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Abstract. This paper aims at proving that split metrics of finite sets 1,2,…,n are extremal
pseudometrics, and only for n ≤ 4 they are the unique extremal rays. Based on inherent
properties, we propose algorithms for constructing a class of arbitrary (random) metrics.
Moreover, we present some interesting analytical results on split metrics. The theoretical part
is complemented by numerical simulations and geometric comparisons of random metrics to
the Euclidean metric. The generalization of this work should be an interesting open problem.
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1. Introduction

Mathematical modeling is one of the interesting methods for understanding and analyzing
critical and asymptotic behaviors of several real life phenomena. In this respect, biological
phenomena have motivated us to aim at related numerical constructions. For instance, in
microbiology every strain of a collection of bacterial strains, considered as a finite metric
space, can exhibit their dissimilarity via computing or by comparing the reaction of the
considered strains with various tests. Comparing their DNA, and so on, can also serve the same
purpose. For more details, we refer the reader to B. Sturmfels [8].

Another area of application is sociology, where a finite number of possible decisions of a
group of agents represent the finite metric space. The measurement within two different
decisions is given by a discrete metric on a finite set, see e.g. [4]. The numerical treatment of
such models is till now realized only by using classical and deterministic metrics. In this work,
we propose a new investigation in the pertaining numerical mathematics, by introducing the
notion of random metrics on finite metric spaces. A part of this analysis and its use was our
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subject in [9]. We believe however that more interesting would be to envisage more
importance added to this new notion. By considering an n point metric space, studied for
example in [1, 2, 3], we can, as in [2], define and use some characteristics of the so called cut
or split metrics to construct arbitrary metrics. Bandelt and Dress introduce moreover in [2] an
interesting result concerning metrics on finite sets. They prove that every metric of a finite
metric space can be written as a sum of split metrics and a split-prime metric. In [5] the author
presented the notion of a random distance on finite sets. Furthermore in [6, 7] the authors
present some useful algorithms for binary trees. Using the fact that any linear combination of
metrics is a metric, random metrics result from random choice of these metrics. In our paper,
we provide some analysis and interesting algorithms for construction of a random metric
derived from splitting of finite sets. It is important to note that random metric spaces are
geometrically not trivial. Such spaces are characterized only by a metric on finite set. Hence
the geometrical representation poses an interesting challenge.

Our paper is structured as follow. At first we analyze the notion of extremal metrics. This
is followed by a proof of a necessary condition for an extremal metric. The second step is the
analytical and numerical construction of random metrics. In the last step, we report some
numerical simulations of random metrics in comparison to the Euclidean metric.

2. Extremal Pseudometrics

A pseudometric space is a generalization of a metric space in which we allow for the
possibility that dx,y  0 for distinct values of x and y. Thus a pseudometric is a metric if
dx,y  0 for x ≠ y. Let then X,d be a finite pseudometric (resp. metric) space, and denote
by M the set of all metrics on X to define M0 as the set of all pseudometrics. We call dv a
pseudometric vector, which is the Cn

2 dimensional vector set of vectors of the form
dv  d1,2,… ,d1,n,d2,3,… ,d2,n,… ,dn−1,n, where di,j are the entries of the corresponding
pseudometric d. Let us conceive the polyhedron, given as the intersection of the half-spaces
generated by pseudometric vectors, where the extremal pseudometric vectors are intersection
of hyperplanes. We may consider then a pseudometric vector dv ∈ Rm. The triple
di,j,dj,k,di,k, for all i, j,k  1… ,m, is called pseudometric card and the triple xi,xj,xk is
called an admissible card if and only if xi,xj,xk ≥ 0 and xi ≤ xj  xk; ∀i, j,k  1,… ,m.

