
Journal of Numerical Mathematics and Stochastics, 2 (1) : 54-63, 2010 © JNM@S
http://www.jnmas.org/jnmas2-5.pdf Euclidean Press, LLC

Online: ISSN 2151-2302

Jacobian Computation-free Newton’s Method
for Systems of Nonlinear Equations

M.Y. WAZIRI , W.J. LEONG, M.A. HASSAN, and M. MONSI

Department of Mathematics, Faculty of Science, Universiti Putra, Malaysia 43400 Serdang, Malaysia.
E-mail: waziri@math.upm.edu.my

Abstract. We propose a modification to Newton’s method for solving nonlinear equations,
namely a Jacobian Computation-free Newton’s Method . Unlike the classical Newton’s
method, the proposed modification neither requires to compute and store the Jacobian matrix,
nor to solve a system of linear equations in each iteration. This is made possible by
approximating the Jacobian inverse to a diagonal matrix without computing the Jacobian. The
proposed method turns out to be significantly cheaper than Newton’s method, much faster than
fixed Newton and is suitable for small, medium or large scale nonlinear equations with a dense
or sparse Jacobian. After proving the convergence of the reported algorithm, numerical
experiments are reported to illustrate the promise of this method.

Key words : Nonlinear Equations, Large Scale Systems, Newton’s Method, Diagonal Matrix
Updating, Jacobian Approximation.

AMS Subject Classifications : 65H11, 65K05

1. Introduction

Consider the problem of finding a solution to a nonlinear system
Fx  0, 1
with the mapping F : Rn → Rn assumed to satisfy the following assumptions:
1. F is continuously differentiable in an open convex set .
2. There exist a solution vector x∗ of (1) in  such that Fx∗  0 and F ′x∗ ≠ 0.
3. The Jacobian F ′x is Lipschitz continuous at x∗.
The standard method for finding the solution to (1) is due to Newton. The method generates an
iterative sequence xk from a given initial guess vector x0 in the neighborhood of x∗,
according to the following procedure.

54

55 M.Y. WAZIRI, W. J. LEONG, M. A. HASSAN, and M. MONSI

Algorithm CN (Newton)
For k  0,1,2, . . . of F ′xk , the Jacobian matrix of F,
Step 1: solve F ′xksk  −Fxk,
Step 2: Update xk1  xk  sk ,
where sk is the Newton correction and the equation of step 2 is the Newton system. When the
Jacobian matrix F ′x∗ is nonsingular at a solution of (1) the convergence is guaranteed with a
quadratic rate from any initial point x0 in the neighborhood of x∗ [4,10], i.e.,
‖xk1 − x∗‖≤ h‖xk − x∗‖2 , 2
for some h. However, an iteration of the CN algorithm turns out to be expensive, because it
requires to compute and store the Jacobian matrix, as well as solving a Newton’s system in
each iteration. Despite its simplicity and general reliability, Newton’s method has some major
widely known shortcomings [3]. Several strategies have been developed to overcome these
shortcomings . The simplest strategy is incorporated in the fixed Newton method, which lets
F ′xk ≡ F ′x0 for k  0 . It generates an iterative sequence xk from a given initial guess x0
according to the algorithm that follows.

Algorithm FN (Fixed Newton)
Step 1: Solve F ′x0sk  −Fxk,
Step 2: Set xk1  xk  sk ,∀ k  0,1,2. . . .
This method avoids both the computation of the Jacobian (except for the first iteration), as well
as solving the system of n linear equations in each iteration but is significantly slower [8] than
the CN algorithm.The second strategy encampasses the inexact Newton method, which finds
the approximate solution of the Newton system by some iterations, see, e.g. [3],viz.

Algorithm IN (Inexact Newton)
Let x0 be given.
Step 1: Find some sk which satisfies
F ′xksk  −Fxk  rk ,
where ‖rk‖≤ k‖Fxk‖, and k is explained in [3].
Step 2: Set xk1  xk  sk .

We may also list here the famous Quasi-Newton’s method that replaces the Jacobian or
its inverse with an approximation which can be updated at each iteration [2], viz.

Algorithm QN (Quasi-Newton)
Step 1: solve Bksk  −Fxk,
Step 2: Update xk1  xk  sk,
Bk being an approximation to the Jacobian.

