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Abstract. In this paper, we present an easily applicable scheme for constructing one-point
third order iterative formulae for the computation of real or complex solutions of nonlinear
equations. The scheme is powerful and interesting since it regenerates almost all available
one-point third order methods in literature. For example, Laguerre, Chebyshev, Euler, Halley,
Ostrowski, Hansen-Patrick, and super-Halley methods, etc. Moreover, many new methods can
in principle be generated. A convergence analysis is also provided to establish a third-order
convergence of the proposed scheme. In order to support the theory developed in this paper,
some numerical tests are performed.
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1. Introduction

Solving non-linear equations is a common and important problem in science and
engineering [1, 2]. Analytic methods for solving such equations are almost non-existent and
therefore it is only possible to obtain approximate solutions by relying on numerical methods
based on iterative procedures. With the advancement of computers, the problem of solving
non-linear equations by numerical methods has gained more importance than ever before.

In this paper, we consider iterative methods for finding a simple root r of the nonlinear
equation fx  0, where fx is a real or complex analytic function. Newton’s method is
undoubtedly the most widely used algorithm for solving such equations, which starts with an
initial approximation x0 closer to the root r and generates a sequence of successive iterates
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xn0
 converging quadratically to the root. It is given by

xn1  xn −
f xn

f ′xn
, n  0,1,2,3,… 1

In order to improve the order of convergence of Newton’s method, a number of third order
methods have been proposed at the expense of an additional evaluation of the second
derivative. For example, Halley [3, 4], Euler [4], Ostrowski’s square root method [5],
Chebyshev [6], Hansen-Patrick [7], Laguerre [5], super-Halley [8], Chun [9], Jiang-Han [10]
etc. are well-known methods requiring the evaluation of f , f ′ and f ′′ per step. In the
terminology of Traub [6] such methods are classified as one-point iterative methods without
memory. It is observed that most of the above methods are based on considering appropriate
quadratic curve approximation (see[8-10]).

We shall be concerned with developing a unified scheme to obtain one-point methods
without memory with at least cubic convergence. Unlike the approaches which have been used
in deriving the existing methods, our approach is based on a simple modification of Newton’s
method (1). The proposed scheme is interesting since it regenerates all the above mentioned
well-known methods. In addition, many new methods can in principle be obtained from it.

The paper is organized as follows. Some basic definitions relevant to the present work are
presented in Section 2. In Section 3, the scheme is proposed and its behavior is analyzed.
Section 4 contains a development of the forms for various new methods. In Section 5, the new
methods are tested and compared with other well-known methods on a number of problems.
Concluding remarks are given in Section 6.

2. Basic Definitions

Definition 2.1. Let fx be a real or complex function with a simple root r and let xnn∈N be a
sequence of real or complex numbers that converges towards r. Then, we say that the order of
convergence of the sequence is p if there exists a p ∈ R such that

n→
lim xn1−r

xn−r
p  C, 2

for some C ≠ 0, where C is known as the asymptotic error constant. If p  1,2 or 3, the
sequence is said to have linear convergence, quadratic convergence or cubic convergence,
respectively.

Definition 2.2. Let en  xn − r be the error in the nth iteration, we call the relation
en1  Cen

p  Oen
p1, 3

the error equation. If we can obtain an error equation for any iterative method, then the value
of p is the order of its convergence.

Definition 2.3. Let  be the number of new pieces of information required by a method. A
‘piece of information’ is typically any evaluation of a function or one of its derivatives. The
efficiency of the method is measured by the concept of efficiency index [11] and is defined by
E  p1/, 4

where p is the order of convergence of the method.
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Definition 2.4. Suppose that xn1, xn and xn−1 are three successively close iterations to the root
r. The computational order of convergence  (see[12]) is approximated by

 ≅
ln |xn1−r/xn−r|
ln |xn−r/xn−1−r|

, 5

which pertains to the error equation (3).

