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Abstract. The most popular approach to synthetic collateralized debt obligations (CDO)
pricing uses factor models in the conditional independence framework, which were first
introduced by Vasicek to estimate the loan loss distribution of a pool of loans. Efficient
methods for evaluating the loss distributions of synthetic CDO’s are important for both pricing
and risk management purposes. In the framework of the one-factor Gaussian copula model, we
propose an approximate but quasi-exact numerical recursive evaluation using pseudo
compound Poisson distributions. For the sake of illustration and comparison we have
computed a number of more or less complex cases, whose approximations turn out to be highly
accurate in all considered examples.
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1. Introduction

Collateralized debt obligations (CDO) are among those structured financial products,
which had an important impact during the sub-prime mortgage crisis. The Wikipedia entry
http://en.wikipedia.org/wiki/Subprime_mortgage_crisis claims that Merrill Lynch’s large losses in 2008
were attributed in part to the drop in value of its un-hedged portfolio of CDO’s after AIG
ceased offering credit default swaps (CDS) on Merrill’s CDO’s. Knowledge of the risk
characteristics of synthetic CDO’s is important for understanding the nature and magnitude of
credit risk transfer. In particular, efficient methods for evaluating the loss distributions of
synthetic CDO’s are important for both pricing and risk management purposes. Recall some
known methods, which can be divided into several groups as follows:

64



65 W. HÜRLIMANN

Analytical and semi-analytical methods. Through simplification of the pricing models,
analytical or at least semi-analytical pricing expressions can be obtained. Factor models, such
as the reduced-form model proposed by [30] and the structural model proposed by [38], [39],
[40] (see also [32], [5], Section 2.5.1, [15]) are widely used in practice to obtain analytic or
semi-analytic formulas to price synthetic CDO’s efficiently. For a comparative analysis of
different factor models, we refer to [6]. Further interesting analytical models in this area
include [28] and [34], which use normal inverse Gaussian distributions, and [4], which extends
Vasicek’s asymptotic model to general non-normal systematic risk factors.

Monte Carlo method. From a computational point of view, Monte Carlo simulation is the last
resort because of its inefficiency, despite its flexibility, and is not discussed further.

Exact evaluation methods. The available numerical methods assume that the
loss-given-defaults of all obligors are integer multiples of a properly chosen monetary unit
(common lattice assumption). Exact methods have been given by [2], [30] and [20]. A
discussion of these methods, a multi-state extension, as well as a stable and efficient
reformulation of the Hull and White method are found in [26].

Quasi-exact evaluation method. Approximate numerical evaluation of the pool’s loss
distribution is possible. An example is the compound Poisson approximation by [7]. Following
[26] improved and almost exact accuracy can be obtained using the so-called pseudo
compound Poisson approximations by [22] in the form proposed in [17], [18]. The present
mathematical specification, written in the spirit of [13], is devoted to the latter quasi-exact
numerical method.

The exposé is organized as follows. Section 2 recalls the pricing model for synthetic
CDO’s. Section 3 presents the approximate and quasi-exact evaluation using pseudo
compound Poisson distributions and Section 4 illustrates its use at some simple examples.

2. Pricing Model

2.1. Fair spread

A synthetic collateralized debt obligation, or synthetic CDO, is a transaction that transfers
the credit risk on a reference portfolio of assets. The reference portfolio in a synthetic CDO is
made up of credit default swaps or CDS’s. A synthetic CDO is classified as a credit derivative.
Much of the risk transfer that occurs in the credit derivatives market is in the form of synthetic
CDO’s. Understanding the risk characteristics of synthetic CDO’s is important for
understanding the nature and magnitude of credit risk transfer (see [14]).

Consider a synthetic CDO tranche of size S with an attachment point ℓ, a threshold that
determines whether some of the pool losses shall be absorbed by this tranche. If the realized
losses of the pool are less than ℓ, then the tranche will not suffer any loss, otherwise it will
absorb losses up to its size S. The threshold S  ℓ is called the detachment point of the tranche.
Assume there are m names in the pool. For name k ∈ 1,… ,m, its notional value and the
recovery rate of the notional value of the reference asset are denoted by Nk and Rk,
respectively. Then the loss-given-default or the recovery-adjusted notional value of name k, is
LGDk  Nk  1 − Rk. Let 0  t0  t1  t2    tn  T be the set of premium dates, with T
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denoting the maturity date of the CDO tranche. Assume that the interest rates are deterministic.
Then the set of (risk-free) discount factors for the given payment dates, denoted by
D1,D2,… ,Dn, are deterministic. Let LiP be the pool’s cumulative losses up to time
ti, i ∈ 1,… ,n. Then the losses absorbed by the specified tranche up to time ti, denoted by Li,
is Li  minLiP − ℓ,S, where x  maxx, 0. The function pLiP;S, ℓ  minLiP − ℓ,S,
is called the payoff function of the specified tranche. In actuarial science a similar payoff
function is used to define the limited stop-loss reinsurance, where LiP represents the cumulative
claims up to the i −th claim, with the difference that the number of claims n up to the maturity
date T of the reinsurance contract is random.