The rationale behind the quasi-Newton method is to reduce the evaluation cost of the
Jacobian matrix, especially when the function evaluations are very expensive. Despite their
increased relative storage requirements, the solution cost by quasi-Newton methods could be
much lower than with inexact Newton methods [5]. Many efforts have recently been made by a
number of authors [5, 8, 7, 9] to overcome the shortcomings of various Newton methods. The
most critical idea common to all these efforts is forming and storing a full-matrix
approximation to the Jacobian (directly or indirectly), which can be a very expensive task for
large scale problems. In fact the limitations/shortcomings of Newton methods on large scale

JCFN Method for Systems of Nonlinear Equations 56

problems are what motivate this work.
In this paper, we design an alternative approximation to the Jacobian inverse by a diagonal

matrix. This allows us to bypass the need to compute or store the Jacobian as well as to solve
the pertaining Newton’s system of n linear equations in each iteration. The anticipation has
been to reduce the computational costs, storage requirements and processing time (CPU
time).The rest of this paper is organized as follows. In the next section , we present the
proposed method. Convergence results are presented in section 3. Some numerical results are
reported in Section 4, and section 5 contains some conclusions. The quite reliable numerical
results of section 4 illustrate not only the promise of this method but also that it is cheaper than
the CN algorithm and faster than the fixed Newton method.

2. The Jacobian Computation-free Newton’s Method

Consider Taylor′s expansion of Fx about xk

Fx  Fxk  F ′xkx − xk ‖x − xk‖2. 3
A first-order incomplete version of this expansion is
F̂x  Fxk  F ′xkx − xk, 4
where F ′xk is the Jacobian of Fx at xk .

In order to incorporate more information on the Jacobian in the updating matrix, we
impose on (4) the condition
F̂xk1  Fxk1, 5
where F̂xk1 is an approximation to F evaluated at xk1. The reader is referred to [1] for full
details. Consequently relation (4) becomes
Fxk1 ≈ Fxk  F ′xkxk1 − xk, 6
and
F ′xkxk1 − xk ≈ Fxk1 − Fxk. 7
Multiplication of (7) by F ′xk−1 leads to
xk1 − xk ≈ F ′xk−1Fxk1 − Fxk. 8
Let us consider an approximation of the Jacobian inverse F ′xk−1 by a certain diagonal

matrix Dk,
F ′xk−1 ≈ Dk, 9
for which D  diagd1,d2,… ,dn, to be updated at each iteration. This would transform (8) to
xk1 − xk ≈ DkFxk1 − Fxk. 10
Since we require Dk to be a diagonal matrix, then satisfaction of (9) in (10) allows for

dk1
i  xk1

i − xk
i

Fixk1 − Fixk
. 11

Hence,
Dk1  diagdk1

i , 12

57 M.Y. WAZIRI, W. J. LEONG, M. A. HASSAN, and M. MONSI

∀ i  1,2,… ,n and∀ k  0,1,2,… ,n, where Fixk1 is the ith component of the vector Fxk1,
Fixk is the ith component of the vector Fxk, xk1

i is the ith component of the vector xk1, xk
i

is the ith component of the vector xk and dk1
i is the ith diagonal element of Dk1.

To safeguard against the possibility of small Fixk1 − Fixk we use (12) only when
|Fixk1 − Fixk|  10−8 or otherwise we set dk

i  dk−1
i . The update for this Jacobian

computation-free Newton’s method (JCFN) is
xk1  xk − DkFxk, k  1,2,… , 13
This paves the way towards the following first result of this work.

Algorithm JCFN (Jacobian computation-free Newton)
Consider Fx : n → n with the same properties as in (1).
Step 1 : Given x0 and D0  In, set k  0,
Step 2 : Compute Fxk,
Step 3 : Compute xk1  xk − DkFxk where Dk is defined by (12), when
|Fixk1 − Fixk|  10−8.Otherwise set dk

i  dk−1
i ,∀ k  1,2,… ,

Step 4 : If ‖xk1 − xk‖‖Fxk‖≤ 10−8 stop. Otherwise set k  k  1 and go back to step 2.