3. The Scheme and its Properties

Our aim here is to develop an iterative scheme that improves the order of convergence of
Newton’s method by following the scheme

xn1  xn − WLn
f xn

f ′xn
, 6

where Ln  Lxn 
f xnf ′′xn

f ′ xn
2 , and Wt is called a weight function. For a reason, to be

clarified later, this scheme is called weighted Newton iterative scheme. The nature and
properties of (6) are illustrated by the theorem that follows.

Theorem 3.1. Let fx be a real or complex function. Assuming that fx is sufficiently smooth
in some neighborhood of a zero, r, say. Further, assume that f ′r ≠ 0 and x0 is sufficiently
close to r. Then, the iteration process converges cubically to the root r, provided that
W0  1,W ′0  1

2 and |W ′′0| .

Proof. Using Taylor expansion of fxn and f ′xn about r and using the fact that fr  0,
f ′r ≠ 0, we have
fxn  f ′ren  C2en

2  C3en
3  C4en

4  Oen
5, 7

where en  xn − r and Ck  1
k!

f kr
f ′r

, k  2,3,…

f ′xn  f ′r1  2C2en  3C3en
2  4C4en

3  Oen
4. 8

and
f ′′xn  f ′r2C2  6C3en  12C4en

2  Oen
3. 9

Also
f ′xn2  f ′r2 1  4C2en  22C2

2  3C3en
2  43C2C3  2C4en

3  Oen
4, 10

fxn

f ′xn
 en − C2en

2  2C2
2 − C3en

3  Oen
4. 11

Using (7), (9) and (10), we get
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Ln 
fxnf ′′xn

f ′ xn
2  2C2en − 6C2

2 − C3en
2  44C2

3 − 7C2C3  3C4en
3  Oen

4, 12

Using theTaylor′s expansion of WLn leads to
WLn  WLr  Ln − LrW ′Lr  1

2 Ln − Lr2W ′′Lr

 OLn − Lr3. 13
Since Lr  0, therefore
WLn  W0  LnW ′0  1

2 Ln
2W ′′0  OLn3. 14

Using (12), we have
WLn  W0  2C2W ′0en − 23C2

2 − C3W ′0 − C2
2W ′′

0en
2  Oen

3. 15
Then invoke (6), (11) and (15) to obtain the error equation as
en1  1 − W0en  C2W0 − 2W ′0en

2 − 2C2
2 − C3W0

 −4C2
2  3C3W ′0  C2

2W ′′0en
3  Oen

4.
We see then that if W is any function with W0  1,W ′0  1

2 and |W ′′0| , then the
convergence order of the iterative process (6) is three, and hence the error equation is
en1  21 − W ′′0C2

2 − C3en
3  Oen

4. 16
This completes the proof. 

4. Some Concrete Weights

In this section we consider various forms of the weight function Wt satisfying the
conditions of theorem 3.1. Based on these forms several third order methods are established.
The existing methods are then shown as special forms of the obtained methods. In the sequel, 
and  are some fixed parameters.

Method 1. For the function W, defined by
Wt  1  1

2 t  t2,

it is clear that the conditions of theorem 3.1 are satisfied. Hence we get the one-parameter
family of third order methods:

xn1  xn − 1  1
2 Ln  Ln

2
f xn

f ′xn
. 17

The error equation (16) now takes the form
en1  21 − 2C2

2 − C3en
3  Oen

4.
If we consider   0, we obtain Chebyshev’s method [6]

xn1  xn − 1  1
2 Ln

f xn

f ′xn
. 18
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Method 2. The use of a weight function W, defined by
Wt  2

2−tt2 ,

leads also to satisfaction of the conditions of theorem 3.1. A case that duplicates Jiang-Han
rational iterative family [10]

xn1  xn − 2
2−LnLn

2

f xn

f ′xn
. 19

The error equation (16) now takes the form
en1  21  2C2

2 − C3en
3  Oen

4.

