paper, we intend to generalize this calculus to the case of a nonlinear
operator as for example in the works of Atkinson and Champion [1],[2], or in the stationary
model of image processing [19].
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