When X,d is an n points pseudometric space, we may define the sets R and I as:
R  i, j,k|i, j,k  1,… ,n, pairwise distinct , 1

I  t|t  1,… ,m.
In other words, the set R clearly represents the indices of all admissible cards, and satisfies the
metric axioms. I is the set of indices, such that the tth components xt represent a distance
between two different points. For n ∈ N, m  Cn

2, t  1,… ,m and i, j,k ∈ 1,… ,n, the maps
lt and li,j,k defined viz
lt, li,j,k : Rm  R, 2
ltx  lix1,… ,xm  xi,
li,j,kx1,… ,xm  xj  xk − xi.

are linear, for t ∈ I and i, j,k ∈ R. Hence, we define the half-spaces Kt and Ki,j,k as follows.
Kt  x ∈ Rm| ℓtx ≥ 0 , Ki,j,k  x ∈ Rm| ℓi,j,kx ≥ 0 . 3
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The subsets
Ht  x ∈ Rm|ltx  0, Hi,j,k  x ∈ Rm|li,j,kx  0, 4

are hyperplanes in Rm, defined by the extremal conditions on Ht and Hi,j,k. In other words, the
set R represents the indices of all admissible cards, and satisfies the metric axioms. I is the set
of indices, such that the ith components xi represent a distance between two different vertices.
Let A be a subset of a finite set X. The split (or cut) metric is a mapping defined as

dx,y :
0, if x,y ∈ A  A or Ac  Ac

1, otherwise,

where Ac denote the complement set of A in X.

Example 2.1. Let us consider two parallel and distinct real lines P and Q in R2, and define
two points p ∈ P and q ∈ Q such that
dp,q 

y∈Q
inf dp,y 

y∈Q
inf dx,q, 5

where d is an Euclidean metric in R2. Now, we define the map dpq as
dpq : P  Q  R; dpqx,y   xy,pq  , 6

where  ,   is the usual scalar product in R2. If we suppose that dpqp,q  1, and since pq
is orthogonal to P and Q, then dpq is a pseudometric given as

dpqx,y :
0, if x,y ∈ P2 or Q2

1, otherwise.

The axioms of a pseudometric are clearly satisfied.

Example 2.2. Let us denote by EX3 the set of the standard pseudometrics c3
0, c3

1, c3
2, c3

3 of a
three point pseudometric space. That is EX3  0,0,0; 0,1,1; 1,0,1; 1,1,0. Hence, we
denote by EXn the set of all pseudometric vectors of all split metrics on the n points set
X  1,2,… ,n.

A pseudometric d is called extremal metric if for all g,h ∈ M0, the following holds:
g  h  d implies g  d, h  d with , ≥ 0. If d is extremal, then d∈R is called
extremal ray of d. It is important to note that the notion of extremal metric is equivalent to the
notion of an extremal metric vector. This equivalence is easy to prove. Therefore, in the
following we deal only with metric vectors.

Lemma 2.1. An extremal pseudometric vector is given by the intersection of m − 1 of the
following hyperplanes
Ht  x ∈ Rm|ltx  0, t ∈ I; Hi,j,k  x ∈ Rm|li,j,kx  0, i, j,k ∈ R.

Proof. ltx and li,j,kx represent the nonnegativity of a pseudometric and the triangular
equation respectively. The set of all pseudometric vectors can be written as an intersection of
half-spaces as known in linear programming. So the extremal rays of a pseudometric vector in
our case is exactly the intersection line of m − 1 hyperplanes, where m  Cn

2. Using the
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property that the metric vector of an arbitrary metric in a finite metric space is an intersection
between hyperplanes, we propose subsequently a method for finding this intersection set. 

Lemma 2.2. Let X,d be a finite points metric space. If X is a three of four points metric
space, then dv is an extremal if and only if dv ∈ EX3 resp. dv ∈ EX4 for  ∈ R.

Proof. As in linear programming, note that the intersection of the m − 1 hyperplanes in lemma
2.1 are exactly the extremal pseudometric vectors. In our proof, we look for solutions in the
form of a pseudometric vector. It is clear that the standard metric cards of a three point metric
space satisfy the extremal: ℓix  0 and ℓi,j,k  0. Moreover, EX3 is a generator of all
pseudometrics in a three points metric space. If d1,2,d1,3,d2,3 is an arbitrary pseudometric
card in a three points metric space, then it can be written as the following linear combination:

dv ∑
i0

4

 ic3
1  d1,2,d1,3,d2,3

 0c3
0  1

2 d1,2  d1,3 − d2,3c3
1  d1,2 − d1,3  d2,3c3

2  −d1,2  d1,3  d2,3c3
3, 7

where  i ≥ 0 for i  0,1,2,3. Thus, all pseudometrics on X are linear combination of extremal
rays of EX3. Similar to the previous lemma every dv ∈ EX4 can be expressed as a linear
combination of EX4 viz
EX4  c4

