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Abstract. In this paper, two new derivative-free methods with 2k and Fibonacci number order
of convergence for solution of nonlinear equations are presented. Methods of different order of
convergence are constructed using a suitable parametric function and an arbitrary real
parameter. For some values of k, we have proved the order of convergence of the new
derivative-free methods. Consequently, we have examined the effectiveness of the new iterative
methods by approximating the simple root of given nonlinear equations. The implementation of
the new derivative-free methods is shown using different numerical examples.
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1. Introduction

Multipoint iterative methods for solving nonlinear equations are of great practical
importance since they overcome theoretical limits of one-point methods concerning the
convergence order and computational efficiency. The new derivative-free methods are applied
to find a simple root of the nonlinear equation
f x  0, 1

where f : D ⊂ R → R is a scalar function on an open interval D and it is sufficiently smooth in
a neighborhood of . In this paper, two new derivative-free iterative methods of the 2k and
Fibonacci number order are constructed.

If the derivative of the function f is difficult to compute or is expensive to obtain, then a
derivative-free method is required. In this study, the new derivative-free iterative methods are
based on a classical Steffensen’s method [5], which actually replaces the derivative in the
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classical Newton’s method with suitable approximations based on finite difference,
wn  xn − f xn, 2

f ′xn 
f wn − f xn

wn − xn
 f wn,xn 3

Therefore, the Newton’s method

xn1  xn −
f xn

f ′xn
, 4

becomes the Steffensen’s method

xn1  xn −
f 2xn

f wn − f xn
, 5

In fact, it is well known that the Newton’s method (4) and the Steffensen’s method (5) have the
convergence order of two [1].
Furthermore, we shall briefly state the essentials of Fibonacci numbers and how they are
generated [4]. The Fibonacci numbers are given by a simply recursion formula
Fk1  Fk  Fk−1, 6

where F1  1, F0  1 and k ∈ N . The first few numbers are : 1,1, 2, 3, 5, 8, 13,21,34, . . . . . and the
associated golden number is given as

k→
lim Fk1

Fk
 2−1 5  1  1.61803. . . . . 7

In this paper we shall prove and demonstrate that one of the new higher order methods
involves generating an order of convergence similar to the Fibonacci numbers given by (6).

The prime motive of this study is to develop a class of very efficient derivative-free
methods for solving nonlinear equations. The new methods presented in this paper are
derivative-free and have an order of convergence of 2k and Fk1. Two new derivative-free
iterative methods are constructed in the next section. Then the effectiveness of these two new
iterative methods is compared. Consequently, we have found that the new derivative-free
methods are efficient and robust.

2. New Derivative-Free Methods and Convergence Analysis

In order to establish the order of convergence of these new derivative-free methods we
state the three essential definitions.

Definition 2.1. Let fx be a real function with a simple root  and let xn be a sequence of
real numbers that converges towards .The order of convergence m is given by

n→
lim xn1−

xn−
m   ≠ 0, 8

where  is the asymptotic error constant and m ∈ R.
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Definition 2.2. Suppose that xn1, xn and xn−1 are three successively close iterations to the root
 of (1). Then the computational order of convergence [7] may be approximated by

COC ≅
ln |xn1−/xn−|
ln |xn−/xn−1−|

, 9

where n ∈ N

Definition 2.3. Let p be the number of function evaluations required by the new method. The
efficiency of the new method is measured by the concept of efficiency index [3, 9] which is
defined as
q1/p, 10

where q is the order of the method.

2.1. The 2k derivative-free methods

In this section we define a derivative-free iterative method with 2k order of convergence.
The first step of the new formula is the classical Steffensen second-order method [5]. Then we
use a particular weight function in the iterative process to produce the 2k higher derivative-free
method. Therefore, the scheme for generating the iterative method of order 2k is given as

u1  xn −
f 2xn

f wn − f xn
, 11

u2  u1 − 1  f u1
f xn

f u1
f u1,u0

, 12

u3  u1 − 1  f u1
f xn

f u1
f u1,u0

− 1  f u1
f xn

f u2
f u1,u0

, 13



un1  u1 − 1  f u1
f xn

f u1
f u1,u0

− − 1  f u1
f xn

f uk−1
f u1,u0

, 14

The 2k convergence order method formed by the above scheme will require k1 functions and
no derivative evaluation per iterative step. Furthermore, we have found that the 2k convergence
order method given by (14) can be expressed in a simpler form

un1  u1 − f −1u1,u0 1  f u1
f xn

∑
i1

k−1

fui, 15

where n,k ∈ N, u0  xn, k  2, and provided that the denominator in (15) is not equal to zero.
Thus the scheme (15) defines new higher order derivative-free methods with a weight function.
To obtain the solution of (1) by this method, we must set a particular initial approximation x0,
ideally close to the simple root.

