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Abstract. This paper is concerned with a quadratic matrix equation that arises in the analysis
of mass-spring systems. By the use of a basic fixed-point iteration, we propose a sufficient
condition for the existence of the maximal nonpositive solution to this equation. We also show
that Bernoulli’s method and Newton’s method converge to the maximal nonpositive solution
under the proposed sufficient condition. Moreover, we discuss some properties of the maximal
nonpositive solution and provide a numerical result to validate the proposed condition.

Key words : Quadratic Matrix Equation, M-matrix, Fixed-Point Iteration, Newton’s Method,
Bernoulli’s Method.

AMS Subject Classifications : 65F30, 65H10, 15A24

1. Introduction

We consider the quadratic matrix equation (QME)

QX  AX 2  BX  C  0, 1

with X ∈ Rnn, an unknown matrix, A, B and C ∈ Rnn are the known coefficient matrices.
Throughout this paper, we shall always assume that A is a diagonal matrix with positive
diagonal elements, B is a nonsingular M-matrix and C is an M-matrix such that B−1C ≥ 0. The
concept of the M-matrix and its properties will be introduced in the latter part of this section.
The above assumptions are motivated by a quadratic eigenvalue problem (QEP)
—————————————
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Qx  2A  B  Cx  0, 2

arising from a damped mass-spring system [11,12] with

A  diagm1,,mn, B  tridiag−1,3,−1 and C  tridiag−1,3,−1, 3

where, for each i  1,2,,n, mi is the weight of the i-th mass and () is some damping
(stiffness) constant. It is not difficult to see that the matrices A, B and C in (3) have simple
structures and satisfy the conditions supposed in (1).

To solve the quadratic eigenvalue problem (2), Higham and Kim [10] indicated that the
quadratic matrix polynomial Q can be factored as

Q  A  AX  BI − X.

Therefore, if the solution X of the corresponding QME (1) is formed, the eigenpairs of QEP (2)
can be constructed computionally from the solution X. Such an approach shall be called the
solution method and depends heavily on finding the solution efficiently in QME (1).

Newton’s method and Fixed-point methods are usual iterative schemes for computing the
solution of QME (1). It is well known that theses methods may have local convergence, if they
are well defined and not incorporating any global strategy such as linear search. There are
some basic problems pertaining to the existence of solutions to QME (1) and to determination
of which solution the iterative methods will converge to. In this paper, we give a sufficient
condition for the existence of a maximal nonpositive solution in QME (1), which is only tied to
the coefficient matrices and can easily be verified. We also show that , under our proposed
condition, Newton’s method and Bernoulli’s method (a special fixed-point method) with the
initial zero matrix converge to the maximal nonpositive solution. As a byproduct, we further
demonstrate some properties of the maximal nonpositive solution.

The concept of an M-matrix and some of its properties are stated as follows and can be
found in [13]. For matrices A, B ∈ Rnn, we write A ≥ BA  B if aij ≥ bijaij  bij for all i,
j. A real square matrix A is called a Z-matrix if all its off-diagonal elements are nonpositive. It
is clear that any Z-matrix A can be written as sI − B with B ≥ 0. A Z-matrix A  sI − B with
B ≥ 0 is called an M-matrix if s ≥ B, where  denotes the spectral radius. It is called a
singular M-matrix if s  B and a nonsingular M-matrix if s  B.

Lemma 1.1. Given that A is a Z-matrix , A is an M-matrix if and only if there exists a nonzero
vector v ≥ 0 such that Av ≥ 0.

Lemma 1.2. For a Z-matrix A, the following statements are equivalent:
(a) A is a nonsingular M-matrix.
(b) A is nonsingular and satisfies A−1 ≥ 0.
(c) Av  0 for some vector v  0.
(d) All eigenvalues of A have positive real parts.

It is not difficult to see that the next result is a direct consequence of (a) and (c) in Lemma
1.2.

Lemma 1.3. Let A be a nonsingular M-matrix. If B ≥ A is a Z-matrix, then B is also a
nonsingular M-matrix.
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In the sections that follow, for a square matrix A ∈ Rnn , we will denote by A the set of
eigenvalues of A, and ‖A‖ the Frobenius norm of A. The operator vec(A) represents a column
vector of size n2  1 whose entries come from A by stacking up columns of A. The rest of this
paper is organized as follows. We review Newton’s method and Bernoulli’s method for finding
a nonpositive solution of QME (1) in the next section. In Section 3, we construct a basic
fixed-point iteration and to subsequently propose a sufficient condition of the existence of the
maximal nonpositive solution. In Section 4, we establish the convergence of Newton’s method
and Bernoulli’s method under the proposed sufficient condition. Some properties of the
maximal nonpositive solution are also discussed. At last, Section 5 is devoted to a numerical
experiment that validates the proposed sufficient condition.

