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Abstract. A family of fourth and second-order accurate numerical schemes is presented for
the solution of nonlinear fourth-order boundary-value problems (BVPs) with two-point
boundary conditions. Non-polynomial quintic spline functions are applied to construct the
numerical algorithms. This approach generalizes nonpolynomial spline algorithms and
provides a solution at every point of the range of integration. Two numerical examples are
given to illustrate the applicability and efficiency of the reported algorithms.
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1. Introduction

Solution of fourth-order linear BVPs have been treated in a variety of ways including the
use of nonpolynomial spline techniques. These success of these techniques motivate our
interest in this work in nonlinear fourth-order BVPs involving the differential equation (DE)

y4x  fx,y, a  x  b; a,b,x ∈ R 1

subject to functional and second-order derivative boundary conditions (BCs)

ya  A0, y ′′a  B0, yb  A1, y ′′b  B1 2

where Ai, Bi i  0,1 are real finite constants. It is moreover assumed that fx,y is real and
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continuous on a,b with ∂f/∂y  0. A detailed discussion of the existence and uniqueness of
the real valued function yx which satisfies (1) and (2) may be found in [20, 22, 23].

The approximate solution to this type of problems has recently been addressed by a few
other methods. Amongst these we may mention the method of M. A. Ramadan et al. [1] which
employs a quintic nonpolynomial spline for the numerical solution of linear fourth-order DEs

y4x  fxy  gx, x ∈ a,b, 3

associated with a bending beam, subject to the BCs

ya − A1  yb − B1  y2a − A2  y2b − B2  0. 4

Siraj-ul-Islam et al. developed in [2] a similar technique for a DE associated with obstacle,
unilateral and contact problems of the type

y4 
fx a ≤ x ≤ c,
gxyx  fx  r c ≤ x ≤ d,
fx d ≤ x ≤ b,

5

subject to the boundary and the continuity conditions:

ya  yb  A1, y
′′

a  y ′′b  A2,
yc  yd  B1, y ′′c  y ′′d  B2,

6

where f and g are continuous functuions on a,b and c,d respectively.
The same problem (5) has also been dealt with by S. S. Siddiqi et al. [3] when subjected to the
following two cases of boundary conditions:
Case I

ya  yb  0, y
′′

a  y ′′b  1,
yc  yd  2, y ′′c  y ′′d  3,

7

Case II

ya  yb  0, y
′

a  y ′b  4,
yc  yd  2, y ′c  y ′d  5.

8

Parallel to these efforts, Siraj-ul-Islam et al. [4] and J. Rashidinia et al. [5] have extended the
same technique to fourth-order BVPs associated with plate deflection theory, given by

L  fxyx  gx, L ≡ d4

dx4 , a  x  b, 9

with BCs
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ya  A1 , yb  A2, y ′a  B1, y ′b  B2. 10

The same problem (5) with BCs (8) was addressed in [6, 7] by E. A. Al-Said et al. On another
note, R. A. Usmani developed in [8] finite difference methods for a continuous approximation
to the solution of a two-point BVP involving a fourth order linear DE of the type (9) with the
BCs

ya − A1  y ′a − A2  0,

y2b − B1  y3b − B2  0.
11

The singular version of (9), i.e.

y4  pxy  qx, −   a  x  b  , 12

subject to (10) has also been solved in [9] by the same R. A. Usmani. Moreover Loghmani
and Alavizadeh [10] converted the problem in [9] to an optimal control problem to constructed
an approximate solution as a combination of quartic B-splines. At the same time Rashidinia
and Golbabaee [11] and Siddiqi and Akram [12] devised a difference scheme with quintic
spline functions for this type of problem with the BCs (11). Also Van Daele et al. introduced in
[13] a new second order method for solving the BVP (3) with the BCs involving first-order
derivatives based on a nonpolynomial spline function.