Remark 2.1. We can use an elementary method to determine the sequence for the order of
convergence of (15). Namely by simply applying the ratio test to (15), we have found that the
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following limit illustrates that (15) has a sequence of order 2,

k→
lim

u1− f −1u1,u0 1
f u1
f xn
∑
i1

k1

fui

u1− f −1u1,u0 1 f u1
f xn
∑
i1

k

fui

 4c1
−2 c2

2  3c1
−1 c2

2 − c1
−1 c3 − c3 en

2. 16

Remark 2.2. Using (16) we have found that the asymptotic error constant of (15) may be
obtained by
AEC2k  c1

−1c21  c1 3c1
−2 c2

2  2c1
−1 c2

2 − c1
−1 c3 − c3 en

4

 4c1
−2 c2

2  3c1
−1 c2

2 − c1
−1 c3 − c3 en

2 k−2, 17
for k  2,3,4,5, . . . . .

The expression (17) is a simple formula for calculating the asymptotic error constant for
the 2k higher derivative-free method given by (15).
In numerical mathematics it is very useful and essential to know the behavior of an
approximate method. Therefore, we shall prove the order of convergence of the new higher
order derivative-free method.

Theorem 2.1. Let  ∈ D be a simple root of a sufficiently differentiable function
f : D ⊂ R → R in an open interval D . If x0 is sufficiently close to , then the order of
convergence of the new derivative-free method defined by (15) is 2k.

Proof. Let  be a simple root of fx , i.e. f  0 and f ′ ≠ 0 , and the error is expressed as
e  x − . 18

Using Taylor’s expansion, we have
. fxn  f  f ′ en  2−1 f ′′en

2  6−1f ′′′en
3  24−1f IVen

4  19
Taking f  0 and simplifying, expression (19) becomes
fxn  c1en  c2en

2  c3en
3  c4en

4  20
where n ∈ N and

ck 
f k

k! , k  1,2,3,… 21

Expanding the Taylor series of fwn and substituting fxn given by (20), we have

fwn  c11  c1en  3c1 c2  c1
2c2  c2 en

2  22
By substituting (22) and (20) in (11), we get
.
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u1 −   xn −  −
f 2xn