2. Newton’s and Bernoulli’s Methods

While reviewing Newton’s and Bernoulli’s methods for finding a solution of QME (1), we
first show that QME (1) can be transformed to a simpler form. In fact, by multiplying (1) by
A−1 from the left, we have

Q̄X  X 2  A−1BX  A−1C  0. 4

Notice further that A−1B is a Z-matrix and A−1B−1  B−1A ≥ 0, then, by Lemma 1.2, A−1B is
a nonsingular M-matrix. Since C is a M-matrix, there exists a vector v ≥ 0 such that Cv ≥ 0. It
then follows, by Lemma 1.1, from the inequality A−1Cv ≥ 0 that A−1C is also an M-matrix
Furthermore, we have A−1B−1A−1C  B−1C ≥ 0, which indicates that the QME (4) is
equivalent to

QX  X 2  BX  C  0, 5

with B as a nonsingular M-matrix and C as an M-matrix satisfying B−1C ≥ 0.
Here and after, we shall consider only iterative methods for solving QME (5). Bernoulli’s
method, as considered in [10], is of the following form

Xk  BXk1  −C, k  0,1,, 6

and is essentially a special fixed-point iteration. The convergence result, under assumptions we
have made in the Introduction, is summarized in what follows. Note that an additional
condition is necessary to guarantee that the sequence Xk converges to a nonpositive solution.

Theorem 2.1. For Bernoulli’s method, with initial matrix X0  0, if there is a negative matrix
X such that QX ≤ 0, then QME (5) has a nonpositive solution X∗ and the sequence Xk
produced by (6) converges to X∗ with X∗ ≥ X. Moreover, the matrix X∗ is such that X∗  B is
an M-matrix.

Proof. We prove this theorem by induction on k. In view of (6), we have
X1  −B−1C ≤ X0 and X0  X,

where X is a negative matrix such that QX ≤ 0. Moreover, it is clear that Xk  B is a
nonsingular M-matrix. Then the following
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Xk  X, Xk  B is a nonsingular M-matrix and Xk1 ≤ Xk, 7

should hold true for k  0.
Suppose next that (7) is true for all k  i ≥ 0. We are going to show that it is true for i  1 too.
By the use of (6) and the induction assumption, we have
Xi  BXi1 − X  Xi  BXi1 − BX − XiX

 X2 − XiX  X − XiX  0. 8

Since I ⊗ B  Xi is a nonsingular M-matrix, then by Lemma 1.2, it follows that Xi1  X .
Moreover, in view of (6), we have
Xi1  BXi1 − X  Xi1 − X  X  BXi1 − X

 Xi1 − X2  X − XiXi1 − QX  0, 9

which shows, by Lemma 1.2, that I ⊗ B  Xi1 is a nonsingular M-matrix. Finally, the
inequality
Xi1  BXi2 − Xi1  −C − Xi1  BXi1

 −C − Xi1
2 − BXi1  X − XiXi1 ≤ 0, 10

indicates, by Lemma 1.2, that Xi2 ≤ Xi1 . So we have shown by induction that (7) is true for
all k ≥ 0. Bernoulli’s method is therefore well defined and the sequence Xk in (6) is
monotonically non-increasing and bounded from below by X. Let limk→Xk  X∗. It is obvious
then that X∗ is a nonpositive solution to (5). By the definition of M-matrix, B  Xk can be
written as sI − Nk with Nk ≥ 0 and s  Nk for all k ≥ 0. Therefore, B  X∗  sI − N, with
s ≥ N, where N  limk→Nk. So, B  X∗ is a M-matrix. 

We turn now to Newton’s method. Since the Fréchet derivative of Q at X is a linear map
QX

′ : Rnn → Rnn given by
QX

′
E  EX  X  BE,

the basic Newton iterative format

Xk1  Xk − QXk

′
−1QXk, k  0,1,, 11

(if QXk

′
−1 is nonsingular at Xk) can then be rewritten as

Xk1Xk  Xk  BXk1  Xk
2 − C, k  0,1,. 12

The convergence of Newton’s method, under the assumptions of the Introduction, may be
listed as follows.

