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1. Introduction

This paper focuses on the theoretical and numerical aspects of representation of the
singularity coefficient for a controlled Dirichlet problem in a polygonal domain. Our goal in
this work is two fold. On the one hand, we prove that the singularity coefficient of the
considered Dirichlet problem, in a polygonal domain can be expressed solely with the data of
the problem. To reach this goal, we utilize some results that have been established by P.
Grisvard [9,10] and by the Lax-Milgram theorem. On the other hand, we employ a topological
sensitivity analysis in order to represent the distribution of impact of the singularities in the
considered domain. The topological sensitivity analysis aims at providing an asymptotic
expansion of a shape functional on the neighborhood of a small hole created inside the domain.
The reported analysis shall be based on the principle that follows.

For a criterion j  Ju,  ⊂ Rn , with u as the solution of a boundary value
problem (BVP) defined over , the pertaining expansion can generally be written in the form:
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j\x0   − j  gx0  o,   0, lim
0

  0.

In this expression,  and x0 denote respectively the radius and the center of the hole,  is a
reference domain inside  and containing the origin. The function gx0 is called topological
derivative and will be used as descent direction in the optimization process.
The paper is organized as follows: in the second section we introduce some notations used

throughout the paper and present the problem to be addressed. In the third section, we report
on the main result of this paper and it’s detailed proof. In section 4 we study the topological
optimization problem associated with the optimal control problem (2) together with the
obtained numerical result. The paper concludes in section 5.

2. Notation and Presentation of Problem

Let  be an open bounded domain in R2,  has a polygonal boundary ∂, which is the
union of the segments Γj for j ∈ 0, 1, …,N, N ∈ N∗.
We denote by Sj the vertex between Γj1 and Γj for j ∈ 0, 1, …,N − 1 and SN the vertex
between ΓN and Γ0. Let j, for j ∈ 0, 1, 2, …,N − 1 be the measure of the angle between
the vertices Γj1 and Γj, N the measure of the angle between Γ0 and ΓN. For M ∈ R2 we
denote by j the angle between SjM and Γj1, 1 ≤ j ≤ N − 1 and N the angle between SNM
and Γ0, as illustrated in Figure 1.
Additionally ∀ j ∈ J, J  j ∈ 0,1,…,N / j  , a nonempty set, we are able to
introduce a truncation function  j ∈ D which depends only on the distance rj to Sj such
that  j ≡ 1 near Sj, and  j vanishes near all Γk for k  j and k  j  1.

Figure 1: Sketch of a polygonal domain with vertices and angles

We suppose also that the support of  j does not intersect the Γk’s if j ≠ k . Therefore

j  SjM,Γj1 ; j  Γj,Γj1

If we consider that U is a nonempty, closed and convex part of L2, then for f ∈ L2 and
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u ∈ U, we can denote by yu the unique solution in H0
1 of the system

−Δyu  f  u in 

yu  0 on ∂ .
1

By applying the Lax-Milgram theorem, there is a unique solution yu of the variational
problem:

∀ v ∈ H0
1, 


∇yu.∇vdx  


f  uvdx .

Moreover, let yd be an element of L2 and   0 to define the cost functional

Ju  1
2  |yu − ydu|2dx  

2  u2dx ,

and invoke the following optimal control problem

minu∈U Ju , subject to :
−Δyu  f  u in 

yu  0 on ∂ .

2

When  is regular (for example C2) yu ∈ H2 ∩ H0
1 and if U  L2, the control u

solution of (2) belongs in H2 ∩ H0
1; see for example [12]. But if the boundary of  is

polygonal, yu and u have a singular part, i.e. they don’t belong in H2.
Our first aim here would be to find the singularity coefficient of the solution to the optimal

control problem (2).

Remark 2.1. Let g ∈ L2 to consider the following problem

−Δyu  g
yu  0

yu ∈ H0
1 .

3

One result due to P. Grisvard [9] shows in fact that there exists yr ∈ H2 ∩ H0
1 and a real

Cj , j ∈ J such that the solution could be written as

y  yr ∑
j∈J

Cj jrj
/ j sin 

j
j

where J  j ∈ 0,1,…,N / j  .
In addition, ∃ K, a positive constant (which does not depend on g), such that

||yr||H2 ∑
j∈J

|Cj|≤ K||g||L2.