f wn − f xn
 c2

c1
c1  1en

2  23

The expansion of fu1 about  is given as
fu1  c2c1  1en

2  1
c1
c1

3 c3 − 2c2
2  3c1

2 c3  2c1 c3 − c1
2c2

2 − 2c1 c2
2en

3  24

Substitution of (24) in (15) leads to

u2 −   u1 −  − 1  f u1
f xn

f u1
f u1,u0

 c1
−1c21  c1 3c1

−2 c2
2  2c1

−1 c2
2 − c1

−1 c3 − c3 en
4  25

The expansion of fu2 about  is given as

fu2  c2c1  1 3c1
−2 c2

2  2c1
−1 c2

2 − c1
−1 c3 − c3 en

4  26
Substituting (26) in (15), we get

u3 −   u1 −  − 1 
f u1
f xn

f u1
f u1,u0

− 1 
f u1
f xn

f u2
f u1,u0

 c1
−1c21  c1 3c1

−2 c2
2  2c1

−1 c2
2 − c1

−1 c3 − c3

 4c1
−2 c2

2  3c1
−1 c2

2 − c1
−1 c3 − c3 en

6  27
The expansion of fu3 about  is given as
fu3  c1

−1c21  c1 3c1
−2 c2

2  2c1
−1 c2

2 − c1
−1 c3 − c3

 4c1
−2 c2

2  3c1
−1 c2

2 − c1
−1 c3 − c3 en

6  28
Substitution of (28) in (15) yields

u4 −   u1 −  − 1 
f u1
f xn

f u1
f u1,u0

− 1 
f u1
f xn

f u2
f u1,u0

− 1 
f u1
f xn

f u3
f u1,u0

 c1
−1c21  c1 3c1

−2 c2
2  2c1

−1 c2
2 − c1

−1 c3 − c3

 4c1
−2 c2

2  3c1
−1 c2

2 − c1
−1 c3 − c3

2en
8  29

The expansion of fu4 about  is given as
fu4  c21  c1 3c1

−2 c2
2  2c1

−1 c2
2 − c1

−1 c3 − c3

 4c1
−2 c2

2  3c1
−1 c2

2 − c1
−1 c3 − c3

2en
8  30

Substituting (30) in the expression (15), we get

u5 −   u1 −  − 1  f u1
f xn

f u1
f u1,u0

−

− 1  f u1
f xn

f u4
f u1,u0

 c1
−1c21  c1 3c1

−2 c2
2  2c1

−1 c2
2 − c1

−1 c3 − c3

 4c1
−2 c2

2  3c1
−1 c2

2 − c1
−1 c3 − c3

3en
10  31

The expressions (23),(25),(27),(29) and (31) establish the asymptotic error constant for 2210
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order of convergence, respectively, for the new derivative-free iterative method defined by
(15). 

2.2. The Fibonacci sequence order method

In this section we define an improvement of the previous 2k derivative-free iterative
method. with 2k order of convergence. The Fk1 derivative-free iterative method also has the
first step of the new formula the classical Steffensen second-order method. The improvement
in this method is achieved by using the latest value in the divided difference and we do not use
a weight function in the iterative process. Consequently, we have found that the improved
method, namely Fk1 higher order derivative-free method has an order of convergence similar
to the Fibonacci sequence. Therefore, the scheme for generating iterative method of order the
Fk1 is given as

u1  xn −
f 2xn

f wn − f xn
, 32

u2  u1 −
f u1

f u1,u0
, 33

u3  u1 −
f u1

f u1,u0
−

f u2
f u2,u1

, 34



un1  u1 −
f u1

f u1,u0
− −

f uk
f uk,uk−1

, 35

The Fk1 convergence order method formed by the above scheme will require k  1 functions
and again requires no derivative evaluation per iterative step. Furthermore, we have found that
the convergence order method given by (35) can be expressed in the simpler form

un1  u1 −∑
i1

k f ui
f ui,ui−1

, 36

where n,k ∈ N, and provided that the denominators in (36) is not equal to zero. Thus the
scheme (36) defines new higher order derivative-free methods with no weight function. Here
also, to obtain the solution of (1) by the new derivative-free method, we must set a particular
initial approximation , ideally close to the simple root.

As before, it is very useful and essential to know the behavior of an approximate method.
Therefore, we shall prove the order of convergence of the new derivative-free method.

Theorem 2.2. Let  ∈ D be a simple root of a sufficiently differentiable function
f : D ⊂ R → R in an open interval D . If x0 is sufficiently close to , then the order of
convergence of the new derivative-free method defined by (36) is Fk1.
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Proof. Let  be a simple root of fx , i.e. f  0 and f ′ ≠ 0 , and the error is e  x − .
Using the appropriate expressions (19)-(23), without loss generality, we repeat the process to
prove the order of convergence. As before, the expression of u1 and fu1 are given by (23) and
(24) respectively.

Substitute (23) and (24) in the expression (36) to obtain

u2 −   u1 −  −
f u1

f u1,u0
 c1

−2c21  c1en
3  37

This proves that the formula given by (36) has the order of convergence three.
The expansion of fu2 about  is given as
fu2  c1

−1c21  c1en
3  38

Substitution of (38) in (36) leads to

u3 −   u1 −  −
f u1

f u1,u0
−

f u2
f u2,u1

 c2
c1

4
c1  12 en

5  39

In this case we find that the formula (36) has the order of convergence five.
For the next case, the expansion fu3 about  is
fu3  c1

−3c2
4 c1  12 en

5  40
Substituting (40) in (36) we get

u4 −   u1 −  −
f u1

f u1,u0
−

f u2
f u2,u1

−
f u3

f u3,u2

 c2
c1

7
c1  13en

8  41

Here, we find that (36) has the order of convergence eight.
Repeating the process, the expansion of fu4 about  is given as
fu4  c1

−6c2
7 c1  13 en

8  42
Substitution of (42) in (36) leads to

u5 −   u1 −  −
f u1

f u1,u0
−

f u2
f u2,u1

−
f u3

f u3,u2
−

f u4
f u1,u0

 c2
c1

12
c1  15en

13  43

Here we find that (36) has the order of convergence thirteen. The process maybe repeated to
any desired order.