Method 3. The function W, defined by
Wt  1  1

2
t

1 −t ,

also satisfies the conditions of theorem 3.1. It leads to a one-parameter family of third order
methods

xn1  xn − 1  1
2

Ln

1 −Ln

f xn

f ′xn
. 20

The associated error equation (16) is
en1  21 − C2

2 − C3en
3  Oen

4.
The family includes the following methods as the special cases. For   1, we obtain a

super-Halley method [8],

xn1  xn − 1  1
2

Ln

1−Ln

f xn

f ′xn
. 21

If we let
  1

21f ′2xn
, ∈ R,

we obtain Chun’s family [9]

xn1  xn −
21f ′2xnLn f ′2xn

21f ′2xn−Ln

f xn

f ′xn
. 22

Method 4. For
Wt  1

 1− 1


t
/2 , ≠ 0,

it can be shown that the conditions of theorem 3.1 are satisfied. Thus, we get a two-parameter
family of third order methods
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xn1  xn − 1

 1− 1


t
/2

f xn

f ′xn
, 23

which satisfies the error equation

en1  1  −21
2 C2

2 − C3 en
3  Oen

4.

The family (23) contains the following as special cases. When     1, one obtains Euler’s
method [3]

xn1  xn − 2
11−2 Ln

1/2
fxn

f ′xn
, 24

whereas the case   1,  2 duplicates Halley’s method [3, 4]

xn1  xn − 2
2−Ln

f xn

f ′xn
. 25

When   0,   1, one obtains Ostrowski’s square root method [5]

xn1  xn − 1
1−Ln

1/2
f xn

f ′xn
. 26

The case of   1 is Hansen-Patrick family [7]

xn1  xn − 1
1−1Ln

1/2
f xn

f ′xn
. 27

Finally, if fx is a polynomial of degree n and if we let   1/n − 1,  1, where n ≠ 1,
we obtain the Laguerre method [5]

xn1  xn − n
1n−12−nn−1Ln

1/2
f xn

f ′xn
. 28

Method 5. For the function W, defined by
Wt  2

1−t  1  2 −1


t  2


t2 /2 , ≠ 0,

it is clear that the conditions of theorem 3.1 are satisfied. Hence, we have another
two-parameter family of third order methods

xn1  xn − 2

1−Ln  1  2 −1


Ln  2


Ln
2 /2

f xn

f ′xn
. 29

The error equation (16) for this family is given by

en1  1 − 2
2  −2−12

2 C2
2 − C3 en

3  en
4.

This family also includes remarkable special cases. If we let   0 and   2, we obtain
Halley’s method [3,4]; while for   1, we obtain Jiang-Han irrational iterative family [10]

xn1  xn − 2
1 −Ln  1  2−1Ln 2Ln

2
1/2

f xn

f ′xn
. 30
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5. Numerical Results

Now we present some numerical tests for various cubically convergent iterative schemes
and Newton method. Compared are the Newton method (NM) defined by equation (1),
Chebyshev method (CM) defined by (18), Jiang-Han rational method (JHM) defined by (19)
with parameter   1, super-Halley method (SH) defined by (21), Euler method (EM) defined
by (24), Halley method (HM) defined by (25) and Ostrowski square root method (OM) defined
by (26). To represent new methods of the scheme (6), we choose three methods designated as
M1, M2 and M3, where M1 is defined by the equation (17) with   0.5, M2 is defined by
(23) with   0.5,  1, and M3 by (29) with     0.5.

We conceive an approximate solution rather than the exact root, depending on the
computer precision . The stopping criteria used for computer program are: (a) |xn1 − xn| ,
and (b) |fxn1| . Hence when the stopping criterion is satisfied, xn1 is taken as the
computed root r. It is well-known that convergence of an iterative formula is guaranteed only
when the initial approximation is sufficiently close to the root. However, for a given nonlinear
equation, it is rather hard to choose an initial approximation near a root. In general moreover,
any iterative scheme may be divergent when the initial approximation is far from the root.

The test functions and root r, correct up to 16 decimal places are displayed in Table 1. The
first seven functions we have selected are the same as in [12], whereas the last is selected from
[7]. Table 2 shows the values of the initial approximation x0 chosen from both ends of the
root and the number of iterations (n) that is required to approximate the root, and the
computational order of convergence  defined by (5). For the numerical results of Table 2
we use a fixed stopping criterion of   0.5  10−16.