Also ∃ functions wj ∈ L2, ∀ j ∈ J, such that

Cj  


g wj dx.
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which are of the form, see e.g. [9],
wj  e−r  r− sin j  ,

  wj  2, 1/2    1, r  x2  y2 . where 0  j   and the construction of 
follows from several lemmas of [9].

3. Main Result

Let us consider the J functional defined by

Ju  1
2  |yu − yd|2 dx  

2  u2dx ,

where yu is the solution of the optimal control problem

minu∈U Ju , subject to :
−Δyu  f  u in 

yu  0 on ∂ ,

4

and

−Δzd  yd in 

zd  0 on ∂ ,
5

with u as the control function. We are then directly led to the following main result of this
paper.

Theorem 3.1. The optimal control problem (4) admits a unique solution u ∈ U, and the
optimal state corresponding to yu may be written as:

yu  yru ∑
j∈J

Cj jrj
/ j sin 

j
j

where:
i) yr ∈ H2 ∩ H0

1
ii) Cj  4

 j  4  wjf  1
 zddx,∀j ∈ J,

and wj is defined in Remark 2.1.

Proof. Let us consider the optimal control problem (4). This problem admits a unique solution
u in U satisfying the following system

−Δyu  f  u in 

−Δp  yu − yd in 

〈p  u,v − uL2 ≥ 0 ∀v ∈ U

yu, p ∈ H0
1 .

6

In the case where U  L2, we obtain
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−Δyu  f  u in 

−Δp  yu − yd in 

p  u  0
yu, p ∈ H0

1 .

7

Setting yu  y leads to

−Δy  f − 1
 p in 

−Δp  y − yd in 

y, p ∈ H0
1 .

8

Now if z is a solution in H0
1 of the equation

−Δz  y in 

z  0 on ∂ ,
9

then

−Δy  f − 1
 p in 

−Δp  −Δz − zd in 

z  Δz  0 on ∂
y, p, z zd,∈ H0

1 .

10

The Laplacian is an injective operator from H0
1 to H−1, this implies that p  z − zd .

From the equations (9) and (10) it follows that :

−Δ2z  1
 z  f  1

 zd in 

z  Δz  0 on ∂
z, Δz, ∈ H0

1 .

11

Letting V to be the space defined by:
V  v ∈ H3 ∩ H0

1 / Δv  0 on ∂ ,
allows using the Lax Milgram theorem to prove that equation (11) has a unique solution z in V.
Now, consider the equation

Δ2z  1
 z  f  1

 zd in 

z ∈ V ,
together with F  f  1

 zd − 1
 z,

−Δz  y in 

z  0  Δz on ∂,

allows us to deduce that
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−Δy  F in 

y  0 on ∂
F ∈ L2

12

One result of P. Grisvard [9] shows that there exist real Cj, j ∈ J and yr belonging to
H2 ∩ H0

1 such that the solution could be written as:

y  yr ∑
j∈J

Cj jrj
/ j sin 

j
j

with
  j  2

We are going to use this decomposition and the linearity of the equation to obtain two
equations to be solved

−Δz1  yr in 

z1  0 on ∂
yr ∈ H2. 13

This implies that

z1  z1r ∑
i1

N

∑
k∈Z

ki iri

k
i sin k

i
i

with

z1r ∈ H4 and ri

k
i sin k

i
i ∈ H3 |H4

and

−Δz2   jrj
k/ j sin k

 j j in 

z2  j −rj
k/ j sin k

i
i on ∂

14

with z  z1  z2.
The solution of the problem (13) is

z1  z1r ∑
i0

N

∑
k3

5

ki iri

k
i sin k

i
i

Where z1r is the regular part of z1, z1r ∈ H4, and the sum from 3 to 5 follows from the fact
that :

r sin ∈ Hs |HS′  s − 1    s′ − 1

This implies

ri

k
i sin k

i
i ∈ H3 |H4  3 − 1  k

i
 4 − 1


2 i
  k  3 i



  i  2


2  2 i
  k  3 i

  6

1   i
  2.
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Thus 2  k  6  k  3,4,5.
For the resolution of the equation (14), we look for at first a solution around crack Sj

−Δw1,j
k  rj

k/ j sin k
 j j in 

w1,j
k  0 on ∂

we obtain

w1,j
k  1

4 k
 j  4

rj

k
j
2
sin k

j
j , w1,j

k ∈ H3 |H4, 15

rj

k
j
2
sin k

j
j ∈ H3 |H4  3 − 1  k

j
 2  4 − 1.