3. Convergence Analysis

Here we report on a result for F : f1, f2,… , fn of a lemma that follows, which provides a
condition under which the JCFN algorithm is linearly convergent to x∗.

Lemma 3.1. Let Fx : n → n be continuously differentiable in an open convex set
 ∈ Rn. If Dk defined by (12) and D0  In, then Dk is bounded for each k  0..

Proof. Since D0  In then ‖D0‖F ≤ n , and Dk1  diagdk1
i  for i  1,2,… ,n . By letting

Fixk1 − Fixk  ΔFk
i and xk1

i − xk
i  Δxk

i we have

Dk1  diag Δxk
i

ΔFk
i . 14

Continue by induction, viz. k  0 generates

D1  diag Δx0
i

ΔF0
i , 15

whose norm is

‖D1‖≤ ∑
i1

n


Δx0

i

ΔF0
i 

2  0, 16

k  1 generates

D2  diag Δx1
i

ΔF1
i , 17

with

JCFN Method for Systems of Nonlinear Equations 58

‖D2‖≤ ∑
i1

n

 Δx1
i

ΔF1
i 

2  1, 18

and so on for k  2,3, etc. We then let max n ,0,1, . . .n   to realize that ∀ k ,
‖Dk‖≤ max n ,0,1, . . .n, i.e.
‖Dk‖≤ . 19
Here the proof ends. 

Theorem 3.1. Let  be an open convex subset of Rn and Fx :  → n be a continuously
differentiable mapping . Assume that ∃ (i) x∗ ∈ , with Fx∗  0 and F ′x∗ ≠ 0 and (ii)
constants 1 ≤ 2 such that 1‖‖2 ≤ TF ′x ≤ 2‖‖2 for all x and y ∈ n . Then the
sequence xkk≥0 generated by the JCFN algorithm converges linearly to x∗ .

Proof. The Taylor series expansion of Fx about xk is

Fx  Fxk  F ′xkx − xk  o‖x − xk‖2 . 20

When x  x∗, (20) becomes

Fx∗  Fxk  F ′xkx∗ − xk  o‖x∗ − xk‖2 . 21

But Fx∗  0, then we have

− Fxk  F ′xkx∗ − xk  o‖x∗ − xk‖2 . 22

Subtract then x∗ from both sides of (13) to write,

xk1 − x∗  xk − x∗ − Dk Fxk , 23

which upon substitution of (22) in it yields
xk1 − x∗  xk − x∗  Dk F ′xkx∗ − xk  o‖x∗ − xk‖2 . 24
It follows from (24) that

xk1 − x∗  xk − x∗ − Dk F ′xkxk − x∗  o‖xk − x∗‖2, 25
which is the same as
xk1 − x∗  xk − x∗E − DkF ′xk, 26
where E is an identity matrix.
Take now the norm of both sides of (26) to arrive at
‖xk1 − x∗‖≤ ‖E − DkF ′xk‖‖xk − x∗‖. 27
Assume further the validity of Lemma 1 and boundedness of the Jacobian when

  max1,2, to write
‖xk1 − x∗‖≤  n − ‖xk − x∗‖.

59 M.Y. WAZIRI, W. J. LEONG, M. A. HASSAN, and M. MONSI

Clearly if   n − , then
‖xk1 − x∗‖≤ ‖xk − x∗‖, 28
which means that the sequencexkk≥0 generated by the JCFN algorithm converges linearly to
x∗. 

4. Numerical Results

In this section we present numerical tests for the JCFN algorithm in application to some
benchmark problems from the literature. A comparison of of the results of this algorithm is
made with those of the following four alternative prominent methods.
(1) The Newton method (CN).
(2) The fixed Newton method (FN).
(3) The Incomplete Jacobian Newton method(IJN)
(4) The MSVF, denoting Newton -like method with the modification of right-hand side vector.
The criteria for this comparison are namely : (i) the number of needed iterations, (ii) the CPU
time in seconds and (iii) the storage requirement. It should be noted that the MSVF and IJN
methods were respectively proposed in [8] and [7]. The computational tests were made using
MATLAB 7.4 with a double precision computer. The stopping condition used is:

‖xk1 − xk‖‖Fxk‖≤ 10−8.