Amongst further workers on this subject we may list R. A. Usmani [14] who developed and
analyzed second-order and fourth-order convergent methods for the solution of a linear
fourth-order two-point BVP (3) subject to (4) using a quartic polynomial spline function. Then
E. H. Twizell [18], who used a two-grid fourth order method to get the solution of nonlinear
BVP of the type (1) with BCs (2). This BVP was also treated by multi-derivative methods by
E. H. Twizell and S. I. A. Tiraizi [19].

The main objective of the present paper is to apply a non-polynomial quintic spline
function [15, 16, 17] that has a polynomial and trigonometric parts to develop a new numerical
method for obtaining smooth approximations to the solution of nonlinear fourth-order DEs of
the form (1) subject to (2). The technique, being reported, connects spline values at mid knots
and their corresponding values of the fourth-order derivatives. New algorithms are constructed
and their pertaining approximate solutions are compared with the solutions obtained by E. H.
Twizell [18]. The paper is organized as follows. In Section 2, we give a description of the
fourth-order DEs modelling some physical problems. Section 3 contains a brief introduction to
the use of nonpolynomial quintic splines, where the spline relations to be used for
discretization of the system (1) are presented. This topic is further elaborated on in Section 4.
In Section 5, we present our numerical method for a system of nonlinear fourth-order BVPs
and evaluate their truncation error. in Section 6, numerical results are provided to compare and
demonstrate the efficiency of these methods. These results demonstrate that our algorithm
performs better than other collocation, finite difference and spline methods. Section 7
concludes the paper with some remarks.

2. Description of the Problem

Fourth-order DEs occur in various physical problems which include certain phenomena



16 P. K. SRIVASTAVA, M. KUMAR, and R. N. MOHAPATRA

related to the theory of elastic stability. The following classical fourth-order DE

EI d4u
dx4  P d2u

dx2  q, 13

arises in the beam-column theory [21]. Here u is the lateral deflection, q is the intensity of a
distributed lateral load, P is the axial compressive force applied to the beam and EI represents
the flexural rigidity in the plane of bending. Various generalizations of this equation which
describes the deformation of an elastic beam with different types of two-point BCs have in
general been extensively studied during the last two decades via a broad range of methods. In
particular C. P. Gupta [22, 23] studied the DE of the form

d4u
dx4  gx,u,u ′ ,u ′′  ex, x ∈ 0,1,

and more generally the equation

d4u
dx4  fuu ′  gx,u,u ′ ,u ′′  ex, x ∈ 0,1, 14

where f is a continuous function, g is a Caratheodory function satisfying the inequalities
gx,u,v,w ≥ axu2  bx|uv|  cx|uw|  dx|u|,

|gx,u,v,w| ≤ |x,u,v| |w|2  x,
with real-valued functions ax,bx,cx,dx,x,u,v and x. The main tool used by
Gupta is the Leray-Schauder continuation theorem. In the same direction Grossinho and
Tersian [24] considered the BVP

u4x  gux  0, x ∈ 0,1,
u ′′0  −f −u ′0 , u ′′′0  −hu0, u ′′1  u ′′′1  0,

where g is a strictly monotone function that have some discontinuous f and h, which are
unbounded , continuous and strictly increasing functions, defined on finite open intervals. The
existence of pertaining solutions is treated through a dual variational method [25].

Finally, we mention the BVP
u4x  fx,ux, x ∈ 0,1,
u0  u ′0  u ′′1  0, u ′′′1  gu1,

that has been studied in the works of T. F. Ma [26] and Ma and Silva [27]. Existence of its
solutions was proved in [26] using the mountain pass theorem. Uniqueness of these solutions
was investigated in [27], under more restrictive assumptions on the function f, by means of the
fixed point theorem for contractive mappings.

3. Nonpolynomial Quintic Spline

A quintic spline function Sx, interpolating a function ux defined on a,b, is such that:
(i) In each subinterval xj−1,xj, Sx is a polynomial of degree at most five.
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(ii) The first, second, third and fourth derivatives of Sx are continuous on a,b.
To be able to deal effectively with the posing BVPs, we introduce ‘spline functions’

containing a parameter . These are ‘non-polynomial splines’ defined through the solution of a
differential equation in each subinterval. The arbitrary constants are being chosen to satisfy
certain smoothness conditions at the joints. These ‘splines’ belong in the class C2 and reduce
into polynomial splines as the parameter  → 0. The exact form of the spline depends upon the
manner in which the parameter is introduced [28, 29]. The considered parametric spline
functions can be: a spline under compression, spline under tension and an adaptive spline. A
number of associated spline relations have been obtained for subsequent use.