It follows that

0  k
 j ≤ 1

1   j
  2


0  k   j



1   j
  2

 0  k  2  k  1.
We attempt then solving the boundary value problem

−Δvj  j−1rj
k/ j sin k

 j j in 

vj   rj
k/ j sin k

 j j on ∂ .

The second member is equal to zero around the crack Sj and is regular on ∂. So the solution
z2r belongs in H4. Letting zr  z1r  z2r 

z  zr ∑
i∈J′
∑
k3

5

ki iri

k
i sin k

i
i

 ∑
j∈J′

N Cj
4k
 j  4

 jrj


j
2
sin 

j
j , zr ∈ H4

where

J ′  j  1,2, . . . ,N
rj

k/ j2 sin k
 j j ∈ H3 |H4

rj
k/ j sin k

 j j ∈ H3 |H4

and

||zr||H4 ∑
i0

N

∑
k3

5

|ki|∑
j0

N |Cj|
4 
 j  4

≤ ||f  1 zd||L2.

Using the Riesz theorem and one result of P. Grisvard [9], we prove the existence of functions
wj ∈ L2 satisfying
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Cj

4 
 j  4

 


wj f  1
 zd dx, ∀ j ∈ J.

This implies that

Cj  4 j
 4 


wj f  1

 zd dx, ∀ j ∈ J. 

If we are going to consider only one vertex, we can set j  , j  ,  j  , Cj  C.
Consequently z is written as f

z  zr ∑
k3

5

kr k
 sin k

 

 C
4
  4

r 
 2 sin 

  , zr ∈ H4.

Remark 3.1. Let u ∈ H0
1 be the solution of −Δu  f, which is Fourier transformable to

−Δu  2u 

f in . This allows considering the problem with a complex parameter ;

−Δv  v  g where v ∈ H0
1 with    . For given  the mapping g  Cj is a

continuous linear functional on L2. Therefore ∃ wj ∈ L2 such that

Cj  


g wj dxdy,

where wj is defined as in Remark 2.1.

4. Topological Optimization

Topological optimization seems to be more general and efficient than other classical shape
optimization techniques such as global optimization methods, genetic algorithms or the level
set method [11]; which are all confined to a quite restricted field of application.
We present here a general framework for topological sensitivity which is based on a method
introduced by Schumacher [17] in shape optimization and applied by J. Cea, M. Masmoudi and
al. The beginning of our analysis is a presentation of the fundamental steps in this method and
we refer the interested reader to [4], [14], [12] for more details.

Topological sensitivity analysis aims at providing an asymptotic expansion of a shape
functional acting on the neighborhood of a small hole created inside the domain. The
underlying principe is the following : For a criterion j  Ju,  ⊂ Rn and u is the
solution of a BVP defined over . The pertaining expansion of the cost function j can be
generally written in the form:

j\x0   − j  gx0  o,

lim
0

  0,   0.

Remark 4.1. The function  depends on the boundary conditions and the dimension of the
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Rn space, see [7].
For example, the results obtained for the homogenous Laplace equation with a cost function
defined on the boundary of the domain are displayed in the following table, see [14].

Boundary condition in the hole  gx
Neumann 2D 2 −2∇u∇p
Neumann 3D 4

3 
3 − 32 ∇u∇p

Dirichlet 2D −1
2log u.p

Dirichlet 3D 4 u.p

The now posing problem consists in using topological optimization tools in order to
minimize the functional

Jy  

|yu − ydu|2  

2 u2 dx, 16

where yu is the solution of the BVP

−Δyu  f  u in 

yu  0 on ∂  Γ .
17

The variational formulation associated with (17) is: find yu ∈ H0
1 such that



∇yu∇zdx  


f  uzdx, ∀ z ∈ H0

1. 18

Our further analysis shall require the additional notation.

a0y, z  

∇yu∇zdx, l0z  


f  uzdx.

4.1. A generalized adjoint method

The mathematical framework for domain parameterization introduced by the
Murat-Simon work [15] cannot be used here. Alternatively, it is possible however to invoke
the adjoint method, as described in [14], in application to topological optimization. A basic
feature of the adjoint method is its yield of an asymptotic expansion of a functional J,u
which depends of a parameter u, using an adjoint state v which does not depend on the
parameter. This implies the need to solve a certain system of equations in order to obtain an
approximation of the topological gradient gx, ∀x ∈ . Accordingly we let V be a fixed
Hilbert space and LV (respectively L2V denotes the spaces of linear (respectively
bilinear) forms on V. We are able then to state the following hypotheses:
∙H-1: There exists a real function , a bilinear form a ∈ L2V and a linear form  l ∈ LV
such that:

  0,   0, 19
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‖a − a0 − a‖L2V  o, 20

‖l − l0 −  l‖LV  o. 21

∙H-2: The bilinear form a0 is coercive: There exists a constant   0 such that

a0y,y ≥ ‖y‖2, ∀y ∈ V.