Here is a listing of these benchmark problems, where each problem is accompanied by a
table summarizing its comparative computational results. The symbol "−" in the tables
indicates a failure due to memory shortages or / and when the number of iterations exceeds
250.

Problem 4.1. Solve the system of five nonlinear equations, [7].

Fx 

x12  x22  x32  x42  x52  1x1 − 1  x1x2  x3  x4 − 4
x12  x22  x32  x42  x52  1x2 − 1  x2x1  x3  x4 − 4
x12  x22  x32  x42  x52  1x3 − 1  x3x1  x2  x4 − 4
x12  x22  x32  x42  x52  1x4 − 1  x4x1  x2  x3 − 4
x12  x22  x32  x42  x52  1, x5 − 1,



0

0

0

0

0

x0  −1.5,3. 5,−1.5,3. 5,−1.5

Problem 4.2. Extended Rosenbrock, [7].
f1x  −400x1x2 − x12 − 21 − x1  x1∑ j2

n xj − n  1,
fjx  200xi − xi−1

2  − 400xixi1 − xi
2 − 21 − xi  xi∑ j≠ı

n xj − n  1, i  2,… ,n − 1,
fn  200xn − xn−1

2   xn∑ j≠i
n xj − n  1,

x0  1.2,1, 1. 2, 1, 1. 2,… T.

JCFN Method for Systems of Nonlinear Equations 60

Table 1. Results for problem 4.1 Table 2. Results for problem 4.2
(Number of iterations / CPU time) (Number of iterations / CPU time)

CN FN MSVF IJN JCFN
6/ 0.0008 59/ 0. 0003 −(−.08) − 8/ 0.0002

n CN FN MSVF IJN JCFN

(−.08)

25 6/ 0.0240 45/ 0.0230 42/ 0.0240 7/ 0.0013 12/ 0.0011

50 6/ 0.0310 69/ 0.0280 47/ 0.0300 9/ 0.0020 14/ 0.0015

80 6/ 0.0497 73/ 0.0310 50/ 0.0354 18/ 0.0024 17/ 0.0018

100 6/ 1.0431 73/ 0.9801 51/ 1.0009 22/ 0.0041 18/ 0.0026

200 6/ 54.4550 78/ 21.8710 51/ 34.7210 26/ 0.0064 22/ 0.0035

500 6/ 106.7143 78/ 55.0377 64/ 87.5410 43/ 0.0176 28/ 0.0056

1000 6/ 109.614 90/ 68.6521 87/ 95.9642 84/ 0.0487 49/ 0.0109

5000 − − − 91/ 0.1348 58/ 0.0512

10000 − − − 92/ 0.9610 67/ 0.3137

Problem 4.3. System of n nonlinear equations, [7].
Fjx  ∑ i1

n xi
2  1xj − 1  xj∑ i≠ xi − n  1, j  1,2,… ,n − 1,

Fnx  ∑ i1
n xi

2  1xn − 1 ; x0  −1.5,3. 5,−1.5,3. 5,… T.

Table 3. Results for problem 4.3 Table 4. Results for problem 4.4
(Number of iterations / CPU time) (Number of iterations / CPU time)

n CN FN MSVF IJN JCFN

(  −. 01)

25 8/ 0.0034 43/ 0.0029 58/ 0.0031 26/ 0.0014 24/ 0.0011

50 9/ 0.0054 49 / 0.0052 62/ 0.0050 28 / 0.0018 26/ 0.0012

80 9/ 0.0672 53/ 0.0583 79/ 0.0602 30/ 0.0024 29/ 0.0018

100 9/ 5.6500 56/ 5.1280 86/ 5.4070 30/ 0.0099 29/ 0.0043

200 9/ 8.6590 60/ 7.6420 − 31/ 0.0157 30/ 0.0085

500 9/ 19.2550 62/ 16.8163 − 32/ 0.0263 30/ 0.0089

1000 9/ 196.1002 69/ 188.5926 − 34/ 0.0481 31/ 0.0157

5000 − − − 34/ 0.0319 32/ 0.0148

10000 − − − 34/ 0.2564 32/ 0.0897

n CN FN MSVF IJN JCFN

(  −. 01)