Assume that the fair spread for the tranche is a constant s per annum. The two important
quantities to be determined in synthetic CDO tranche valuation are the present value of the
default leg (the expected losses of the tranche over the life of the contract), called contingent,
and the present value of the premium leg (the expected premiums that the tranche investor will
receive over the life of the contract), called fee. We use the definitions and relationships
default leg: DL  ∑ i1

n DiLi − Li−1
premium leg: PL  s ∑ i1

n DiΔiS − Li, Δi  ti − ti−1
contingent: PV DL  ∑ i1

n DiELi − Li−1, EL0  0
fee: PV PL  s ∑ i1

n DiΔiS − ELi
The market-to-market value of the tranche to the tranche investor today is equal to

MTM  fee − contingent
The fair spread solves the pricing equationMTM  0, and is given by

s 
∑ i1

n DiELi − Li−1
∑ i1

n DiΔiS − ELi
, EL0  0. 1

With (1) the valuation problem is reduced to the computation of the expected cumulative
losses ELi, i  1,… ,n. In order to compute these expectations, one has to specify the default
processes for each of the names and the correlation structure of the default events.

2.2. One-factor model

The most popular approach to synthetic CDO pricing uses factor models in the conditional
independence framework. They were first introduced by [38] to estimate the loan loss
distribution of a pool of loans. We will use a one-factor model.

Let Tk be the random default time of name k ∈ 1,… ,m and assume that the risk-neutral
default probabilities qk, i  PTk  ti , i  1,… ,n,k  1,… ,m, are available as input. The
latter quantities can be estimated from CDS single-name spreads (e.g. [12], [19], [3]). The
dependence structure of the default times is determined by the creditworthiness indices Yk
through a one-factor copula and are defined by

Yk  k X  1 − k Zk , 2

with
X : systematic risk factor
Zk : idiosyncratic factors
k2 ∈ 0,1: correlation factors
One assumes that the Zk’s are mutually independent and also independent of X. The
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risk-neutral default probabilities and the creditworthiness indices are related by the copula
model

qk, i  PYk  Hkti, i  1,… ,n,k  1,… ,m, 3

where Hkti is the default threshold of the k −th name at time ti. The copula model was first
introduced by [32] and then used in portfolio credit risk analyses, including synthetic CDO
valuation, by [16], [20], [7], [30] and [36] among others.
One notes that the correlations of the default events are captured by the systematic risk factor X
and conditional on a given value x of X, all default events are independent. If one assumes
furthermore that X and Zk follow standard normal distributions, then one obtains the so-called
one-factor Gaussian copula model. In this standard model one has the relationships
(i) Hkti  Φ−1qk, i
(ii) CovYk,Yj  k j

(iii) qk, i ∣ x  PYk  Hkti ∣ X  x  Φ
Φ−1qk,i − k X

1−k

where Φz is the standard normal distribution, and (iii) represents conditional risk-neutral
default probabilities.

Remarks 2.1. The one-factor Gaussian copula model can be extended in various ways:
∙ If X is a random vector, one obtains a multi-factor copula model
∙ If X and Zk follow Student−tdistributions with different degrees of freedom, one obtains
the double−t copula model in [20]
∙ If X and Zk follow normal inverse Gaussian distributions one obtains models of the type
considered in [28] and [34]
∙ Further generalizations are found in [6], [4] and [1]
In the above conditional independence framework, the expected cumulative tranche losses
ELi, i  1,… ,n can be computed as

ELi  
−


ELi ∣ X  x dΦx , 4

where ELi ∣ X  x  EminLiP − ℓ,S ∣ X  x is the expectation of the tranche loss Li
conditional on X  x. Clearly one has

LiP  ∑k1
m LGDk  IYk  Φ−1qk, i, 5

where the random indicators IYk  Φ−1qk, i are mutually independent conditional on X.
With (5) the valuation problem is further reduced to the computation of the conditional
expected cumulative losses ELi ∣ X  x, i  1,… ,n. A quasi-exact recursive algorithm for
this is developed in the next Section.