According to (4), the bilinear form a depends continuously on , hence ∃ 0 and   0 such
that for  ∈ 0,0 the following uniform coercivity condition holds.

ay,y ≥ ‖y‖2 ∀y ∈ V .

Moreover, according to Lax-Milgram’s theorem, for  ∈ 0,0, the problem find y ∈ V ,
such that

ay, z  lz ∀ z ∈ V . 22

has a unique solution.

Lemma 4.1. [8] If the hypotheses H-1 and H-2 hold, then

‖y − y0‖ O.

Proof. It follows from the coercivity of a that

‖y − y0‖2 ≤ ay − y0,y − y0

which implies that

‖y − y0‖2 ≤ ay,y − y0 − ay0,y − y0

 ly − y0 − ay0,y − y0

 l0y − y0  l − l0y − y0 − ay0,y − y0

 a0y0,y − y0 − ay0,y − y0  l − l0y − y0

 fay0,y − y0   ly − y0  ‖y0‖1‖y − y0‖of

∙H-3: Consider a cost function j  Jy, where the functional J is differentiable. For y ∈ V
there exists a linear and continuous form DJy ∈ LV and J such that:

Jz − Jy  DJyz − y  Jy  o‖z − y‖V. 23

Here we may define the Lagrangian L , when  ≥ 0, see for example [12,18], as
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Ly, z  ay, z − lz  Jy ∀y z ∈ V .

to be led to the next theorem which gives an asymptotic expansion for j.

Theorem 4.1. [8, 6, 18] If the hypotheses H-1, H-2, and H-3 are satisfied, then

j − j0  Ly0, z0  o, 24

where y0 is the solution of (22) with   0, z0 is the solution to the adjoint problem : Find z0
such that

a0w, z0  −DJy0w ∀w ∈ V ,

and

Ly, z  ay, z −  lz  Jy. 25

Proof. For all z ∈ V, one has

j  Ly,y0

Hence

j − j0  Ly, z − L0y0, z

 ay, z − a0y0, z  Jy − J0y0 − ly  l0y0.

It follows from (7) and the Lemma 4.1 that

Jy − Jy0  DJy0y − y0  fJy0  of.

Next, choosing z0 as the solution to (9), we obtain with (5)

j − j0  ay, z0 − a0y0, z0  DJy0y − y0

 fJy0 −  lz0  of

 ay, z0 − a0y, z0 − a0y − y0, z0  DJy0y − y0

 fJy0 −  lz0  of

Then, it follows from (3), (4) and the Lemma 4.1 (with ‖y‖ bounded) that

j − j0  fay, z0  fJy0 −  lz0  of

 fay0, z0  ay − y0, z0  fJy0 −  lz0  of
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j − j0  fLy0, z0  of. 

4.2. Perturbation of the domain

For all  ≥ 0, we set   \ where   x0  ,  ∈ Rn in a reference domain (see
figure 2). Let yu be the solution of the set problem in the perturbed domain

−Δyu  f  u in 

yu  0 on Γ

yu  0 on ∂.

26

Our objective would then be to find the asymptotic expansion of yu − yu when  goes to
zero.

Remark 4.2. A Lagrangian method setup for  ≥ 0 cannot utilize the variational formulation
of (26). This is due to the fact that there is no bilinear and continuous form such that
||a − a0 − a||L2H01  o for some adequate function . Moreover, if a is defined
on H0

1  H0
1 with functions of H0

1 extended by zeros on , we have for example for
n  3 and smooth functions y, z,

ay, z − a0y, z  −3∇yu∇zx0 


dx  o3.