In Table 3, we exhibit the absolute values of the error en calculated for the same total
number of function evaluations (TFE) for each method. The TFE is counted as the sum of the
number of evaluations of the function itself plus the number of evaluations of the derivatives.
In the calculations, 12 TFE are used by each method. That means 6 iterations are used for NM
and 4 iterations for the remaining methods. It is quite obvious that increasing the order of the
method leads to more precision. For this reason and for more consistency in comparisons, all
computations of Table 3 are done with multiprecision arithmetic using 300 significant digits.

It can be observed that the computed results, displayed in Table 2, overwhelmingly
support the theory of convergence and the efficiency analysis discussed in Section 3. Table 3
also shows that in most of the cases, the results obtained with our new methods are similar to
the other existing methods. Moreover, it can be seen that in some problems the accuracy of
presented methods is higher than the respective competitors in terms of the number of
significant digits gained by each method. The methods, however behave similarly, i.e. for
some initial guesses one is better while for other initial approximations the another one would
be more appropriate. In all, we can infer that the convergence behavior of the considered
one-point methods strongly depends on the structure of tested functions and the accuracy of
starting points. We should also remark that one-point iterative methods without memory of the
same order and the same computational cost show a similar convergence behavior and produce



55 J. R. SHARMA, R. K. GUHA, and Rajni SHARMA

results of roughly the same accuracy.

Table 1: Test functions

fx Root (r)
f1x  x3  4x2 − 10 1 : 3652300134140968

f2x  sin2x − x2  1 1 : 4044916482153412

f3x  x2 − ex − 3x  2 0 : 2575302854398608

f4x  cosx − x 0 : 7390851332151606

f5x  x − 13 − 1 2 : 0000000000000000

f6x  x3 − 10 2 : 1544346900318837

f7x  xex2 − sin2x  3cosx  5 −1 : 207647827130919

f8x  x6 − 4x5 − 5x4  190x3 − 666x2  944x − 600 1  i

Table 2: Performance of the methods

fx x0 n 

NM CM JHM SH EM HM OM M1 M2 M3 NM CM JHM SH EM HM OM M1 M2 M3

f1 1 5 4 4 3 3 3 3 3 2 3 2 3 3 3 3 3 3 3 3 3

2 5 4 4 3 3 4 3 3 3 3 2 3 3 3 3 3 3 3 3 3

f2 1.2 5 4 4 3 3 3 3 3 3 3 2 3 3 3 3 3 3 3 3 3

2 6 4 4 3 3 4 4 3 3 4 2 3 3 3 3 3 3 3 3 3

f3 0 4 3 3 3 3 3 3 3 3 3 2 3 3 3 3 3 3 3 3 3

1 4 3 3 4 4 3 4 4 4 3 2 3 3 3 3 3 3 3 3 3

f4 0.5 4 3 3 3 3 3 3 3 3 3 2 3 3 3 3 3 3 3 3 3

1 4 3 3 3 3 3 3 3 3 3 2 3 3 3 3 3 3 3 3 3

f5 1.8 5 4 4 3 3 3 3 3 3 3 2 3 3 3 3 3 3 3 3 3

2.5 6 4 4 3 4 4 3 3 3 3 2 3 3 3 3 3 3 3 3 3

f6 2 4 3 3 3 3 3 3 3 3 3 2 3 3 3 3 3 3 3 3 3

2.5 5 3 3 3 3 4 3 3 3 3 2 3 3 3 3 3 3 3 3 3

f7 -1 6 4 4 4 4 3 3 3 3 3 2 3 3 3 3 3 3 3 3 3

-1.3 5 3 3 3 3 3 3 3 3 3 2 3 3 3 3 3 3 3 3 3

f8 . 5  1.5i 6 4 4 4 3 4 4 4 4 4 2 3 3 3 3 3 3 3 3 3
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Table 3: Error for the same total number of function evaluations (TFE  12) for all methods.