Theorem 2.2. For Newton’s method with initial matrix X0  0. If there is a negative matrix X
such that QX ≤ 0, then QME (5) has a nonpositive solution X∗ and the sequence Xk
produced by (12) converges to X∗ with X∗ ≥ X. Moreover, the matrix X∗ is such that
MX∗  X∗T ⊗ I  I ⊗ X∗  B

is an M-matrix, where ⊗ is the Kronecher product.
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Proof. Let MXk  XkT ⊗ I  I ⊗ Xk  B. The proof is similar to that of Theorem 2.1 and is
carried out by induction on the statement

Xk1 ≤ Xk, Xk  X and MXk is a nonsingular M-matrix 13

for each k  1,2. . . . 

Remark 2.1. We will see later that X∗ in Theorem 2.1 and Theorem 2.2 is the maximal
nonpositive solution of QME (5).

3. A Sufficient Condition for the Existence of the Maximal
Nonpositive Solution

Theorems 2.1 and 2.2 illustrate that the negative matrix X plays an important role in their
proof. However, such a negative matrix X may not exist and in this case, searching for such a
negative matrix is definitely fruitless.
In this section, we propose a sufficient condition for the existence of the nonpositive solution
to QME (5) which may be based on another fixed-point iteration

Xk1  −B−1Xk
2 − B−1C, k  0,1,, 14

with X0  0. This condition is only tied with the coefficient matrices of QME (5) and can
easily be verified.

Theorem 3.1. If B − C − I is a nonsingular M-matrix, then QME (5) has a nonpositive solution
X∗ with X∗ ≤ 1. Also B  X∗ and B  X∗ − C are both nonsingular M-matrices. In
particular, the matrix X∗ is the maximal nonpositive solution of (5).

Proof. It follows from (14) that X1  −B−1C ≤ X0. We now assume that

Xk ≤ Xk−1 ≤ 0 15

for k  i ≥ 0, then the inequality
Xi1 − Xi  −B−1XiXi − Xi−1  Xi − Xi−1Xi−1 ≤ 0

shows that (15) is true for k  i  1. Therefore the sequence Xk is monotonically
non-increasing by induction.

If B − C − I is nonsingular M −matrix, then there exists a vector v  0 such that
B − C − I v  0.

Since B−1 ≥ 0 with no zero row, we, by lemma 1.2, have

v  B−1v  B−1C v . 16

Furthermore, we will show, by induction, that B  Xk are nonsingular M −matrices and −Xk
v  v for all k ≥ 0.The above statement holds obviously for k  0. Suppose then that B  Xk is
a nonsingular M-matrix and −Xk v  v is true for k  i. Moreover, according to (14) and (16)
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we have

− Xi1 v  B−1Xi1
2 v  B−1C v  B−1v  B−1C v  v. 17

This results with
B  Xi1v  B v − v  C v . 18

Since B−1 ≥ 0 we have I  B−1Xi1v  B−1C v ≥ 0. Therefore, by virtue of Lemma1.2,
I  B−1Xi1is a nonsingular M-matrix. Hence B  Xi1 is nonsingular with
B  Xi1−1  I  B−1Xi1−1B−1 ≥ 0 .

By lemma 1.2 and (17), B  Xk are all nonsingular M-matrices and −Xk v  v for all k ≥ 0.
Now the sequence Xk is monotonically non-increasing and bounded from below, and has a
limit X∗ with I  X∗ v ≥ 0, i.e. X∗ ≤ 1. We also know from the earlier proof that the
sequence {B  Xk−1} is monotonically non-decreasing and bounded from above. Hence the
limit B  X∗ is a nonsingular M-matrix. Using moreover the limit in (18) yields
B  X∗ v ≥ B v − v  C v .

Since B  X∗is a Z −matrix, then B  X∗ − C is a nonsingular M −matrix.
If there is another nonpositive solution X∗∗ of (5), it is clear that X0 ≥ X∗∗. Assume then

that Xk ≥ X∗∗ holds for k  i. by induction and the inequality
Xi1 −X∗∗  −B−1XiXi − X∗∗  Xi − X∗∗X∗∗ ≥ 0,

we deduce that X∗ ≥ X∗∗. Hence X∗ is the maximal nonpositive solution of (5). 
We can also identify additional properties of the maximal nonpositive solution of QME

(5). Before that however, we state the following lemma. Its proof is straightforward.

Lemma 3.1. Let W 
0 −I
C B

and X be a solution of QME (5), then

I 0
X I

−1

W
I 0
X I


−X −I
0 B  X

.

Moreover, the eigenvalues of B  X and −X are just the eigenvalues of W.

Proposition 3.1. Let X be a solution, and X∗be the maximal nonpositive solution, of QME(5),
then the following holds.
(a) If C is nonsingular, then B  X and X are both nonsingular matrices.
(b) If B − C − I is a nonsingular M −matrix while C is a singular one, then X∗ is a singular
matrix with the same multiplicities of the zero eigenvalue of C.