But ay, z  ∇yx0∇zx0 cannot be continuously extended on H0
1  H0

1. Besides, if
y is extended by zeros on , the behavior of ||y − y0||H1 is not of order 3 but only of order
1/2, [8].
The method to be used here (truncation technique) can, however, be applied to the the case of
Neumann boundary conditions, or even to more general boundary conditions, and has two
advantages:
1. It allows for construction of a fixed Hilbert space, required in order to apply the Lagrangian
method.
2. It facilitates obtaining a bilinear and continuous form a, such that for some adequate 
function, ||a − a0 − a||L2H01  o is satisfied and the associated y will yield
same order ||y − y0||H1  o.

4.3. The truncated problem

As it is impossible to find an bilipschitzian mapping between  and , then the domain
parameterization presented in [15] can’t be used (as hinted before) when changing the topology
of the geometry. This objective can be reached, however, by the domain truncation new
method of [14].

This method can be motivated at least by the following two reasons. First, it allows the
analysis to be made in a fixed Hilbert space. Second, it validates the application of the
Lagrangian method. The variation of the Lagrangian can then be written as a continuous global
bilinear expression.
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Figure 2: Initial domain, the perturbed and the truncated domains

Let R  0 such that  ⊂ Bu0,R ⊂ , D  Bu0,R\ and  the restriction of yu
through ΓR  ∂Bu0,R and yRR, the solution of the perturbed problem.

−Δyf,u  f  u in D

yf,u   on ΓR

yf,u  0 on ∂.

27

For   0,y0
,0 is the solution of

−Δy0
f,u  f  u in Bu0,R

y0
f,u   on ΓR ,

28

where yf,  yf,0  y0,.
For  ≥ 0, the Dirichlet-to-Neumann operator is defined by

T : H1/2ΓRn  H−1/2ΓRn

  T  ∇y.,

where  is chosen outward to D on ∂, and the function f ∈ H−1/2ΓR is defined by
f  −∇yf,0..
Thus we have,

∇yf,.  T − f.
Finally for  ≥ 0 the function y is defined as the solution of the following problem.
Find y such that:
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−Δyu  f  u in R

∇yu. − Ty  f on ΓR

yu  0 on Γ.

29

The variational formulation associated with (29) is the following.
Find y such that:

ay, z  lz, ∀ z ∈ VR, 30

where the functional space, VR, the bilinear form a and the linear form l are defined by

VR  y ∈ H1R y  0 ∈ Γ, 31

ay, z  
R
∇y.∇zdx  

ΓR
Tyz dx, 32

lz  
R
f  uzdx  

ΓR
fzdx. 33

Here u.v denote the usual dot product of Rn and du is the Lebesgue measure on the
boundary.

Remark 4.3. Symmetry, continuity and coercivity of a, and continuity of l follow directly
from:


ΓR

Tdu  
D

∇y0,.∇y0,dx, 34


ΓR

fdu  
D

fy0,du. 35

Proposition 4.1. Let Jy be the objective functional defined by (16). Then there exist J
and a function   0 such that

Jy − Jy  DJyy − y  Jy  o 36

Proof. Let

Jy  


yu − ydx|2  
2 |u|

2 dx,

Jy − Jy  


y − yd|2  
2 |u|

2 dx

− 


y − yd|2  
2 |u|

2 dx
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 


|y − yd|2dx − 


|y − yd|2dx

− 


|y − yd|2  
2 |u|

2 dx

 


y − yy  y − 2yddx − 


|y − yd|2  
2 |u|

2 dx.

Let DJy  

y − yzdu ∀z ∈ VR and using the mean value theorem, it follows that




|y − yd|2  
2 |u|

2 dx  |yu0 − yd|2  
2 |u0|

2   o.

To end the proof, we set

Jy  |yu − yd|2  
2 |u|

2 . 

Theorem 4.2. Let j  Jy, the functional defined by (16), a and l are respectively the
bilinear form and the linear form associated with (29), then there exist a bilinear form a and
a linear form l such that
1) ‖a − a0 − a‖L2V  o,
2) ‖l − l0 −  l‖LV  o,
and j has the following asymptotic expansion:

j − j0  ay0, z0 − lz  Jy0  o,

where z0 is the solution of the adjoint problem,
Find w such that:

aw, z0  −DJy0w, ∀w ∈ VR.

Proof.We will utilize the fact that the variation of the Lagrangian is equal to the variation of
the cost function.
According to the variational formulation of (29) and relations (34) and (35), the variations of
the bilinear form and the linear form are

ay, z − a0y, z  
ΓR
T − T0yz dx,

lz − l0z  
ΓR
f − fz dx.