0,c4
1,c4

2,c4
3,c4

4,c4
5,c4

6,c4
7

 0,0,0,0,0,0; 1,1,1,0,0,0; 1,0,0,1,1,0; 0,0,1,0,1,1;
0,1,0,1,0,1; 0,1,1,1,1,0; 1,0,1,1,0,1; 1,1,0,0,1,1. 8

It can easily be seen that the elements of EX4 are solution of the hyperplane intersections
given by lemma 2.1. Consider then a metric on X, dv  d1,2;d1,3;d1,4;d2,3;d2,4;d3,4,
1,… ,7 ∈ IR, and compute the solution of the following linear system:

∑
i0

7

 icn
i  dv  d1,2,d1,3,d1,4,d2,3,d2,4,d3,4. 9

Our next goal would be to check whether the system (9) has a positive and non-zero solution,
namely 1,… ,7 ≥ 0 and∑ i  i  0. Indeed if we set 0  0 and 4  , then the system of
equations (9) has the following solution
5  1

2 d1,3  d1,4 − d3,4 − , 10

6  1
2 d1,2  d1,4 − d2,4 − , 11

7  1
2 d1,2  d1,3 − d2,3 − , 12

1    1
2 d3,4  d2,4 − 1

2 d1,3  d1,2, 13

2    1
2 d2,3  d3,4 − 1

2 d1,4  d1,2, 14

3    1
2 d2,4  d2,3 − 1

2 d1,4  d1,3. 15
We can show that 5,6 and 7 are positive for all values of the metric vector dv if and only if
  0 or 2 is smaller than the diference of all triangular inequalities. In the first case, the
solution 1,… ,7 will be an admissible solution if and only if at least one of the  i is strictly
positive. In the equations (10), (11) and (12) we can choose a positive  such that 5,6 and 7



Construction and Simulation of Random Metrics 30
are positive. Once we have these conditions, we can also see that 1,2 and 3 are positive
too. Furthermore, since d is a pseudometric vector, we have:
1  1

2 d3,4  d2,4 − 1
2 d1,3  d1,2 ≥ 1

2 d3,4  d2,4 − d2,3 ≥ 0, 16

2  1
2 d2,3  d3,4 − 1

2 d1,4  d1,2 ≥ 1
2 d2,3  d3,4 − d2,4 ≥ 0, 17

3  1
2 d2,4  d2,3 − 1

2 d1,4  d1,3 ≥ 1
2 d2,4  d2,3 − d3,4 ≥ 0. 18

In the second case we choose 2 equal the minimum difference of the triangular
inequalities give by (10)-(12). Thus, replacing  by its explicit value in (13)-(15), the vector
1,… ,7 will be an admissible solution, namely if 2  d1,3  d1,4 − d3,4, to yield
1  1

2 d1,4  d2,4 − d1,2 ≥ 0, 19

2  1
2 d2,3  d1,3 − d1,2 ≥ 0, 20

3  1
2 d2,4  d2,3 − d3,4 ≥ 0, 21

where the same result can be reached if 2 satisfies the other triangular inequalities given by
equations(11) and (12). Conclusively, the linear system has a non zero and positive solution.
Hence, the extremal metric vectors are exactly the vectors of EX4. 

Theorem 2.1. Every split metric of an n points metric space is extremal if n ≤ 4, and the
unique extremal pseudometrics are the split metrics.

Proof. The fact that the split metric are the unique extremal metrics is trivial if n  0,1,2 and
if n  3 and n  4 the result follows from lemma 2.2. Let us consider a subset A of X and
define the following split metric:

dx,y :
0, if x,y ∈ A  A or Ac  Ac

1, otherwise.