A function Sx, of class C4a,b which interpolate ux at the mesh points {xj depends
on a parameter , reduces to an ordinary quintic spline Sx in a,b as  → 0 is termed as a
parametric quintic spline function. The three parametric quintic splines are derived from a
usual quintic spline by introducing the parameter in three different ways. The outcomes are
termed as ‘parametric quintic spline-I’, ‘parametric quintic spline-II’ and ‘adaptive quintic
spline’.

The spline function we propose in this paper is either span 1,x,x2,x3, sin||x, cos||x, or
span1,x,x2,x3, sinh||x, cosh||x, or the span 1,x,x2,x3,x4,x5, when   0. The fact
before, related to   0, is evident when the correlation between polynomial and
non-polynomial spline bases are conceived in the following manner:
T5  span 1,x,x2,x3, sinx, cosx,

 span 1,x,x2,x3, 24
4 cosx − 1  x2

2 , 120
5 sinx − x 

x
6

3
 .

Clearly
→0
lim T5  1,x,x2,x3,x4,x5, where  is the frequency of the trigonometric part of the

spline function which can be real or pure imaginary.
This approach has the advantage over finite difference methods that it provides continuous

approximation not only to yx, but also to y ′, y ′′ and higher-order derivatives at every point of
the range of integration. Also, the C −differentiability of the trigonometric part of
non-polynomial splines compensates for the loss of smoothness inherent in polynomial splines.

4. Development of the Main Recurrence Relation

Our numerical method for approximating the solution to a differential equation of the type
(1) deals, without loss of generality, with a uniform mesh  with nodal points xi on a,b such
that
 : a  x0  x1  x2  x3………  xN  b
xi  a  ih, i  0,1,2,…. .N, and h  b−a

N .
Consider then a non-polynomial function Sx of the class C4a,b, dependent on a

parameter , which interpolates yx at the mesh points xi, i  0,1,2,…. .N, and reduces to an
ordinary quintic spline Sx in a,b as  → 0.
For each segment xi, xi1, i  0,1,2,…. .N − 1, the non-polynomial Sx is defined by
Sxai  bix − xi  cix − xi2  dix − xi3  ei sinx − xi  fi cosx − xi,
i  0,1,2,…. .N − 1, 15



18 P. K. SRIVASTAVA, M. KUMAR, and R. N. MOHAPATRA

where ai,bi,ci,di,ei and fi are constants.
Let yi be an approximation to yxi, obtained by the segment Sx of the mixed splines
function passing through the points xi, yi and xi1, yi1. To satisfy the necessary
conditions for the coefficients introduced in (15), we do not only require that Sx satisfies
interpolatory conditions at xi and xi1 , but also the continuity of first, second and third
derivatives at the common nodes xi, yi.
To derive an expression for the coefficients of (15) in terms of yi, yi1, Di, Di1, Fi and Fi1 ,
we need the following notation.

Sxi  yi, Sxi1  yi1,

S′xi  Di, S′xi1  Di1,

S
4
xi  Fi, S

4
xi1  Fi1. 16

Some algebraic manipulations lead then to
ai  yi − Fi

4 ,

bi  Di −
Fi1−Fi Cos 

3Sin 
,

ci  − 2DiDi1
h  3yi1−yi

h2 − 3Fi1−Fi

4h2 
Si1 2Cos  −Si12 Cos 

h3Sin 
,

di  Di1Di

h2 
2yi−yi1

h3 − Fi1−Fi 1Cos 
3h2Sin 

 2Fi1−Fi 

4h3 ,

ei  Fi1−FiCos
4Sin ,

fi  Fi

4 , 17

where   h and i  0,1,2…………. .N − 1.
The posing differential equation
y4x  fx,y, a  x  b, a,b,x ∈ R