The problem reduces to the analysis of T − T0 for  ∈ H1/2ΓR and of
f − f0 ∈ H−1/2ΓR. It is shown in [8] that there exists a function T ∈ LH1/2ΓR;H1/2ΓR
and f ∈ H−1/2ΓR such that

‖T − T0 − T‖LH1/2ΓR;H1/2ΓR  O,

‖f − f0 − f‖H−1/2ΓR  O.
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Setting

a  
ΓR
T yz du, ∀ y, z ∈ VR, 37

l  
ΓR
fz du, ∀ z ∈ VR, 38

will yield the hypothesis (1) and (2) of the theorem.
By realizing that (37), (38) ,(36) and the fundamental hypothesis of the adjoint method are
satisfied, we can apply Theorem 6 to end the proof. 

4.4 Numerical results

In order to illustrate the theoretical result, we present here some numerical applications.
In this respect, we consider a polygonal domain  in which we solve a Dirichlet problem and
we represent the adjoint state and the topological derivative. The corresponding equations are:

−Δyu  f  u in 

yu  0 on ∂ ,

−Δv  −2yu − yd − 2u in 

v  0 on ∂ .
39

When   Bu0,, using potential theory and the mean value theorem allow for an
explicit computation of all integrals (see [8]) . We therefore have

j − j0  −4 yux0vx0  
2 |ux0|  o,

v being the solution of the adjoint problem. The numerical code we use is written in Getfem 
[16]. Getfem  is a free software which uses C language and can be used as toolbox in
Matlab, Python and Scilab.
The main theorem (2) gives for Cj the expression

Cj  4 
j

 4 


wj f  1 zd dx, ∀ j ∈ J. 40

wj  e−r  r− sin j   is given in Remark 3. In the applications, we set in the first case
J  1, and in the second J  2. Throughout
  4

3 , yd  f  1,   
  3

4 , r  x2  y2 ,  1,   0 and zd of (51) is determined
by a numerical solution of the following BVP.

−Δzd  yd in 

zd  0 on ∂ .

The numerical approximation of Cj proceeds as follows. The optimal control u is given by
u  − 1 p where p  z − zd and z with zd satisfying the BVP

Δ2z  1
 z  f  1

 zd in 

z  Δz on ∂.

Next we insert a hole in the initial polygonal domain, where the topological derivative is most
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negative. Correspondingly

Cj  4 34  4 

1  34 zde−rr−

3
4 1 sin 34 drd

 7 
1
2

1
1  34 zde−rr

1
4 dr 



2
sin 43 d

 7 
1
2

1
e−rr 1

4 dr  
1
2

1 3
4 zde−rr

1
4 dr 



2
sin 43 d.

f  1 ; yd  0.1415

Figure 3: Domain without hole: on the top, we have direct state, in the middle, the adjoint
state, on the bottom, the topological derivative.
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Some symbolic calculus in Matlab gives the following approximation


1
2

1
e−rr 1

4 dr  0,02197,

3
4  1

2

1
zde−rr

1
4 dr 

 12  10−3, in the first case
 15  10−4, in the second case




2
sin 43 d 

3
4 −cos 43  

2
 3
4 cos 43 − cos 83 ≃ 5.9  10−3.

f  1 ; yd  0.1415

Figure 4: Domain with a hole where the topological derivative is the most negative: on the top,
we have direct state, in the middle, the adjoint state, on the bottom, the topological derivative.



Topological Optimization in a Polygonal Domain 30

It follows that

Cj 
1,4  10−3 in the first case
23  10−4 in the second case

The different cases correspond to the different values of yd in the pertaining numerical work.

f  1 ; yd  e−x2 y2sinx  y

Figure 5: Domain without hole: on the top, we have direct state, in the middle, the adjoint
state, on the bottom, the topological derivative.
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f  1 ; yd  e−x2 y2sinx  y

Figure 6: Domain with a hole where the topological derivative is the most negative: on the top,
we have direct state, in the middle, the adjoint state, on the bottom, the topological derivative.

5. Conclusion and Extensions

In this paper, we have proven that the coefficients of singularity for a controlled Dirichlet
problem in a polygonal domain can be expressed solely with the data of the problem.
Moreover with the help of topological optimization tools, we have built an algorithm which
allows calculating this coefficients and representation of its effects in the polygonal domain.

In a forthcoming paper, we intend to generalize this calculus to the case of a nonlinear
operator as for example in the works of Atkinson and Champion [1],[2], or in the stationary
model of image processing [19].
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