Remark 2.2. An alternative way to evaluate ELi ∣ X  x consists in approximating the
CDO tranche payoff function pLiP;S, ℓ  minLiP − ℓ,S by a sum of exponentials over
the interval [0, as proposed in [24], [25].
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3. Recursive Evaluation Via Pseudo Compound
Poisson Distributions

For convenience the systematic risk factor is fixed at some value X  x. Random sums of
the type (5) with mutually independent terms are well-known in actuarial science under the
heading of “individual model of risk theory”. Methods to evaluate its distribution function
have been designed by many authors including [29], [17], [8], [9], [10], [21], [22], [23], [37].
The main basic idea consists to consider approximations to the characteristic function of (5)
and develop recursive algorithms for the evaluation of the corresponding distribution
functions. By adequate choice of the approximation, the evaluation can be made as accurate as
desired.
Conditional on X  x the characteristic function of (2.5) is given by

ϕt 
k1

m
ϕkt, ϕkt  expln1  ck  eit  LGDk − 1, 6

where for simplicity of notation the shortcut ck  qk, i ∣ x is used. References [17] and [18],
Chapter 4, define the J −th order approximation of (6) for small ck by truncating the
logarithmic expansion ln1  x  ∑ j1

 −1j1
j xj at the J −th term to get the expression

ϕJt  exp ∑k1
m ∑ j1

J −1j1
j ck  eit  LGDk − 1j , J  1,2,3, . . . . . 7

For J  1 (7) can be rewritten as

ϕ1t  exp 1 1t − 1 , 1  ∑k1
m ck , 1t  1

1
∑k1

m ck eit  LGDk , 8

which is the characteristic function of a compound Poisson distributed random variable with
Poisson parameter 1 and probability function

h1y  1
1

∑LGDky
ck , y  1,2,3, . . . . . 9

Similarly, for all J ≥ 2, (7) can also be rewritten in the form ϕJt  exp J Jt − 1 ,
which corresponds in the terminology of [22] to the characteristic function of a pseudo
compound Poisson distributed random variable with Poisson parameter J and pseudo
probability function hJy. The approximations of smaller order J  2,3,4 are ([18], p.79-80):

J  2
2  ∑k1

m ck  1  1
2 ck

h2y  1
2
 ∑LGDky

ck  1  ck − 1
2 ∑2 LGDky

ck2 , y  1,2,…

J  3
3  ∑k1

m ck  1  1
2 ck 

1
3 ck

2

h3y  1
3
 ∑LGDky

ck  1  ck  ck2 − ∑2 LGDky
ck2   12  ck 

1
3 ∑3 LGDky

ck3 ,
y  1,2,…
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J  4
4  ∑k1

m ck  1  1
2 ck 

1
3 ck

2  1
4 ck

3

h4y  1
4
 ∑LGDky

ck  1  ck  ck2  ck3 − ∑2 LGDky
ck2   12  ck 

3
2 ck

2 

 1
3 ∑3 LGDky

ck3   13  ck −
1
4 ∑4 LGDky

ck4 , y  1,2,…
At this stage some mathematical comments are in order. The functions hJy do not define

true probability measures but only signed measures. The conditions under which a pseudo
compound Poisson distribution with Poisson parameter λ and pseudo probability function hy,
y  1,2,… defines a true probability distribution have been identified in [31]. According to
[33], p.252, and [27], p.356, this is the case provided a negative value hy  0 is preceded by
a positive value and followed by at least two positive values. This criterion is not always
fulfilled in Example 4.4. It is fulfilled for J  1,3 but not for J  2,4. However, the latter
anomaly does not disturb the obtained results. Another remarkable property of Hipp’s pseudo
compound Poisson approximation has been derived in [11]. The distribution function
corresponding to the J −th order approximation of (6) has the same first J moments as the
original distribution corresponding to (6). In particular, the 4 −th order approximation fits the
mean, variance, skewness and kurtosis of the original distribution. More importantly, the
probability function fz, z  0,1,2,… of a pseudo compound Poisson distribution with Poisson
parameter λ and pseudo probability function hy,y  1,2,… can be evaluated using the simple
Panjer recursion formula (e.g. [22], formula (1.5)):

