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Abstract. In this paper two theorems are proved on the degree of approximation of functions
belonging to the Lipschitz classes of the type Lipa, 0 < a <1, and W(Lp,&(t)), p =1, by
(E,q)(C,a, p) means. The first one gives the degree of approximation with respect to the
L.. —norm, and the second one with respect to L, —norms.
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1. Introduction and Preliminaries

Let >~ un be a given infinite series with its partial sums s,. We denote by CP the n-th
Ceséaro means of order (a, ), with a + g > —1 of the sequence (sp), i.e. (see [12])

n
ch? = e DA Als,,
v=0

where Af” = O(n*#), a + B > ~1 and A5 = 1. The series > un is said to be summable
(C,a, B) to the definite number s if

n
of R ﬁ Z(;Aﬁ—& Als, >s, as n- .
Furthermore, for g > 0 a real number, the Euler means (E, q) of the sequence (s,) are defined
(see for example [12]) to be

Bl = Doy Z( A"y,
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The series Z::o Upn is said to be summable (E,q) to the definite number s if

n
Eﬂzﬁq)nZ(C)q”‘st—»s, as n - o.
v=0

The (E, q) transform of the (C, «, B) transform defines an (E, q)(C, a, ) transform and we shall
denote it by (EC)F™”.
Moreover, if

(1+g)"

then we shall say that the infinite series Z:;Oun is (E,q)(C,a, ) summable to the definite

number s. We note that forg = 1, « = 1 and § = 0 the concept of (E,q)(C, a, ) summability
reduces to the (E, 1)(C, 1) summability introduced in [10].
Let f(x) be a 2z periodic function and integrable in the sense of Lebesgue. Then, let

n
ECH" = —L 3" (Mg -5, as n - o,
k=0

f(x) ~ 22+ a,cosnx + by sinnx (1)
n=1

be its Fourier series with n —th partial sum s (f; x). For a function f : R — R the equalities
Il = sup{[f()[: x € R}
and

I = (JZHoorax) ™, p=1,

denote the L., —norm and L, —norm respectively.
The degree of approximation of a function f by a trigonometric polynomial t, of order n
under the norm || +|| .. is defined by Zygmund [13] with

If = tallo = sup<{If(x) — ta(¥)]: x € R},
and the best approximation En(f) of a function f € L, is defined by the equality
En(f) = rrtlin (f—tnllp.

n

A function f € Lipa or f € Lip(a, p) if respectively
[f(x +t) — f(x)|= O(Jt|*) for 0 < a <1,
or
2r 1p
(jo If(x + ©) —f(x)|pdx) —O(t}*) for 0<a<1 and p>1.
For a given positive increasing function &(t) and an integer p > 1, f € Lip(&(t),p) (see [8]) if
2n 1/p
([71F0c+ = F00Pax ) ™ = OCE(D)
and f € W(L, &(1)) if

(Il + )~ f00] sinrxpax ) ™ = 0E®), 720, p=1

We note here in these definitions that for g = 0 the class W(Lp, &(t)) reduces to the class
Lip(&(t),p) and if &(t) = t* then the class W(Lp, &(t)) reduces to the class Lip(a,p), and if
p — oo, then the class Lip(a, p) reduces to the class Lipa.
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A large number of authors have determined the degree of approximation of functions from
the above mentioned classes , using Cesaro and generalized Norlund means (we refer the
reader for details to the papers [1]-[10]). Quite recently H. K. Nigam has studied in [10]-[11]
the same problem proving two interesting theorems using (E,1)(C,1) means. Here in this
paper we shall generalize his theorems using (E,q)(C,a, ) means instead of the (E,1)(C,1)
means that are particular cases of them. Before doing this we shall use the notation

A1) = F(X + 1) + f(x — t) — 2f(x)

Gap e . - ACA) sin(u )t
KE() = b Z( ) kALﬁZ S Sinit

and prove the foIIowmg two lemmas, that are needed for the proof of the main results.

Lemma 1.1. The estimate [KE*?(t)}= O(n + 1) holds true for 0 < t < -1

n+1

Proof. Since for0 <t < ﬁ sinnt < nsint, and by virtue of
n
ZAa_VlAV =A7 and (Mg =1 +g)n, 2)
k=0

we have

, A ATsIn( L)t
qia.B _ 1 n—k__1 2
|Kn (t)l = 7T(1+Q) Z ( >q A’”/’ 2sin lt

gr : a-1p ﬁ (2v+1)S|nt
- 71-(1+q) Z( >Aﬂ+ﬁ ZA 4S|nlt
n—k
< Z( A"k +1)
= O(n+1).
Here the proof ends. |

Lemma 1.2. The estimate [Ki*”(t)|= O(1/t) holds true for -1 <t <=

Proof. Apply the well-known inequality sin(4t) > t/z for Fll <t < &, together with (2), to
obtain
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_ AATsin(v+1)t
q,a,ﬁ . 1 n—k 1 k—v 2
KEPO = o Z( DI T 2 psina

an
= m(lJrq) Z( ) wrf ZAK—V %

TN Z< Jar
o(d).

2. Main Results

Theorem 2.1. If fis a 2z periodic function that belongs to the Lipa class, then its degree of
approximation is given by

IECH () ~fll. =04 ), 0<a<t
Proof. Since
sin(n+iHt
sn(f;X) — () = 55 j o(1) an12t> dt,

then

Cga,ﬁ)(f;x) —f(x) = J¢(t) ZAa 1 Aﬁ S|n<n+z ot dt.