Denote by nA the cardinal of A. Due to the existence of a bijection between the
corresponding sets, we recall that the extremal pseudometric vector and extremal pseudometric
are equivalent. Let us utilize then the result of lemma 2.2: X is an n points pseudometric space,
then d has exactly CnA

3  CnAc
3 triangle of the form c0 and nAcCnA

2  nACnAc
2 triangle of

the form c1. Each triangle satisfies at least one of the following extremal conditions
ltx  xt  0, or li,j,kx  dij − dik − djk  0. 22

If we suppose then that A  s, then nAc  n − s and
CnA

3  CnAc
3  Cs

3  Cn−s
3 ,

nAcCnA
2  nACnAc

2  n − sCs
2  sCn−s

2 .
An extremal ray is the intersection of m − 1  Cn

2 − 1 hyperplanes. Accordingly, we need to
prove that
Cs

3  Cn−s
3  n − sCs

2  sCn−s
2 ≥ Cn

2 − 1, ∀s  0,… ,n. 23
The cases n  3 and n  4 of lemma 2.2 satisfy the condition (23). In a five points
pseudometric space, for every s  0,… ,n, we have Cn

3 as a total number of triangles in the
form of c3

0 and/or c3
1, ( or c3

2, c3
3). Each triangle satisfying at least one intersection condition.
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Since Cn
3 ≥ Cn

2 − 1, ∀n ≥ 5, the corresponding pseudometric vector of d is solution of the
intersection of Cn

2 − 1 hyperplanes. Hence, d is extremal. 

Remark 2.1. We conclude from the previous theorems that the split metrics are the unique
extremal metric only if n ≤ 4. Otherwise, for n greater than 4, there exist other extremal
metrics, which are not necessary split metrics. For more details see for example [1].

Lemma 2.3. Let X,d be an n points metric space and if EXn is the set of all extremal
pseudometric vectors, then d|d ∈ EXn  2n−1.

Proof. The power set PX of X contains exactly 2n sets. From theorem 2.1, we can utilize the
sets of PX to construct all possible elements of EXn. For any subset A of X, of theorem 2.1,
the subsets A and Ac define the same extremal pseudometric. Hence, the number of distinct
extremal pseudometrics in EXn is exactly half number of subsets in PX, namely
nd|d ∈ EXn  2n 1

2  2n−1. 24


Lemma 2.4. Let X,d be an n points metric space. The following identity is true.
n cn

i | dx,y  1; cn
i ∈ EXn  n cn

i | cn
i x,y  0; d ∈ EXn  2n−2, 25

for an arbitrary i ≠ j ∈ 1,… ,n. (In other words, the number of zeros and ones in a fixed
position in the extremal pseudometric vector are equals, and namely to 2n−2).

Proof. The result of this lemma means that the number of pseudometric vectors, which has one
of the properties (25) are the same and equal to 2n−2. According to theorem 2.3 we may fix two
points x and y such that x ≠ y and compute all possible combination from X ∖ x,y. Hence,
from nX ∖ x,y  n − 2, it follows that nPX ∖ x,y  2n−2. This means that there
exists exactly 2n−2 extremal pseudometric vectors where the component of cnx,y is exactly
1. 

Corollary 2.1. Let X,d be an n points metric space, then the following sum is satisfied.

∑
i1

2n−1

cn
i  2n−21,… , 1, where 1,… , 1 ∈ Rm, m  Cn

2. 26

Proof. Since the distance between two points using the 2n−1 extremal pseudometrics is in 2n−2

cases 0 and in 2n−2 cases 1, then the proof follows immediately from lemma 2.4. Here we
propose a method to construct random metrics in a finite metric space. Namely, we use the set
of all split metrics, which is extremal. Its cardinal number is 2n−1. Moreover, let us denote by
EX the set of all extremal metrics in an n points metric space, where EXn ⊂ EX. In order to
build a random metric, we use the following constructions and algorithms.

For e ∈ R and ∀ e ∈ EX, , ∈ X, the map d , defined as
d, : ∑

e∈EX

ee,, 27

is a pseudometric. And if e  0 for all e ∈ EX, then d is a metric. Indeed since the positive
scalar multiplication with a pseudometric is a pseudometric and the sum of pseudometrics is a
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pseudometric, the sum (27) is a pseudometric. We also note that the set of split metrics is a
subset of all extremal metrics. Now suppose that i  0 for i  1… , 2n−1, for all , ∈ X, then
the set  is a subset of X and X ∖  is the complement set of . Since  ≠ , it follows
that  ∈ X ∖ . We may define according to the previous the following extremal
pseudometric

dx,y :
0, if x,y ∈    or X ∖   X ∖ 
1, otherwise.

