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Abstract. In this paper we discuss an analytical solution for fully developed shock waves. The
homotopy analysis method is applied to solve the shock wave equation for a flow of gases.
Unlike various alternative numerical techniques, which are usually valid for a limited duration
of time, t, the presented solution of this equation is valid for t ∈ 0, . The reported
numerical results reveal a reliability of the proposed algorithm.
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1. Introduction

The rapid development of nonlinear sciences has witnessed a number of new and reliable
techniques including the homotopy analysis method (HAM) [15-19, 21-23] which was
advanced in 1992 by Liao. The method has successfully been implemented on a wide range of
nonlinear problems, see [1, 2, 5, 7, 12, 13, 20] and the references therein. The method yields a
solution in terms of a convergent series with easily computable coefficients. An auxiliary
parameter, , pertaining to this method provides for a simple way to adjust and control the
convergence region of the solution series for large values of t.

Conservation laws are common features of various theories in continuum physics. These
laws are supplemented by consistency relations which characterize the particular medium in
question by relating values of the main field, u, to the flux, f , of this field.This is done under
the assumption that these relations are smooth in their variation. Consequently the conservation
laws lead to nonlinear hyperbolic partial differential equations. The simplest type of these is
the first-order differential equation:
utx, t  fux, tx  0, x ∈ R, t  0, 1

with the initial condition
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ux, 0  u0x, x ∈ R. 2
The previous equation arises in modeling a diverse set of physical phenomena, ranging

from shock waves to three-phase flows in porous media. Shock waves are modeled by
nonlinear hyperbolic partial differential equations [8-10] and occur in explosions, traffic flow,
glacier waves, airplanes breaking the sound barrier, and so on. To solve Eq. (1), one can use
the method of characteristic curves. The characteristic system associated with the this equation
is, [24],

dx
f ′u

 dt  du
0 , 3

which is associated with the defining ordinary differential equation

dx
dt  f ′u. 4

The characteristic Eq.(4) is nonlinear in the unknown function ux, t itself ; and each
solution ux, t of (1) will give a different set of characteristics. Upon integrating the
characteristic system (3), one obtains

u 1x, t  ux, t, u 2x, t  x − f ′ux, t, 5

which give the following general solution

ux, t  x − F x − f ′u t . 6

By using the initial conditions at t  0,one obtains

ux, 0  u 0x  Fx. 7

Therefore for sufficiently small t, the general solution is given by

ux, t  u 0 x − f ′u t , 8

and this solution is valid as long as the condition

1 
u 0 x − f ′u t

dx f ′′u t  0 9

is satisfied. Moreover, if the left-hand side of (7) approaches zero, the solution curve
undergoes a discontinuity and a shock or shocks are developed.

The basic difficulty associated with this approach is that the solution is given implicitly by
Eq. (6), which invokes a need for other reliable techniques to solve the shock wave Eq. (1). In
fact Allan and Al-Khaled [4] have devised an analytical approach to solution of this equation
by Adomian’s decomposition method. Inspired and motivated by the ongoing research in this
area, we shall apply the homotopy analysis method to obtain an approximation to the solution
of this equation. The reached numerical results explicitly reveal a reliability of the proposed
algorithm.
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2. The Homotopy Analysis Method

In applying the HAM [15-19, 21-23] to solve the shock wave initial value problem, IVP,
(1-2), we consider the differential equation

Nux, t  0, 10

in which N is a nonlinear operator to construct the following zeroth-order deformation :

1−q LUx, t;q − u 0x, t  q  Hx, t NUx, t;q, 11

with q ∈ 0,1 as an embedding parameter,  ≠ 0 is an auxiliary parameter, Hx, t ≠ 0 is an
auxiliary function, L is an auxiliary linear operator, u0x, t is an initial guess of ux, t and
Ux, t;q is an unknown function of the independent variables x, t and q.
Obviously, when q  0 and q  1, the following notation

Ux, t; 0  u 0x, t, Ux, t; 1  ux, t. 12

will respectively hold.
Next we expand Ux, t;q in Taylor series, with respect to the q parameter, as

Ux, t;q  u 0x, t ∑
m1



umx, tqm, 13

where

um  1
m!
∂mUx, t;q
∂mq

q  0

. 14

Assuming that the auxiliary linear operator, the initial guess, u 0x, t, the auxiliary
parameter  and the auxiliary function Hx, t are selected so as to make the series (13)
convergent at q  1, then due to (12) we have

ux, t  u 0x, t ∑
m1



umx, t. 15

Let us define then the vector

unx, t  u 0x, t,u 1x, t, . . . ,unx, t, 16

and

m 
0 m  1,
1 m  1,

17
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to differentiate (11) m times with respect to the embedding parameter q. Finally set q  0 and
divide by m! to obtain the so-called mth-order deformation equation

Lumx, t − mum−1x, t  Hx, tRmum−1, 18

in which

Rmum−1  1
m −1!