A“*ﬁ sinit

Now by denoting the (E, q)(Cﬁﬁ) transform of s, (f; x) by (EC).(qq;“'ﬁ) (f;x) we have

(ECN (%) ~f(x) = — n R Z (" )gm*

PO~ ACAISInGE
2sin 3t 4 A
_ j pOKT’ (D)t
0
- (jf +I”1 >¢(t)Kﬂ;a’ﬁ(t)dt =31+ S2. )

Using lemma 1.1 leads to
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L a
Sil< [T IBOIKR™ )t

= 0(n+1)[77 tudt = O 47 ). %)

(n+1)@
And lemma 1.2 gives

Sal < [ I9OIKE ot

_ 4 o 1 _ g a— _ 1

- j%n O(L)dt = _[th 14t = o((nma ) (5)
Insertion of (4) and (5) in (3) completes this proof. |

Theorem 2.2. If f is a 2z periodic function that belongs to the weighted W(Lp, &(t)) class, then
its degree of approximation is given by

IECHTF () ~fll, = O((n+ 1)+ &(F2)). (6)

provided that &(t) satisfies the following conditions:

{@} Is a decreasing sequence, (7)
{jﬁ(m " sin7et dt} N -0(%) (8)
0 Et) N+ /°
and
{f ” (m)pdt} o ©
2\ € ’

where § is an arbitrary number such that s(1-6)-1>0, /p+1/s=1, 1 <p < oo, when
conditions (8) and (9) hold uniformly in x and (EC)™* is (E, q)(Cﬁ'ﬁ) means of the series (1).

Proof. We start from relation (3) of theorem 2.1:

1

(EC)*P (f:x) — f(x) = ( 0_ +jl>¢(t)}<ﬁ;“~ﬁ(t)dt =S, +S,. (10)

n+1
As in [10], it is easy to prove the implication f € W(Lp,&(t)) = ¢ € W(Lp,&(t)). Moreover,
using Holder’s inequality and the fact that ¢ € W(Lp, £(t)), condition (8), sint > 2L, lemma
1.1, and second mean value theorem for integrals, we have

1 1/p 1 gia.pB S 1/s
W 19O1 P iy w1 [ SolK )
S4] S{fo (éj(t) sin tdt} {J.O ( ST dt
ST e N |
1 N+
_ O(m){jo = dt}

1 1/s
. 1 n+l 1 1
= O(m {J.g —t(lﬂ)s dt} ) (O <& il

=Oo((n+ )"+ &(5L)), where 1p+1/s = 1. (11)
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Again, using Holder’s inequality, |sint|< 1, sint > 2t conditions (7) and (9), lemma 1.2, and
second mean value theorem, we obtain

1/p giap S 1/s
90 o 7 solKE ()]
1S4l S{I (=5 )S'””dt} {I%( tsint )
x s 1/s
- O((n+1)? ){f (% dt}
-0+ p {7 (e Y e}

o us
= 0O((n+ 1)5 &( 11 )){j‘ll us(gEy)+2 }

(n+1) s(y+1—5)—1_

. 1/s
- O((n+1)° (3 >>{ e }
= O((n+ 1) &(5p DA + 1rei-o-tisy,
= o((n+ 1)7+F E(<L)), where 1/p+1/s =1, (12)
Finally, by inserting (11) and (12) into 10) we obtain
(EC)R P (f;x) - f(x)l= O((n+ D)% (L)),

and thus

. 4 . 1/p
IEC) P (F;x) —f()p = {Iz I I(EC)%‘*"”’ﬁ’(f;x)—f(x)|pdx}

_ O{Uzﬂ«n + )7 g(ﬁ))pdxrp}

=o((n+17 &(2)),

which completes the proof. |

3. Conclusion

In this section we give some direct consequences of the main results. The (E,q)(C, a, ) means
can be reduced to the following means:

1. If B =0then (E,q)(C,a,B) = (E,q)(C,a,0) = (E,q)(C,a)

2. Ifa =1then (E,q)(C,a,B) = (E,q)(C,1,8)

3. Ifp=0,9=1then (E,q)(C,a,B) = (E,1)(C,a,0) = (E,1)(C,a)

4. Ifa =1,q = 1then (E,q)(C,a,B) = (E,1)(C,1,8)

5. Ifa=q=1, B =0then (E,q)(C,a,B) = (E,1)(C,1).

Denoting (E,q)(C,a), (E,q)(C,1,p), (E,1)(C,a), (E,1)(C,1,B), (E,1)(C,1) means of sy(f;x),
respectively, by (EC)Y*%(f;x), (EC)FP(fx), (EC)S O x), (EC)P(f:x), and
(EC)H(f;x) then from theorems 2.1 and 2.2 lots of corollaries can be derived. We shall
formulate below only two of them.
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Corollary 3.1. If e =q =1, =0, and f is a 2z periodic function that belongs in the Lipa
class, then its degree of approximation is given by

1(EC)ELO(F) — f|[ » = o( L ) 0<a<l

Corollary 3.2. If fis a 2z periodic function that belongs in the weighted W(Lp, &(t)) class, then
its degree of approximation is given by

IECHV () ~flp = O((n+ 17 £(327)),
provided that &(t) satisfies the following conditions:
{@} is a decreasing sequence,

(0] \P " 1
{jo (Lt sm”%dt} - o(=L), (13)
and
{j (M)pdt}llsz((n+1)5) (14)
FREC /

where 6 is an arbitrary number such that s(1-6)—-1>0, 1/p+1/s=1, 1 <p < o0, when
conditions (13) and (14) hold uniformly in x and (EC)$? is the (E,1)(C,1) means of the
series (1).
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