can be considered in nonlinear form as

y4  fx,y qy  gx, x ∈ a,b. 18

Furthermore, when subjected to BCs (2), this DE can be discretized viz
Fi  fi qi  gi, 0  x  1,

where Fi  S′′′′xi, gi  gxi, fi  fxi,yi and qi  qyi .
Using the continuity of the first and third-order derivatives at xi, yi, that is
S′−ixi  S′ixi and S′′′−ixi  S′′′ixi, we obtain for i  1,2,…,N the following
relations,
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Di−1  4Di  Di1  6
h2 yi−1 − 2yFi  yi1  6h2

2
1

 Sin 
− 1

2 − 1
6 Fi−1  Fi1

 6h2

2
2
2 −

2 Cos 
Sin −

4
6 Fi, i  1,2,…. . ,N. 19

and

Di−1 − 2Di  Di1  h2 1
 Sin 

− 1
2 Fi−1  Fi1

 2h2 1
2 −

Cos 
Sin Fi, i  1,2,…. . ,N. 20

By adding equations (19)and (20), we obtain

Di  1
h2 yi−1 − 2yi  yi1  h2 1

3Sin
− 1

6 Sin 
− 1

4 Fi−1  Fi1

 h2 2
4 −

2 Cos 
3Sin 

 2 Cos 
6  Sin

− 1
2 Fi, i  1,2,…. . ,N. 21

Then from Equations (20)and (21) we get
yi2 − 4yi1  6 yi − 4yi−1  yi−2  h4Fi2  Fi−2  Fi1  Fi−1  Fi ,
i  1,2,…. . ,N, 22

where Fi  −fiqi  gi, fi  fxi,yi, qi  qyi, and gi  gxi, along with

  −1

3Sin 
 1

6 Sin
 1

4 ,   21Cos 
3Sin 

− Cos −2
3 Sin

− 4
4 ,

and

  − 212 Cos
3Sin 

− 4 Cos −1
3 Sin

 6
4 .

5. Description of the Method

At the mesh point xi the proposed nonlinear DE (18)
y4  fx,y qy  gx, x ∈ a,b,

subjected to BCs (2), may be discretized as before viz
Fi  fi qi  gi, 0  x  1.

The associated equation (22) gives N − 2 nonlinear equations in the N unknowns yi,
i  1,2,…. ,N. Obviously two more equations are needed. One at each end of the range of
integration related to the direct decomposition of yi. These two end conditions can be derived
as follows.
Equation (19) for i  1,2, rewrites as

D0  4D1  D2  6
h2 y0 − 2y1  y2  1F0  F2  1F1, 23

and
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D1  4D2  D3  6
h2 y1 − 2y2  y3  1F1  F3  1F2, 24

We also write (20) for i  1,2, as

D0 − 2D1  D2  2F0  F2  2F1, 25

and

D1 − 2D2  D3  2F1  F3  2F2, 26

where

1  6h2

2
1

 Sin 
− 1

2 − 1
6 , 1 

6h2

2
2
2 −

2 Cos
 Sin 

− 4
6 ,

2  h2 1
 Sin 

− 1
2 , 2  2h2 1

2 −
Cos 
 Sin 

.

Subtracting, on one hand, equation (25) from (23) leads to

D1  1
h2 y0 − 2y1  y2 

1 − 2
6 F0  F2 

1 − 2
6 F1. 27

On the other hand, subtraction of equqtion (26) from (24) yields

D2  1
h2 y1 − 2y2  y3 

1 − 2
6 F1  F3 

1 − 2
6 F2. 28

Substitute then equations (27) and (28) into (23) to obtain the first end condition

− 2y0  5y1 − 4y2  y3  −h2D0  h40F0  1F1  2F2  3F3; i  1, 29

where

0  2
3Sin 

 1
6 Sin

− 2
4 − 1

22 , 1 
1−2Cos 
6 Sin

− 14Cos
3Sin

 5
4 − 1

2 ,

2 
1−2Cos 
6 Sin

 1
3Sin

− 1
4 , 3  1

6 Sin
 1

3Sin
− 1

4 − 1
32 .