∂m−1NUx, t;q
∂m−1q

q  0

. 19

For practical computational applications we may approximate the HAM solution (15) by the
truncated series:

mx, t ∑
k0

m−1

ukx, t. 20

3. The Shock Wave Equation

In this section we study the analytical solution of the shock wave equation for most gases,
as given by [3, 11, 14],

utx, t  1
c 0
−   1

2
u
c 0

2 ux  0, x, t ∈ R  0,T, 21

where c 0 ,  are constants and  is the specific heat. In the case under current consideration for
shock waves in air, we need to take c 0  2 and   3

2 . Eq.(21) becomes correspondingly

utx, t  1
2 −

5
16 u ux  0, x, t ∈ R  0,T, 22

and is subject to the initial condition

ux, 0  e−x2/2. 23

If c 0 
1
2   1 it is shown in [6] that an exact series solution to the previous IVP exists

the form

ux, t ∑
n0

 − tB n

n  1 !
n 1n/2Hn n  1 e−x−t/22n1/2, 24

where B   1/2c 0
2 and Hn.  is the Hermit polynomial of order n. This solution happens to

be the same as
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ux, t  e−x−t/22/2 1− 5
16 tx − t/2e−x−t/22/2 

25 t2

512 3x − t/22 −1e
−x−t/22/2

. . . . . 25

Moreover, according to the existence condition, given by Eq. (9), the solution of Eq. (25)
exists if

1  5t
8 x − 1

2 −
5
16 u t e−x−1/2−5/16ut2/2. 26

Simultaneously according to (11), the zero-order deformation will be

1 − qLUx, t;q − u 0x, t  q  Hx, t Ut  1
2 −

5
16 U Ux . 27

Hence, starting with an initial approximation u 0x, t  e−x2/2 and choosing the auxiliary
linear operator

LUx, t;q  ∂Ux, t;q
∂t ,

with the property

LC  0,

where C is an integral constant, and choosing the auxiliary function to satisfy

Hx, t  1,

we end up with the mth-order deformation

Lumx, t − mum−1x, t  Hx, tRmum−1,

in which

Rmum−1 
∂um−1
∂t  1

2
∂
∂x um−1 − 5

16 ∑
i0

m−1

ui
∂
∂x um−1−i . 28

The solution of the mth-order deformation equations (28) for m  1 becomes

umx, t  m um−1x, t   L−1Rmum−1. 29

Consequently, the first few terms of the HAM series solution are as follows:

u 0x, t  e−x2/2,

u 1x, t  tx 5
16 e−x2 − 1

2 e−x2/2 ,
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u 2x, t  tx 5
16 e−x2 − 1

2 e−x2/2  2tx 5
16 e−x2 − 1

2 e−x2/2 

2t2

512 e−x2 − 25e−x2  40e−x2/2 − 64x  40xe−x2/2  75x2e−x2 − 80x2e−x2/2 , 30

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

and so on. Obviously then the HAM series solution (for   −1 is

ux, t  u 0x, t  u 1x, t  u 2x, t . . . . . . .

 e−x2/2 − tx 5
16 e−x2 − 1

2 e−x2/2 

t2

512 e−x2 − 25e−x2  40e−x2/2 − 64x  40xe−x2/2  75x2e−x2 − 80x2e−x2/2 . . . . . 31

Theorem 3.1. Let umx satisfy Eq. (29) under the definition (28). If the series ∑
m0


umx

converges, it must be an exact solution to the IVP (22)- (23).

Proof. Covergence of this series allows for s ∑
m0


umx, and satisfaction of

m→
lim umx  0

is necessary for the existence of s. Make use then of (18) to write

∑
m1


 Hx, t Rmum−1 

n→
lim ∑

m1

n
Lumx, t − mum−1x, t

 L
n→
lim∑

m1

n

umx, t − mum−1x, t  L
n→
lim∑

m1

n

unx, t  0.