25 4/ 0.0434 − 10/ 0.0342 41/ 0.0215 18/ 0.0162

50 4/ 0.0480 − 10/ 0.0040 17/ 0.0362 18/ 0.0195

80 4/ 0.0973 − 12 / 0.0830 17/ 0.0749 20/ 0.0412

100 4/ 0.1516 − 12 / 0.0967 20/ 0.0841 20/ 0.0491

200 5/ 0.7898 − 12 / 0.4712− 23/ 0.2654 22/ 0.0724

500 5/ 1.30985 − 14 / 0.7823− 25/ 0.5134 23/ 0.0940

1000 5/ 6.1698 − 15 / 1.3514− 28/ 0.8135 26/ 0.1078

5000 − − − 32/ 0.9104 28/ 0.2196

10000 − − − 33/ 0.9671 30/ 0.3270

61 M.Y. WAZIRI, W. J. LEONG, M. A. HASSAN, and M. MONSI

Problem 4.4. Trigonometric-exponential system, [9].
f1x  3x12  2x2 − 5  sinx1 − x2sinx1  x2,
fjx  3xi

2  2xi1 − 5  sinxi − xi1sinxi  xi1  4xi − xi−1expxi−1 − xi − 3,
fnx  4xn − xn−1expxi−1 − xi − 3 ; xi

0  0, i  2,… ,n − 1.

Problem 4.5. Singular Broyden, [6] . Problem 4.6. System of n nonlinear equations, [7].
f1x  3 − hx1x1 − 2x2  12 , Fjx  ∑ i1

n xi
2  jxj − 1  xj∑ i≠ xi − n  1,

fix  3 − hxixi − xi−1 − 2xi1  12, x0  −3,3,−3,3,−3… T, j  1,2,… ,n.
fnx  3 − hxnxn − xn−1  12,
xi
0  −1 and h  2.

Table 5. Results for problem 4.5 Table 6. Results for problem 4.6
(Number of iteration/CPU time) (Number of iteration/CPU time)

n CN FN MSVF IJN JCFN

( −. 01)
25 10/ 0. 0045 609/ 6. 716 398/ 3. 1265 21/ 0.0041 12/ 0.0026

50 10/ 0. 0078 864/ 15. 9725 467/ 6. 9861 21/ 0.0046 12/ 0.0031

80 10/ 0. 0162 968/ 24. 813 608/ 16. 4521 22/ 0.0083 13/ 0.0039

100 13/ 0. 0290 − 789/ 20. 9741 23/ 0.0093 14/ 0.0072

200 13/ 0. 0310 − 912/ 25. 3170 23/ 0.0120 16/ 0.0094

500 13/ 0. 0456 − 978/ 28. 8672 32/ 0.0169 20/ 0.0108

1000 13/ 0. 1981 − − 35/ 0.0328 24/ 0.0142

5000 − − − 35/ 0.0526 24/ 0.0266

10000 − − − 35/ 0.0919 25/ 0.0695

n CN FN MSVF IJN JCFN

( −. 01)
25 8/ 0.0023 42/ 0.0027 60/ 0.0038 21/ 0.0013 23/ 0.0012

50 8/ 0.0058 46/ 0.0056 67/ 0.0083 24/ 0.0049 23/ 0.0012

80 8/ 0.0661 49/ 0.0597 85/ 0.0772 25/ 0.0182 28/ 0.0021

100 8/ 5.5726 55/ 5.6836 98/ 6.6209 25/ 0.0233 28/ 0.0053

200 8/ 7.9367 60/ 7.5109 − 26/ 0.0247 30/ 0.0094

500 8/ 17.7592 66/ 15.9856 − 28/ 0.0259 31/ 0.0101

1000 8/ 180.1409 70/ 178.0479 − 30/ 0.0572 33/ 0.0119

5000 − − − 32/ 0.1745 36/ 0.0139

10000 − − − 32/ 0.2564 36/ 0.0703

The robustness index [9] is Vj 
tj
nj ,where tj is the number of successes by method j and

nj is the number of problems attempted by method j . Table 7, illustrates how the the JCFN
method considerably outperforms in robustness the CN, FN, MRVF and IJN for all tested
problems.

Table 7. Robustness indecies for problems 4.1- 4.6

CN FN MSVF IJN JCFN

V 0.7826 0.5435 0.6087 0.9782 1.