f0  e− , z  fz   ∑y1
z y  hy  fz − y, z  1,2,… 10

As shown in [35], this recursive algorithm is numerically stable. Finally, increasing the order
of approximation to infinity guarantees arbitrary accuracy and convergence to the probability
distribution corresponding to (6). Let Fz, FJz be the distribution of (6) and its J −th order
approximation. According to [18], p.80, one has the error bound

|Fz − FJz| ≤ e − 1,   ∑k1
m k , k  1

J  1
 2ckJ1
1 − 2ck , ck  1

2 . 11

In particular, letting J →  this shows convergence of the chosen approximation method.

4. Numerical Examples

So far we have developed a convergent recursive algorithm for the evaluation of the
probability function associated to the pool’s cumulative loss (5) conditional on a given value of
the systematic risk factor. For fixed J ∈ 1,2,3, 4, denote by fi

P,Jz ∣ x the J −th order
approximation of the conditional probability function PLiP  z ∣ X  x associated to (5),
which has been calculated using the recursive algorithm (10) with Poisson parameter λ  λJ
and pseudo probability function hy  hJy as specified in Section 3. To obtain the
cumulative tranche losses (4) we first calculate the unconditional probability function of (5)
via numerical integration as follows:

fi
P,Jz  

−


fi
P,Jz ∣ x dΦx ≈ 

N ∑r−N
N fi

P,Jz ∣   rN   
r
N , 12

where φt  Φ´tis the standard normal probability density. In our numerical examples the
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choice Δ  5,N  500, has been appropriate. Associated to (12) we compute the probability
distribution function setting

fi
P,Jz  ∑y0

z fi
P,Jy , z  0,1,2, 3, . . . . . 13

and the stop-loss transform S Li
P,Jz  EJLiP − z via the recursion

SLi
P,J0  ELiP  ∑k1

m qk, i LGDk , SLi
P,Jz  1  SLi

P,Jz − 1  Li
P,Jz. 14

The J −th order approximation of the expected cumulative tranche losses (2.4) is then obtained
by setting

EJLi  EJminLiP − ℓ,S  SLi
P,Jℓ − SLi

P,Jℓ  S. 15

By inserting the obtained values into (1) one gets J −th order approximations of the fair
spreads of synthetic CDO’s, which with increasing approximation order will convergence to
the exact fair spread. For the sake of illustration and comparison we have computed a number
of more or less complex cases.

Example 4.1. Completely homogeneous pool.
Suppose that there are m  100 names in the pool, each with identical loss-given-default

LGDk  Nk  1 − Rk  1. Let ti  i, i  1,… , 5 be the premium dates, T  5 the maturity date.
Each name in the pool has risk-neutral default probabilities qk, i  qi  1 − e−0.01i,
i  1,… , 5, and let ρk  ρ  30% be the identical correlation factors of the one-factor Gaussian
copula model. The discount factors are based on a risk-free flat interest rate of 5%. In this
completely homogeneous situation the conditional probability function of (5) is exact
binomially distributed such that

fi
Pz ∣ x 

m
z

q zi ∣ x 1 − qi ∣ xm−z , z  1,2,… . ,m, 16

with qi ∣ x  Φ
Φ−1qi −  X

1−
. The approximation of order J  1 is exact conditional

Poisson distributed with parameter λ1  m  qi ∣ x. Moreover as m →  the large portfolio
Vasicek limiting distribution holds such that

fi
Pz → Φ

1 −   Φ−1 zm  − Φ−1qi


, z  1,2,… . ,m. 17

The Table1 below summarizes the results of par spread calculation for three CDO tranches,
an equity tranche between 0 and 3 defaults, a mezzanine tranche between 3 and 10 defaults and
a senior tranche between 10 and (maximally) 100 defaults. A comparison of the results shows
that the exact results up to the third decimal place are already attained for the pseudo
compound Poisson approximation of order J  2. The Poisson approximation of order J  1
underestimates the spreads of the lower tranches while the Vasicek approximation is definitely
not appropriate in this situation (overestimation of the equity and mezzanine tranches and
underestimation of the senior tranche).
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Table 1. Par spreads for the completely homogeneous pool.
Par spread for different distributions