The expressions (37), (39), (41), and (43) establish the asymptotic error constant for the
3,5,8,13 order of convergence for the new derivative-free iterative method defined by (36).

Conjecture 2.1. Empirically we have found a simple formula for calculating the asymptotic
error constant for the Fk1 higher order derivative-free method given by (36). From a simple
observation of the above proof, its sequence of lower order of convergence, we conjecture that
the asymptotic error constant for the higher order of convergence may be calculated by the
following simple formula:

AEC Fk1  c1
−1c2Fk c1  1Fk−1 en

Fk1 , 44
where Fk is given by (6) and n,k ∈ N.
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3. Application of the New Derivative-Free Iterative Methods

We employ the present derivative-free methods to solve some four nonlinear equations and
demonstrate their performance. We shall determine the consistency and stability of results by
examining the convergence of these new iterative methods. The findings are generalized by
illustrating the effectiveness of these methods for determining the simple root of a nonlinear
equation. Consequently, we shall give estimates of the approximate solution produced by the
eighth-order methods and list the errors obtained by each of the methods. The numerical
computations listed in the following tables were performed on an algebraic system called
Maple. In fact, the errors displayed are of absolute value and insignificant approximations by
the various methods have been omitted in them.

Remark 3.1. The test functions and their exact root are displayed in the following tables
together with the difference between the root and the approximation for test functions with
initial approximation. In fact,  is calculated by using the same total number of function
evaluations (TNFE) for all methods. In the calculations, 12 TNFE are used by each method and
the limit of the precision used for our calculations is |xn − |  10−5000.

Example 1. In our first example we shall demonstrate the convergence of the new higher order
derivative-free iterative methods for the following nonlinear equation

f x  x − 2x10  x  1exp−x  1 45
and the exact value of the simple root of (45) is   2. Tables 1 and 2 display errors obtained
by the 2k and Fk1 convergence order methods, based on the same initial approximation
x0  3−1.

Table 1: Errors occurring in the estimates Table 2: Errors occurring in the estimates of
of the root of (45) by the 2k method (15). the root of (45) by the Fk1 method (36).

k |x1 − | |x2 − | |x3 − | COC
1 0.113 0.113 0.113 0.99

2 0.875e-1 0.217e-1 0.165e-2 1.85

3 0.697e-1 0.531e-2 0.166e-5 3.13

4 0.565e-1 0.106e-2 0.102e-11 5.22

5 0.463e-1 0.160e-3 0.257e-22 7.64

6 0.382e-1 0.180e-4 0.639e-38 10.1

k |x1 − | |x2 − | |x3 − | COC
1 0.113 0.113 0.113 0.99

2 0.358e-2 0.608e-4 0.188e-9 3.11

3 0.127e-2 0.307e-8 0.187e-36 5.02

4 0.183e-4 0.282e-28 0.899e-219 8.00

5 0.927e-7 0.231e-75 0.330e-967 13.0

6 0.676e-11 0.149e-208 0.238e-4359 21.0

We observe that the 2k method is converging at a lower order than expected, whereas the Fk1
method is converging to the expected order.
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Example 2. Our second example shall demonstrate the convergence of the new higher order
derivative-free iterative methods for the different type of nonlinear equation

f x  exp−x2  x  2 − cosx  1  x3  1, 46
and the exact value of the simple root of (46) is   −1. In Tables 3 and 4 we display the
errors obtained by the 2k and Fk1 convergence order methods, based on the same initial
approximation x0  −1.6. We observe that both methods are converging to the expected order.

Table 3: Errors occurring in the estimates Table 4: Errors occurring in the estimates of
of the root of (46) by the 2k method (15). the root of (46) by the Fk1 method (36).
k |x1 − | |x2 − | |x3 − | COC
1 0.396 0.281 0.158 1.68

2 0.308e-1 0.115e-5 0.523e-23 3.92

3 0.262e-2 0.219e-14 0.764e-87 5.92

4 0.211e-3 0.641e-28 0.459e-224 8.00

5 0.170e-4 0.759e-46 0.238e-459 9.99

6 0.137e-5 0.376e-68 0.688e-819 12.0

k |x1 − | |x2 − | |x3 − | COC
1 0.396 0.281 0.158 1.68

2 0.401e-1 0.187e-5 0.128e-17 2.81

3 0.388e-3 0.329e-18 0.146e-93 5.00

4 0.234e-5 0.112e-47 0.294e-386 8.00

5 0.152e-9 0.172e-132 0.906e-1731 13.0

6 0.592e-16 0.262e-349 0 21.0

Example 3. Here we take another nonlinear equation.