Similarly, we establish the second end condition
yN−2 − 4 yN−1  5 yN − 2 yN1 

− h2DN1  h43FN−2  2FN−1  1FN  0FN1; i  N. 30
The local truncation errors ti, i  1,2,……,N, associated with the conditions (22),(29) and
(30) can be determined as follows. Rewrite the conditions (22), (29) and (30) in the form:

− 2y0  5y1 − 4y2  y3  −h2y0
2  h4 0y0

4  1y1
4  2y2

4  3y3
4  ti; i  1, 31
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yi2 − 4yi1  6 yi − 4yi−1  yi−2  h4  yi2
4  yi−2

4   yi1
4  yi−1

4  yi
4  ti;

i  2,3,………. ,N − 1, 32
and
yN−2 − 4 yN−1  5 yN − 2 yN1  −h2yN1

2

 h4 3yN−2
4  2yN−1

4  1yN
4  0yN1

4  tN; i  N. 33

The terms yi−2 and yi2
4 ,.... in (32) are expanded around the point xi using Taylor series.

Consequently, the expressions for ti, i  2,3,…. . ,N − 1, are

ti  1 − 2 − 2 −  h4yi
4  1

6 − 4 −  h6yi
6

 1
80 −

16
12  −

1
12  h8yi

8  17
30240 −

8
45  −

1
360  h10yi

10  Oh11,

i  2,3,…. . ,N − 1. 34
Also expressions for ti, i  1,N, are obtained by expanding equations (31) and (33), using
Taylor series, around the point x0 and xN, respectively, viz
ti   22

24 − 0 − 1 − 2 − 3h4yi
4  1 − 1 − 22 − 33h5yi

5

 478
720 −

1
2 1 − 22 − 9

2 3 h6yi
6  1680

5040 −
1
6 1 − 4

3 2 − 9
2 3 h7yi

7

 5542
40,320 −

1
24 1 − 2

3 2 − 27
8 3 h8yi

8  Oh9, i  1,N. 35

For any choice of ,  and , provided that   1 − 2  − 2, the conditions (22), (29) and
(30) give rise to a family of methods of different orders, which may be labelled as follows.
Case I : Second-order method
For which
  −5

3559 ,   3679
21,354 ,   14056

21,354 , 0  6
45 , 1  41

72 , 2  19
90 and 3  1

360 .

Case II : Fourth-order method
For which
  −10

7199 ,   7439
43,194 ,   28,436

43,194 , 0  7
90 , 1  49

72 , 2  7
45 and 3  1

360 .

Clearly, our family of numerical methods is represented by the discretized equations (22),
the BCs and by the solution vector Y  y1,y2,……,yNT, T denoting transpose. Y is obtained
by solving a non-linear algebraic system of order N [30]. To ensure cost effectiveness, better
accuracy and applicable simplicity of the new method, one needs to fix first the unknown
parameters ,  and , which are the expressions containing the actual parameter . This new
approach is remarkable in producing a family of fourth- and second-order methods by running
the code only once, while saving on the multiplications involved in the ,  and  expressions.
The computational cost of the new approach is same as of methods based on standard
polynomial spline functions [12], whereas its accuracy is two-fold better.

6. Numerical Experiments

We now consider two numerical examples illustrating the comparative performance of
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nonpolynomial quintic spline (NPQS) algorithms with the fourth-order convergent finite
difference method of [18].

Example 6.1. Consider the BVP

y4x  6exp−4yx − 121  x−4 , 0  x  1, 36

with the BCs

y0  0, y1  ln2 , y2 0  1, y2 1  −0.25. 37

The analytic solution of this BVP is

yx  ln1  x. 38

Example 6.2. Solve the same DE of the previous example, subject to the BCs

y0  0, y1  ln2 , y1 0  1, y1 1  0.5. 39

The analytic solution of this BVP happens to be identical to the solution (38) of the
preceeding BVP.