Clearly the JCFN method is the best with 100% of success in comparison with the CN
method (having 78% success), the FN method (with 54%), the MRVF (with 61%) and the IJN,
reaching 98% success. Moreover, from Tables 1-6 it is evident that the JCFN algorithm is

JCFN Method for Systems of Nonlinear Equations 62

cheaper (in the sense of having the least CPU time) than the CN, FN, MRVF and IJN methods.
This is basically due to the low computational effort associated with forming the
approximation of the Jacobian inverse as well as eliminating the requirements of solving a
Newtonian equation in each iteration.

Another advantage of the JCFN method over the alternative methods is in its lower storage
requirement. Our method has totally eliminated the cost of storing the the Jacobian in each
iteration. Unlike in the CN and MSVF methods, where Jacobian storage is required. That is
why, as the dimension of a problem increases to n ≥ 5000 , the CN and MSVF fail to converge,
due to huge memory requirements of the Jacobians in each iteration and to the accompanying
exponential growth of their global costs. In summary it is possible to claim that our proposed
JCFN is significantly cheaper than the CN, FN, MSVF and the IJN algorithms and is better
than the MRVF and FN methods.

5. Conclusions

In this paper we have advanced a modification to Newton’s method for solving systems of
nonlinear equations. Our approach is based on approximating the Jacobian inverse to a
diagonal matrix. The fact that the JCFN method solves the benchmark problems without the
cost of computing and storing the Jacobian is a clear advantage of JCFN method over the CN,
FN, MRVF and IJN alternatives. It is worth mentioning that the method is capable of
significantly reducing the execution time (CPU time), as compared with the CN, FN , MRVF
and IJN while still maintaining a high accuracy of the numerical result. Another fact that
makes the JCFN method more attractive, is that in all the benchmark problems, it has never
failed to converge. Hence, we may conclude that the JCFN is significantly cheaper than the
CN, FN, MRVF and IJN and suitable for small, medium and large scale systems. It appears
finally that the JCFN algorithm is a good alternative to CN, FN and MRVF methods especially
when the function derivatives are excessively costly to store.

Acknowledgments.
The authors would like to thank the referees for their very useful comments and suggestions.

References

[1] A. Albert, and J. E. Snyman, Incomplete series expansion for function approximation,
Structural and Multidisciplinary Optimization 34, (2007), 21-40.

[2] L. Binh, On the convergence of a Quasi-Newton’s method for sparse nonlinear systems,
Mathematics of Computation 32, (1978), 447-451.

[3] R. S. Dembo, S. C. Eisenstat, and T. Steihaug, Inexact Newton methods, SIAM Journal of
Numerical Analysis 19, (1982), 400-408.

[4] J. E. Dennis, Numerical Methods for Unconstrained Optimization and Nonlinear
Equations, Prince-Hall, Englewood Cliffs, N J, 1983.

63 M.Y. WAZIRI, W. J. LEONG, M. A. HASSAN, and M. MONSI

[5] H. Drangoslav, and K. Natasa, Quasi-Newton’s method with corrections, Novi Sad Journal
of Mathematics 26, (1996), 115-127.

[6] M. A. Gomes-Ruggiero, J. M. Martinéz, and A. C. Moretti, Comparing algorithms for
solving sparse nonlinear systems of equations , SIAM Journal on Scientific Computing 13,
(1982), 459-483.

[7] L. Hao, and N. Qin, Incomplete Jacobian Newton method for nonlinear equation,
Computers and Mathematics with Applications 56, (2008), 218-227.

[8] N. Krejić, and Z. Lužanin, Newton-like method with modification of the right-hand-side
vector,Mathematics of Computation 71 (237), (2002), 237-250.

[9] L. Lukšan, Inexact trust region method for large sparse systems of nonlinear equations,
Journal of Optimization Theory and Applications 81 (3), (1994), 569-590.

[10] J. J. Tapia, E. Martinéz, and J. R. Torregrosa, Modified Newton’s method for systems of
nonlinear equations with singular Jacobian, Journal of Computational and Applied
Mathematics 224 (1), (2009), 77-83.

Article history : Submitted June, 19, 2010 ; Accepted September, 24, 2010.