Proof. It follows from
rankC  rankB  XX ≤ minrankX, rankX  B

that (a) is true. If B − C − I is a nonsingular M-matrix, then B  X∗ is nonsingular by Theorem
3.1. Moreover, from Lemma 3.1 and since C is singular it follows also that X∗ and C must have
the same multiplicities of the zero eigenvalue. 

The sufficient condition of Theorem 3.1 can however further be appropriately relaxed as
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shown in the result that follows.

Theorem 3.2. If the matrix B − C − I is an irreducible singular M-matrix, then QME (5) has
the maximal nonpositive solution X∗ with X∗ ≤ 1. B  X∗ is a nonsingular M-matrix and
B  X∗ − C is an irreducible M-matrix.

Proof. We know from the proof of Theorem 3.1 that the sequence Xk produced by (14) is
monotonically non-increasing. Hence if B − C − I is an irreducible singular M-matrix, then (by
the Perron-Frobenius theory) there is a vector v  0 such that
B − C − Iv  0.

As in the previous proof of Theorem 3.1, the iterative matrices Xk satisfy −Xkv  v, and
B  Xk are all nonsingular M-matrices for all k ≥ 0. By the same assertion in Theorem 3.1, it
is not difficult to show that the limit X∗ of Xk with X∗ ≤ 1 is such that B  X∗ is a
nonsingular M-matrix. Also, X∗ is the maximal nonpositive solution of (5) and
B  X∗ − Cv ≥ B − C − Iv  0.

So B  X∗ − C is, by Lemma 1.1, an M-matrix. Finally, the irreducibility of M-matrix B − C − I
requires that B − C is still irreducible with nonpositive off-diagonal elements. Moreover, since
X∗ is a nonpositive matrix, B  X∗ − C is an irreducible matrix ; and here the proof
completes. 

4. Convergence of Iterative Methods Under the Sufficient
Condition

In this section, we illustrate the convergence of Bernoulli’s and Newton’s methods under
the proposed sufficient condition of last section.

Theorem 4.1. If B − C − I is a nonsingular M-matrix, then the Bernoulli’s sequence Xk with
X0  0 is monotonically non-increasing and is convergent to the maximal nonpositive solution
X∗. Moreover, if C is a nonsingular M-matrix such that C−1B is a Z-matrix, X∗ is nonsingular
and −X∗−1 is an M-matrix.

Proof. Let v be the positive vector such that B − C − Iv  0. It follows from (6) and (16) that
−X1v  B−1Cv  v and X1 ≤ X0. Also, B  X0 is a nonsingular M-matrix. Therefore, the
statement

B  Xk−1 is a nonsingular M-matrix, − Xkv  v and Xk ≤ Xk−1 ≤ 0, 19

holds for k  1.
Now, we assume that (19) is true for k  i. By the same assertion in proof of Theorem 3.1,

B  Xi is also a nonsingular M-matrix. It follows from the assumption −Xiv  v that
Cv  Cv  v  Xiv  B  Xiv. Here since there is no zero row in B  Xi−1, it is clear that
−Xi1v  Xi  B−1Cv  v, and in view of (6), we have
Xi  BXi1 − Xi  −C − BXi − Xi

2
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 Xi−1 − XiXi ≤ 0.

A left hand side multiplication of the above inequality by the nonnegative matrix Xi  B−1

yields Xi1 − Xi ≤ 0. We have thus proven (19) for k  i  1. Therefore, the Bernoulli’s
sequence Xk is monotonically non-increasing and bounded from below. As before, let
X∗  limk→Xk , and it is obvious that X∗ is a nonpositive solution.

If there is another solution X∗∗ ≤ 0, the equality
Xk−1  BXk − X∗∗  X∗∗ − Xk−1X∗∗,

together with induction yields Xk − X∗∗ ≥ 0 for k ≥ 0. Hence, the limit of Xk satisfies
X∗ ≥ X∗∗. So X∗ is the maximal nonpositive solution of (5). If C is nonsingular, X∗ is
nonsingular by Proposition 3.1. Also, −X1

−1v  C−1Bv  v  C−1v  v. Now we assume that
−Xk

−1v  v for k  i. Then it follows from the nonsingularity of B  Xi that
Xi1  −Xi  B−1C is nonsingular and

− Xi1
−1 v  C−1Bv  C−1Xiv  C−1B − Iv  v. 20

Note that −Xi1
−1  C−1B  C−1Xi is also a Z-matrix if C−1B is a Z-matrix. Hence, (20) and the

boundedness of Xk imply that −X∗−1v ≥ v  0. So,by Lemma 1.2, −X∗−1 is a nonsingular
M- matrix. 