28

As d is an element of EXn, so there exists an i, such that cn
i ,  1. Hence for all , ∈ X

there exists cn
i such that cn

i ,  0, and if i  0 then d,  0, which means that d is a
metric.

In the previous notation, d is called a random metric, whenever the choice of e and/or the
choice of e is random. For our numerical simulation of random metrics, we use the following
lemmas to construct a class of random metrics from the class of cut metrics. As before X,d is
an n points pseudometric space. If i, for i  1… , 2n−1, is a sequence of independent and
identically distributed random variables on a probability space ,F,P with realization in
0,, then the map d,  defined as

d, :∑
i1

2n−1

icn
i ,, cn

i ∈ EXn, 29

is a class of random metrics extracted from the set of the cut metrics. For I ⊂ 1… , 2n−1,
i ∈ R , i ∈ I, and   0, the map d defined as
d, : , ∑

i∈I

icn
i ,, cn

i ∈ EXn, 30

is a pseudometric, and if  is strictly positive, d is a metric. Here,  is the discrete metric given
by

x,y :
1, if x ≠ y
0, otherwise.

31

Since the sum of pseudometrics is a pseudometric for all i and for all  the sum (30) is a
pseudometric. If   0, then for all , ∈ X the distance d, is strict positive since ,
is strictly positive. Moreover For p ∈ X, the following pseudometric is extremal

dpx,y :
1, if x  p and y ≠ p or x ≠ p and y  p
0, otherwise.

32


Remark 2.2. The construction of a random metric is based on: i random choice of the
coefficients e, ii random choice of the linearly independent hyperplane equations or iii all
assumptions together.

For our numerical simulations of random numbers, we use two random variables, the first
one is uniformly distributed in any positive set of R. The second one is normally distributed.
The metric is then constructed using one of the algorithms presented bellow.
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2.1. Algorithms for construction of random metrics

In this sub-section we present some algorithms to construct metrics and random metrics.

Algorithm 1. According to formula (28) the following algorithm generates a class of random
metrics.
1. Set d  0 zero metric and p  1.

2. Define dp as dpx,y :
1, if x  p and y ≠ p or x ≠ p and y  p
0, otherwise.

3. Choose randomly ap  0; Set d  d  ap dp.
4. If p  n, Return d; Stop. Else, Set p  p  1, Go to 2. End.

Algorithm 2. Relation (29) leads to the following algorithm for constructing only a class of
random metrics that are extractable from split metrics.
1. Set d  0 zero metric, p  1 and j  1.
2. Define dp a cut metric of 1,2,3, . . . ,n as,
3. For p  1 to 2n−1 construct the cut matrics dp.
4. For j  1 to 2n−1 do choose randomly aj  0; Set d  d  aj dj, Return d, End.

Algorithm 3. This is another algorithm for constructing random metrics, as in the preceding
algorithm, from the same class of split metrics.
1. Set d  0 zero metric, M is a large integer.
2. For j  1 to M choose randomly a cut matric dj and aj  0; Set d  d  aj dj,
3. Choose randomly a  0; Set d  a  d, Return d, End.

Algorithm 4. More generally the following algorithm can be used to construct any random
metric from a convex combination of extremal pseudometrics.
1. Let sd  Sum dx,y, Set d  0 zero metric, p  0.
2. Choose randomly Cn

2 − 1 for an equation of type: dx,y  0 and/or
dx,y  dx, z  dz,y, Solve d′ in sd′  1.
3. For a random number a ∈ 0,1; Set d  ad  1 − ad′, and p  p  1.
4. If p  Cn

2  1, Return d, Stop. Else, Go to 2. End.

2.2. Numerical simulation of random metrics

Let us generate numerical simulations of random metrics and compare them with the the
Euclidean metric. For NP  8, we present in matrix form two examples of random metrics and
for NP  25,50 grid points, representing the finite metric space, we plot the geometrical
behavior of the corresponding random metrics. This is done by plotting the two dimensional
function x,y  dkx,y with k  e, r, where de,dr represent the Euclidean and random
metrics respectively. The used random numbers in our algorithms are uniformly distributed.
The first matrix refers to the Euclidean metric for an equidistant discretization, the second and
the third examples refer obviously to random matrices.
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de 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0.1 0 0.1 0.2 0.3 0.4 0.5 0.6
0.2 0.1 0 0.1 0.2 0.3 0.4 0.5
0.3 0.2 0.1 0 0.1 0.2 0.3 0.4
0.4 0.3 0.2 0.1 0 0.1 0.2 0.3
0.5 0.4 0.3 0.2 0.1 0 0.1 0.2
0.6 0.5 0.4 0.3 0.2 0.1 0 0.1
0.7 0.6 0.5 0.4 0.3 0.2 0.1 0