6.1. Nonpolynomial quintic spline solutions

The maximum absolute error of our NPQS algorithms and of the finite difference method
of Twizell [18] for Examples 6.1 and 6.2 are listed in Tables 1 and 2 respectively.

Table 1. Comparison between errors of solutions to Example 6.1
Finite Difference Method Second-order NPQS Fourth-order NPQS

N (Maximum Absolute Error) (Maximum Absolute Error) (Maximum Absolute Error)
8 0.37E-5 0.63E-6 0.27E-7

16 0.29E-6 1.27E-7 2.11E-9

32 0.19E-7 3.71E-8 1.83E-10

Table 2. Comparison between errors of solutions to Example 6.2
Finite Difference Method Second-order NPQS Fourth-order NPQS

N (Maximum Absolute Error) (Maximum Absolute Error) (Maximum Absolute Error)
8 0.22E-4 0.39E-6 0.12E-6

16 0.42E-5 1.12E-7 9.17E-9

32 0.67E-6 0.32E-7 6.23E-10
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7. Conclusion

In this paper we used a nonpolynomial quintic spline function to develop numerical
algorithms for the solution of nonlinear fourth-order boundary value problems. The reported
approach generalizes usual nonpolynomial spline algorithms and provides a solution at every
point of the range of integration. The numerical results, illustrated in Tables 1 and 2,
demonstrate that our algorithm performs better than the fourth-order convergent finite
difference method.

References

[1] M. A. Ramadan, I. F. Lashien, and W. K. Zahra, Quintic nonpolynomial spline solutions
for fourth order two-point boundary value problem, Communications in Nonlinear Science and
Numerical Simulation 14 (2008), 1105-1114.

[2] Siraj-ul-Islam, I. A. Tirmizi, F. Haq, and S. K. Taseer, Family of numerical methods based
on non-polynomial splines for solution of contact problems, Communications in Nonlinear
science and Numerical Simulation 13 (2008), 1448-1460.

[3] S. S. Siddiqi and G. Akram, Solution of the system of fourth-order boundary value
problems using non-polynomial spline technique, Applied Mathematics and Computation 185
(2007), 128-135.

[4] Siraj-ul-Islam, I. A. Tirmizi, and S. Ashraf, A class of methods based on non- polynomial
spline functions for the solution of a special fourth-order boundary value problems with
engineering applications, Applied Mathematics and Computation 174 (2006), 1169-1180.

[5] J. Rashidinia, R. Jalilian, and R. Mohammadi, Comment on the paper : A class of methods
based on non-polynomial spline functions for the solution of a special fourth- order boundary
value problems with engineering applications, Applied Mathematics and Computation 186
(2007), 1572-1580.

[6] E. A. Al-Said, M. Aslam Noor, and T. M. Rassias, Cubic splines method for solving
fourth-order obstacle problems, Applied Mathematics and Computation 174 (2006), 180-187.

[7] E. A. Al-Said, and M. Aslam Noor, Quartic spline method for solving fourth order obstacle
boundary value problems, Journal of Computational and Applied Mathematics 143 (2002),
107-116.

[8] R. A. Usmani, Finite difference methods for a certain two point boundary value problem,
Indian Journal of Pure and Applied Mathematics 14 (3) (1983), 398-411.



24 P. K. SRIVASTAVA, M. KUMAR, and R. N. MOHAPATRA

[9] R. A. Usmani, Smooth spline approximations for the solution of a boundary value problem
with engineering applications, Journal of Computational and Applied Mathematics 6 (1980),
93-98.

[10] G. B. Loghmani, and S. R. Alavizadeh, Numerical solution of fourth-order problems with
separated boundary conditions, Applied Mathematics and Computation 191 (2007), 571- 581.

[11] J. Rashidinia, and A. Golbabaee, Convergence of numerical solution of a fourth-order
boundary value problem. Applied Mathematics and Computation 171 (2005), 1296-1305.