f6x  sinx2 − x2  1, 47
and the exact value of the simple root of (47) is   1.40449155. As before, Tables 5 and 6
contain displays of the errors obtained by the 2k and Fk1 convergence order methods, based on
the same initial approximation, x0  −1.5. Here we observe that the new Fk1 and the 2k
convergence order methods are converging to the expected order.

Table 5: Errors occurring in the estimates Table 6: Errors occurring in the estimates of
of the root of (47) by the 2k method (15). the root of (47) by the Fk1 method (36).
k |x1 − | |x2 − | |x3 − | COC
1 0.996 0.981 0.110e-3 1.94

2 0.170e-1 0.173e-6 0.176e-26 4.01

3 0.484e-2 0.640e-13 0.352e-78 6.00

4 0.127e-2 0.934e-22 0.768e-175 8.00

5 0.343e-3 0.787e-33 0.314e-329 10.0

6 0.920e-4 0.330e-46 0.151e-555 12.0

k |x1 − | |x2 − | |x3 − | COC
1 0.996e-1 0.981e-2 0.110e-3 1.94

2 0.454e-1 0.891e-4 0.643e-12 2.60

3 0.367e-2 0.545e-12 0.400e-61 5.00

4 0.127e-3 0.396e-31 0.359e-251 8.00

5 0.366e-6 0.800e-84 0.210e-1093 13.0

6 0.363e-10 0.104e-219 0 21.0

Example 4. In the last but not least of the examples, we take another different type of
nonlinear equations,
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f x  lnx2  x  2 − x  1, 48
and the exact value of the simple root of (48) is   4.152591. Tables 7 and 8 display the
errors obtained by the 2k and Fk1 convergence order methods, based on the same initial
approximation, x0  5. In this particular case, we observe that both methods are converging to
the expected order.

Table 7: Errors occurring in the estimates of Table 8: Errors occurring in the estimates of
the root of (48) by the 2k method (15). the root of (48) by the Fk1 method (36).

k |x1 − | |x2 − | |x3 − | COC
1 0.489e-1 0.564e-4 0.764e-10 2.00

2 0.586e-3 0.156e-16 0.778e-71 4.00

3 0.869e-5 0.397e-36 0.361e-224 6.00

4 0.129e-6 0.500e-63 0.250e-514 8.00

5 0.192e-8 0.308e-97 0.342e-985 10.0

6 0.286e-10 0.928e-139 0.127e-1680 12.0

k |x1 − | |x2 − | |x3 − | COC
1 0.489e-1 0.564e-4 0.764e-10 2.00

2 0.418e-2 0.106e-9 0.172e-32 3.00

3 0.122e-4 0.574e-30 0.130e-156 5.00

4 0.309e-8 0.151e-77 0.488e-632 8.00

5 0.228e-14 0.103e-206 0.332e-2707 13.0

6 0.424e-24 0.385e-539 0 21.0

4. Conclusion

In this study, we have constructed two new higher order derivative-free methods for
solving nonlinear equations. Convergence analysis proves that the new methods preserve their
order of convergence. From the results in the previous tables and a number of numerical
experiments, it can be concluded that the convergence of the new multipoint methods is
remarkably fast. After an extensive experimentation we conjecture that the Fibnoacci sequence
order Fk1 method is superior to the 2k method.

There are two major advantages of these new derivative-free methods. Firstly, we do not
have to evaluate the derivative of the functions; therefore they are especially efficient where
the computational cost of the derivative is expensive, and secondly we have established a new
higher order of convergence method which is simple to construct. We have examined the
effectiveness of the new derivative-free methods by estimating the accuracy of the simple root
in some nonlinear equations. The main purpose of demonstrating the new higher order
derivative-free methods for four different types of nonlinear equations was purely to illustrate
the accuracy of the approximate solution, the stability of the convergence, the consistency of
the results and to determine the efficiency of the new iterative methods. Finally, further
investigation is needed to improve these new iterative methods so as to define the optimal
order of convergence based on the Kung-Traub conjecture [3].
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