dr 

0 0.5062 0.4627 0.5693 0.2864 0.4828 0.3735 0.3238
0.5062 0 0.634 0.7406 0.4577 0.654 0.5447 0.4951
0.4627 0.634 0 0.6971 0.4142 0.6106 0.5013 0.4516
0.5693 0.7406 0.6971 0 0.5208 0.7172 0.6079 0.5582
0.2864 0.4577 0.4142 0.5208 0 0.4343 0.325 0.2753
0.4828 0.654 0.6106 0.7172 0.4343 0 0.5214 0.4717
0.3735 0.5447 0.5013 0.6079 0.325 0.5214 0 0.3624
0.3238 0.4951 0.4516 0.5582 0.2753 0.4717 0.3624 0

dr 

0 0.4717 0.5044 0.4676 0.5394 0.5018 0.5124 0.5446
0.4717 0 0.4621 0.4253 0.4971 0.4595 0.4701 0.5023
0.5044 0.4621 0 0.458 0.5298 0.4923 0.5029 0.5351
0.4676 0.4253 0.458 0 0.493 0.4554 0.466 0.4982
0.5394 0.4971 0.5298 0.493 0 0.5272 0.5378 0.57
0.5018 0.4595 0.4923 0.4554 0.5272 0 0.5003 0.5325
0.5124 0.4701 0.5029 0.466 0.5378 0.5003 0 0.543
0.5446 0.5023 0.5351 0.4982 0.57 0.5325 0.543 0
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Figure 1: Euclidean metric vector (first row) and simulation of four random metric vectors for
each finite metric space with NP  25 and NP  50.
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Figure 2: Contour plot for the Euclidean metric matrix(first row) and simulation of random
metric matrices for each finite metric space with NP  25 and NP  50 (second and third
rows).
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Figure 3: Contour plot for the Euclidean metric matrix(first row) and simulation of random
metric matrices for each finite metric space with NP  25 and NP  50 (second and third
rows).
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In order to compare the entries of the considered metrics, we use the metric vector
dv  x  x1,… ,x

Cn2
, as it is denoted in our simulation.

On a finite metric space, with NP  25 and NP  50 respectively, we plot in Figure 1 the
Euclidean metric vector (first row) of an equidistant discretization of the unit interval to
generate four random vector metrics for each number of points N.

Using a uniformly distributed random number generator and a random choice of split
metrics, the time series plot in Figure 1 clearly shows the difference between the Euclidean
metric vector and the random vector. We have to note that the notion of a distribution is not
reflected by the generated metrics. Work in this direction can therefore be quite valuable in the
future.

Since the metric is defined only on a finite metric space, we have interpolated the graph to
get a continuous representation. Note that the Euclidean metric has the same behavior for
NP  25 and NP  50 and thus for any number of points, but the random metric vector
behaviors are different. This is due to the choice of the number of points (NP  25 and
NP  50) and to the random effect of the the random generator. More interesting is the
symmetric behavior and the zero diagonal of all simulated random metrics that is illustrated by
Figures 2 and 3. We remark moreover that, for both simulations, the Euclidean metric is
smooth and totally different from the other generated metrics.

3. Concluding Remarks

Generating random metrics leads to the construction of abstract (finite) metric spaces. Its
illustration is an interesting open question. Despite the fact that the reported results pertain
only to academic examples, the method can apparently be extended to more realistic problems.
For instance DNA-problems. Even more interesting should be such constructions on
continuous metric spaces. And to upgrade this method, one has to characterize extremal
metrics on arbitrary spaces. For the considered n points sets, the number 2n−1 increases
exponentially, therefore the cost of the method is that of a problem of NP −hardness. The
choice of different random distributions could reflect well on the numerical and graphical
difference between the simulated extremal metrics.
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