Remark 4.1. The above theorem indicates particularly that Bernoulli’s iteration is well defined
under the sufficient condition proposed in Section 3, and the singularity of the maximal
nonpositive solution X∗ depends only on the singularity of C. Therefore, all eigenvalues of X∗
are negative with X∗ ≤ 1 when C is nonsingular and C−1B is a Z-matrix.

As for the convergence rate of Bernoulli’s method, we have the following result whose
proof is analogous to that in [8]. For that reason it is not reported.

Theorem 4.2. Let X∗ be the maximal nonpositive solution of (5). For Bernoulli’s method (6),
we have

lim sup
k→

k ‖X∗ − Xk‖ ≤ −X∗T ⊗ B  X∗−1. 21

Moreover, the equality holds if X∗ is negative.
Let MX∗  X∗T ⊗ I  I ⊗ X∗  B be defined as in Theorem 2.2. The next proposition

specifies the spectral radius in (21).

Proposition 4.1. Let X∗ be the maximal nonpositive solution of (5).
a) MX∗ is a nonsingular M-matrix if and only if −X∗T ⊗ B  X∗−1  1.
b) If MX∗ is an irreducible singular M-matrix, −X∗T ⊗ B  X∗−1  1.

Proof. Since MX∗  I ⊗ B  X∗ − −X∗T ⊗ I is a regular splitting of MX∗ , then assertion a)
is a direct conclusion of Theorem 3.29 of [13]. Moreover, if MX∗ is a singular M −matrix, then
there is a vector v ≠ 0 such that MX∗  v  0, i.e.,
I ⊗ B  X∗ v  −X∗T ⊗ I v.

A left hand side multiplication of the above inequality by I ⊗ B  X∗−1 yields assertion
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b). 
For the convergence of Newton’s method under the proposed sufficient condition, we only

have a rather rough result, that we report next.

Theorem 4.3. Let X∗ be the maximal nonpositive solution of (5). If B − C − I is a nonsingular

M-matrix and B  X∗−1  1/X∗ , then the Newton’s sequence Xk produced by (12)
with X0  0 is monotonically non-increasing and converges to X∗.

Proof. The proof is similar to that of Theorem 2.2. In fact, we also aim at showing that

Xk1 ≤ Xk, Xk ≥ X∗, MXk is a nonsingular M − matrix, 22

holds for k ≥ 0. Obviously (22) is true for k  0. Suppose then that (22) holds for k  i.
Replacing X by X∗ in (8) yields Xi1 ≥ X∗. Since B  X∗−1  1/X∗ and by properties
of Kronecker product, we have −X∗T ⊗ B  X∗−1  1. It follows from Proposition 4.1
then that MX∗ is a nonsingular M-matrix. In view of Lemma 1.3, MXi1 is a nonsingular
M-matrix. Finally, the inequality
Xi2 − Xi1Xi1  Xi1  BXi2 − Xi1

 −Xi1
2 − BXi1 − C  −Xi1 − Xi2 ≤ 0 23

shows that Xi2 ≥ Xi1. So (22) is true for k  i  1. The rest follows along the same steps as in
the proof of Theorem 2.2. 

For the convergence rate of Newton′s method, we refer the reader to [3,4,5,6,8] for more
details.

5. A Numerical Result

In this section, we verify the proposed sufficient condition for QME (5). Our experiment
were done using Matlab 7.1 on a PC with 2.13GHz AMD processor, which has unit roundoff
u  2−53 ≈ 1.1  10−16. The stopping criterion in Bernoulli’s method and Newton’s method, as
in [10], is

‖Xk1 − Xk‖1

‖Xk‖1
≤ nu,

where n is the dimension of the problem.

Example 5.1. Consider quadratic matrix equation (1) with A  I3; B1,1  B3,3  20,

B  tridiag−10,30,−10; C  tridiag−5,15,−5. Since B − C − I3 

5 −5 0
−5 15 −5
0 −5 5

is a

nonsingular M-matrix, there is a maximal nonpositive solution
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X∗ 
−0.8679 −0.0075 −0.0875
−0.1596 −0.5139 −0.1596
−0.0875 −0.0075 −0.8679

.

Newton’s method with X0  0 converges to X∗ after 4 iterations and MX∗  38.4902,
38.6705, 38.9424, 8.1192, 8.2994, 8.5713, 18.2588,18.4391, st is a nonsingular
M-matrix. Bernoulli’s method converges to X∗ after 17 iterations and X∗  B  39.4509,
19.2195, 9.0799 and B  X∗ is a nonsingular M-matrix.
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