CDO tranches J  1 J  2 J  3 J  4 Exact Vasicek
equity 21.794% 21.875% 21.876% 21.876% 21.876% 26.095%

mezzanine 6.004% 6.024% 6.024% 6.024% 6.024% 6.488%

senior 0.271% 0.269% 0.269% 0.269% 0.269% 0.201%

Example 4.2. Sub-pools with varying correlation factors and risk-neutral default probabilities.
Suppose that there are 5 sub-pools with 20 names in each sub-pool, each with identical

loss-given-default LGDk  Nk  1 − Rk  1. ti  i, i  1,… , 5 be the premium dates, T  5
the maturity date. Each name in the sub-pool k ∈ 1,… , 5 has risk-neutral default probabilities
qk, i  e−0.0050.005ki, i  1,… , 5, and correlation factors ρk  0.25  0.05  k. There is a
risk-free flat interest rate of 5%. In contrast to Example 1, the attachment and detachment of the
CDO tranches are expressed in units of loss amounts. We consider three CDO tranches, an
equity tranche between 0 and 10 loss units, a mezzanine tranche between 10 and 25 loss units,
and a senior tranche between 25 and 100 loss units. Table 2 shows that the spreads of the
pseudo compound Poisson approximation of order J  3 are exact within three decimal places
while the approximations of order J  2 differ only slightly.

Table 2. Par spreads for the partially inhomogeneous pool of Example 4.2.
Par spread for different distributions

CDO tranches J  1 J  2 J  3 J  4
equity 15.524% 15.585% 15.586% 15.586%

mezzanine 4.184% 4.207% 4.211% 4.211%

senior 0.408% 0.400% 0.399% 0.399%

Example 4.3. Sub-pools withub-pools with varying loss-given-defaults.
Suppose that there are 5 sub-pools with 20 names in each sub-pool, each name with

loss-given-default LGDk  Nk  1 − Rk  1. Let ti  i, i  1,… , 5 be the premium dates,
T  5 the maturity date. Names in the sub-pools have identical risk-neutral default probabilities
qk, i  qi  1 − e−0.01i, i  1,… , 5, and correlation factors ρk  ρ  30% . There is a
risk-free flat interest rate of 5%. As in Example 4.2 there are three CDO tranches, an equity
tranche between 0 and 10 loss units, a mezzanine tranche between 10 and 25 loss units, and a
senior tranche between 25 and 100 loss units. Table 3 shows that the spreads of the pseudo
compound Poisson approximation of order J  3 are exact up to three decimal places while the
approximations of order J  2 differ only slightly.
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Table 3. Par spreads for the partially inhomogeneous pool of Example 4.3.
Par spread for different distributions

CDO tranches J  1 J  2 J  3 J  4
equity 19.880% 19.964% 19.965% 19.965%

mezzanine 6.616% 6.645% 6.645% 6.645%

senior 1.174% 1.183% 1.187% 1.188%

Example 4.4. Inhomogeneous pool.
Let us combine the features of Example 4.2 and 4.3. Suppose that there are 5 sub-pools

with 20 names in each sub-pool, each name with loss-given-default LGDk  Nk  1 − Rk  k,
k  1,2, . . . , 5. Let ti  i, i  1,… , 5 be the premium dates, T  5 the maturity date. Each name in
the sub-pool k ∈ 1,… , 5 has risk-neutral default probabilities qk, i  1 − e−0.0050.005ki,
i  1,… , 5, and correlation factors ρk  0.25  0.05  k. There is a risk-free flat interest rate of
5%. As in the Examples 4.2 and 4.3 there are three CDO tranches, an equity tranche between 0
and 10 loss units, a mezzanine tranche between 10 and 25 loss units, and a senior tranche
between 25 and 100 loss units. Table 4 shows that the spreads of the pseudo compound Poisson
approximation of order J  3 are exact up to two decimal places while the approximations of
order J  2 differ only slightly from the exact values.

Table 4. Par spreads for the partially inhomogeneous pool of Example 4.4.
Par spread for different distributions

CDO tranches J  1 J  2 J  3 J  4
equity 25.954% 26.087% 26.091% 26.091%

mezzanine 11.002% 11.078% 11.080% 11.080%

senior 3.002% 3.060% 3.076% 3.082%

The analyzed numerical examples allow for the following conclusions. The approximations
of order J3,4 yield quasi-exact spreads for CDO tranches. The approximation of order J2
yields almost accurate spreads, which can be used in practical applications. The spreads from
the compound Poisson approximation J1 differ already too much to be reliable in general.
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