[12] S. S. Siddiqi, and G. Akram, Quintic Spline Solutions of Fourth Order Boundary Value
Problems, Math. NA/0306357, 2003.

[13] M. Van Daele, G. Vanden Berghe, and H. A. De Meyer, Smooth approximation for the
solution of a fourth order boundary value problem based on nonpolynomial splines, Journal of
Computational and Applied Mathematics 51(1994), 383-394.

[14] R. A. Usmani. The use of Quartic splines in the numerical solution of a fourth-order
boundary value problems, Journal of Computational and Applied Mathematics 44 (1992),
187-199.

[15] M. Kumar, and P. K. Srivastava, Computational techniques for solving differential
equations by quadratic, quartic and octic Spline, Advances in Engineering Software 39 (2008),
646-653.

[16] M. Kumar, and P. K. Srivastava, Computational techniques for solving differential
equations by cubic, quintic and sextic spline, International Journal for Computational
Methods in Engineering Science and Mechanics 10 ( 1) (2009), 108-115.

[17] J. Rashidinia, R. Jalilian, and R. Mohammadi, Non-polynomial spline methods for the
solution of a system of obstacle problems, Applied Mathematics and Computation 188 (2)
(2007), 1984-1990.

[18] E. H. Twizell, A Two-Grid, Fourth Order Method for Nonlinear Fourth Order Boundary
Value Problems, Technical Report TR/12/85, Brunel University Department of Mathematics
and Statistics, 1985.

[19] E. H. Twizell, and S. I. A. Tiraizi, Multiderivative Methods for Non-Linear Fourth Order
Boundary Value Problems, Technical Report TR/07/85, Brunel University Department of
Mathematics and Statistics, 1985.

[20] R. P. Agarwal, and G. Akrivis, Boundary value problem occurring in plate deflection
theory, Journal of Computational and Applied Mathematics 8 (1982), 145-154.



Solution of Fourth-Order BVPs by Nonpolynomial Quintic Splines 25

[21] S. Timoshenko, and J. Gere, Theory of Elastic stability, 2nd Edition, McGraw Hill, New
York, 1961.

[22] C. P. Gupta, Existence and uniqueness theorems for the bending of an elastic beam
equation, Applicable Analysis 26 (1988), 289-304.

[23] C. P. Gupta, Existence and uniqueness theorems for a fourth order boundary value
problem of Sturm-Liouville type, Differential and Integral Equations 4 (2) (1991), 397-410.

[24] M. R. Grossinho, and S. A.Tersian, The dual variational principal and equilibria for a
beam resting on a discontinuous nonlinear elastic foundation, Nonlinear Analysis ATM 41
(3-4) (2000), 417-431.

[25] A. Ambrosettoi, and M. Badiale, The dual variational principle and elliptic problems with
discontinuous nonlinearities, Journal of Mathematical Analysis and its Applications 140
(1989), 363-373.

[26] T. F. Ma, Positive solutions for a beam equation on a nonlinear elastic foundation,
Mathematical and Computational Modelling 39 (2004), 1195-1201.

[27] T. F. Ma, and J. da Silva, Iterative solutions for a beam equation with nonlinear boundary
conditions of third order, Applied Mathematics and Computation 159 (2004), 11-18.

[28] P. K. Srivastava, and M. Kumar, Numerical treatment of nonlinear third order boundary
value problem, Applied Mathematics 2 (2011), 959-964.

[29] P. K. Srivastava, M. Kumar, and R. N. Mohapatra, Quintic nonpolynomial spline method
for the solution of a second-order boundary-value problem with engineering applications,
Computers and Mathematics with Applications 62 (2011), 1707-1714.

[30] Siraj-ul-Islam, I. A. Tirmizi, F. Haq, and M. A. Khan, Non-polynomial splines approach
to the solution of sixth-order boundary-value problems, Applied Mathematics and Computation
195 (2008), 270-284.

______
Article history: Submitted December, 28, 2011; Accepted March, 03, 2012.