Since  ≠ 0 and Hx ≠ 0, the last relation becomes

∑
m1


Rmum−1  0.

Finally, Substitution of (28) in the above expression yields

∑
m1



Rm u m−1 
∂um−1
∂t  1

2
∂
∂x um−1 − 5

16 ∑
i0

m−1

ui
∂
∂x um−1−i  0.

This ends the proof. 

4. An HPM Solution

To solve the IVP (22-23) by the homotopy perturbation method (HPM), we construct the
following homotopy:
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∂u
∂t −

∂u 0

∂t  p 5
16 u ∂u

∂x −
1
2
∂u
∂x −

∂u 0

∂t , 32

Assume the solution of Eq.(32) in the form:

u  u 0  pu 1  p2u 2  p3u 3 . . . . . 33

Substituting (33) into Eq.(32) and collecting terms of the same power of p gives

p0 :
∂u 0

∂t −
∂u 0

∂t  0,

p1 : ∂u 1

∂t  5
16 u 0

∂u 0

∂x − 1
2
∂u 0

∂x −
∂u 0

∂t ,

p2 : ∂u 2

∂t  5
16 u 0

∂u 1

∂x  5
16 u 1

∂u 0

∂x − 1
2
∂u 1

∂x ,

p3 :
∂u 3

∂t  5
16 u 0

∂u 2

∂x  5
16 u 1

∂u 1

∂x  5
16 u 2

∂u 0

∂x − 1
2
∂u 2

∂x ,

. . . . : . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

The given initial values admit the use of

u 0x  e−x2/2,

and lead to the solution components that follow.

u 0x, t  e−x2/2,

u 1x, t  tx − 5
16 e−x2  1

2 e−x2/2 ,

u 2x, t  t2

512 e−x2 − 25 e−x2  40 e−x2/2 − 64 x  40 xe−x2/2  75 x2e−x2 − 80 x2e−x2/2 ,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

and so on. Hence, the HPM series solution is

ux, t  u 0x, t  u 1x, t  u 2x, t . . . . . . .

 e−x2/2 − tx 5
16 e−x2 − 1

2 e−x2/2 

t2

512 e−x2 − 25 e−x2  40 e−x2/2 − 64 x  40 xe−x2/2  75 x2e−x2 − 80 x2e−x2/2 . . . . , 34

which coincides with the (31) HAM solution .
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5. Results and Discussion

Based on the HAM, we have constructed the solution of Eq. (20), using the recurrence
relation given by Eq. (17). To demonstrate the accuracy of the method in solving the IVP
(22)-(23), we have calculated the first few terms n 6) of the solution ux, t using Eq. (25)
derived in [6] and compared the results with the solution based on Eq. (17).

a b

(c)
Fig. 1. Surface plot of ux, t for Eq.(22-23) : −5  x  5, and 0  t  0.5

exact solution, (b) sixth order homotopy analysis approximation, (c) absolute error
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Fig. 1(c) represents the error which is defined at any point as |ux, t − uapprx, t| where
ux, t is given by Eq. (25). It indicates that the results of the reported method are getting very
close to the exact solution even when a small number of terms are used. The error can be
reduced by adding more terms to the homotopy analysis series of Eq. (15). Figs. 1(a)-2(a) and
1(b)-2(b) represent respectively the surface plot of the wave velocity ux, tand uapprx, t for
−5  x  5, and for 0  t  0.5 together with the contour plot of that surface. They clearly
show that the shock wave is traveling smoothly in this range of t.

a b
Fig. 2. Contour plot of ux, t for Eq.(22-23) : −5  x  5, and 0  t  0.5

exact solution, (b) sixth order homotopy analysis approximation

From these results we may conclude that the semi-analytical homotopy analysis method for
the KdV equation gives remarkable accuracy in comparison with the analytical solution (25).

6. Conclusion

In this work, our main concern has been to study the dynamics of a shock wave
development in air. An approximation to the analytical solution for the pertaining nonlinear
IVP was obtained in the range 0, of t by applying the HAM and symbolic calculations. A
comparison of the numerical results presented in this article with the results of [6] suggests
that the HAM is accurate, reliable and user friendly.
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