fx x0 |en |  |xn − r|
NM CM JHM SH EM

f1 1 2.41e - 44 1.81e - 42 4.94e - 45 1.50e - 76 1.34e - 84

2 7.49e - 39 3.75e - 42 2.70e - 41 6.29e - 81 2.09e - 64

f2 1.2 8. 40e - 48 8.59e - 47 6.01e - 49 2.69e - 84 1.28e - 91

2 9.11e - 33 1.58e - 32 4.31e - 32 3.82e - 56 8.29e - 58

f3 0 1.59e - 100 8.67e - 115 4.04e - 115 1.83e - 100 2.50e - 100

1 6.92e - 95 4.74e - 57 3.93e - 57 1.78e - 52 2.25e - 52

f4 0.5 1.57e - 78 2.54e - 78 1.05e - 78 3.55e - 102 6.54e - 101

1 1.80e - 83 5.05e - 83 5.94e - 83 6.49e - 93 4.81e - 93

f5 1.8 9.55e - 42 4.64e - 40 4.88e - 43 1.29e - 69 5.63e - 76

2.5 1.29e - 28 1.59e - 30 1.68e - 29 1.69e - 64 3.29e - 39

f6 2 2.59e - 72 1.40e - 81 3.18e - 82 1.07e - 109 3.94e - 101

2.5 3.53e - 54 4.41e - 61 2.20e - 60 1.13e -89 1.57e - 83

f7 -1 8.63e - 33 2.25e - 39 1.32e - 43 1.08e - 47 4.96e - 50

-1.3 2.47e - 56 3.46e - 69 5.76e - 68 1.47e - 70 7.00e - 68

f8 . 5  1.5i 6.89e - 20 1.33e - 20 1.68e - 19 3.86e - 46 1.05e - 23

6. Conclusions

In this work, we have presented a simple, and powerful iterative scheme, which can be
used for constructing various one-point third order iterative methods for solving nonlinear
equations. The scheme is based on introducing a weight factor in the classical Newton method.
The convergence properties of this scheme make it very useful and interesting since all
well-known methods, which require one evaluation of each of f, f ′ and f ′′ per iteration, satisfy
these properties. Using this technique we have developed some new families of third order
methods and the existing methods have been shown as special members of the families. The
numerical experimentations displayed in Tables 2 and 3 overwhelmingly support the
theoretical results.
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Table 3: Continuation of error for the same total number of function evaluations.

fx x0 |en |  |xn − r|
HM OM M1 M2 M3

f1 1 1.35e - 61 3.82e - 83 1.16e - 57 5.98e - 166 3.43e - 62

2 2.82e - 53 2.22e - 69 1.72e - 67 6.83e - 155 1.58e - 96

f2 1.2 6. 25e - 65 6.34e - 85 2.53e - 67 2.97e - 153 7.33e - 81

2 3.47e - 39 2.85e - 46 1.43e - 58 1.13e - 54 3.22e - 47

f3 0 3.52e - 106 4.63e - 103 6.00e - 101 1.18e - 101 5.56e - 103

1 1.10e - 54 1.52e - 53 8.89e - 53 5.57e - 53 1.70e - 53

f4 0.5 7.50e - 87 9.01e - 93 6.90e - 113 1.93e - 96 2.03e - 92

1 4.42e - 87 1.04e - 89 1.77e - 92 2.89e - 91 9.16e - 90

f5 1.8 5.76e - 61 3.25e - 89 6.63e - 52 9.10e - 97 7.20e - 82

2.5 6.66e - 41 1.46e - 58 4.48e - 51 5.25e - 76 4.56e - 97

f6 2 6.75e - 99 2.59e - 124 1.60e - 101 5.53e - 135 8.19e - 122

2.5 1.17e - 74 3.21e - 96 1.57e - 97 1.23e -110 4.73e - 102

f7 -1 4.22e - 92 1.62e - 61 3.64e - 36 1.41e - 54 2.45e - 64

-1.3 4.76e - 104 2.00e - 85 2.72e - 79 3.73e - 75 1.40e - 82

f8 . 5  1.5i 2.04e - 29 1.11e - 45 1.95e - 39 1.15e - 52 5.12e - 35
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