Journal of Numerical Mathematics and Stochastics, 4 (1) : 70-78, 2012 © INM@S
http://www.jnmas.org/jnmas4-7.pdf Euclidean Press, LLC
Online: ISSN 2151-2302

A New Higher Order Diagonal-Type Newton’s Method
for Higher Dimensional Systems of Nonlinear
Equations

M.Y. WAZIRI*?, W.J. LEONG?, and A.U.MOYI?

! Department of Mathematical Sciences, Bayero University Kano, Kano, Nigeria;
2Department of Mathematics, Universiti Putra Malaysia, 43400, Serdang, Selangor Malaysia,
E-mail: mywaziri@gmail.com

Abstract. In this paper, an efficient diagonal updating scheme has been developed and used to
solve large scale systems of nonlinear equations. The algorithm is based on the technique of
Waziri et al [ M.Y. WAZIRI, W.J. LEONG, M.A. HASSAN, and M. MONSI, Jacobian
computation-free Newton method for systems of non-linear equations, Journal of Numerical
Mathematics and Stochastics 2(1), (2010), 54-63].Unlike the one step approach in most
Newton’s-like methods, in our new approach we make use of data from two previous steps. The
rationale behind this approach is to improve the current Jacobian inverse approximation by a
diagonal matrix. To illustrate the efficiency of our diagonal updating scheme, some numerical
experiments are presented, and the results are compared with some other Newton’s -like
methods.
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1. Introduction

Consider the problem
F () =0, (1

with F : R" - R", where the mapping F is assumed to satisfy the following standard
assumptions:

1. F is continuously differentiable in an open convex set @ ;

2. There exist a solution x* of (1) in ® such that F(x*) = 0and F*) = 0;
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3. The Jacobian F'(x) is local Lipschitz continuous at x*.

The best approach for finding the solution to (1) is the Newton’s method. The method is simple
to implements and it produces an iterative sequence {xx} from any given initial guess Xo in the
neighborhood of solution, through the following steps.

The NM Algorithm (Newton’s method)

Fork = 0,1,2,... where F'(x) is the Jacobian matrix of F:
Step 1: solve F'(xx)sk = —F(x)

Step 2: Update Xy = Xk + Sk ,

where sy is the Newton correction, and

XK1 = X*[|< h[xc—x*12, (2)
for some h.

Among its attractive feature is that the convergence rate is quadratic from any initial point xo
in the neighborhood of a solution whenever the Jacobian matrix F'(x*) is nonsingular at that
solution [2, 1],

Notwithstanding, Newton’s method have some numerous disadvantages which have
attracted the attention of many researchers over time. These include the computation and
storage of Jacobian matrix as well as solving n linear equations in each iteration. It is well
known that the Jacobian computation entails first-order derivatives of the systems. And some
functions derivatives are quite costly and sometime not available or could not be precisely
evaluated. In this case Newton’s method cannot be directly used. Therefore, to tackle this
crucial issue some effort need to be applied.

It is worth mentioning that, the use of quasi-Newton’s method has reduced the evaluation
cost of an expensive Jacobian matrix. Here the cost of a solution by quasi-Newton’s methods
could be much less than with inexact Newton methods [3]. Nonetheless it requires to store the
full elements of the Jacobian in each iteration in which for large scale will be a very rigorous
task to handle. Another interesting variant of Newton’s method is the fixed Newton method.
This method overcomes both the computation and storage of the Jacobian (except for the first
iteration), as well as avoiding solving a system of n linear equations in each iteration, [5]. Still
it requires to store full elements of the Jacobian matrix. Numerous approaches exist to
overcome the widely known drawbacks. Many efforts have recently been made by a number of
authors, see e.g. [4, 10, 6, 13, 11], to overcome the shortcomings of various Newton methods.
Among the successful ones are the diagonal Newton’s like methods proposed in [6, 13, 11].
These methods are so appealing because, they neither require Jacobian computation and
storage, nor solving Newtonian equations (linear) in each iteration. In addition, the methods
have floating points operations of O(n). Apart from these achievements, they make use of a
standard one-step two-point approach in Jacobian or its inverse approximation by a
nonsingular diagonal matrix, which is commonly used by most Newton’s-like methods. In
contrast, this paper uses a two-step multi points approach to extend the scheme of Waziri et al
[11].

Our new approach aims at increasing the accuracy of the Jacobian inverse approximation
by a diagonal matrix. We organized the rest of this paper as follows. Section 2 presents the
proposed method, Numerical experiments are reported in Section 3, and finally some
conclusions are made in Section 4.
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2. Derivation Process of I1-2DN

This section presents our new modification of Newton’s method using a two-step
multi-point approach. This method generates a sequence of points {xx} via

Xke1 = Xk — QkF(Xk), 3)

where Qy is a diagonal approximation of the Jacobian inverse matrix. To achieve this, we
require to construct a matrix Qg via a diagonal updating scheme which is a good approximation
to the Jacobian inverse matrix. Waziri et al. [11] utilize data from one preceding step to
improve the current approximate Jacobian into a diagonal matrix, meaning that
Yk = F(Xk:1) — F(Xk) and sk = Xxs1 — Xk. This approach is known as a one-step approach. We
continue in the spirit of diagonal updating; using an interpolating curve in the variable-space,
we develop an incomplete Taylor series expansion of F(x) at xx. This is anticipated to be a
more accurate approximation of the Jacobian inverse matrix. To this end, we consider some of
the most successful of the two-step methods (see [7]-[9] for more detail ). By using this
two-step approach, we can present the improved incomplete Taylor series expansion of F(x)
viz.

(Sk — AkSk-1) = Qr(Yk — AkYk-1)- 4)
If uk = Sk — AkSk-1 and yx = Yk — AkYk-1, then it follows from (1) that
Uk ~ Quyk. (5)

Since we used information from the last two previous points instead of one step in (4) and
(5), the improved incomplete Taylor series expansion of F(x), derived from this scheme, will
also improve the precision of the Jacobian inverse approximation. Therefore, we require the
building of interpolating quadratic curves x(¢) and y(¢) , where by x(¢) interpolates the last
two earlier iterates xy_1, Xk by X:+1, and y(e) interpolates the last two earlier function evaluation
Fi1, Fx and Fy.a (which are assumed to be available). We follow the approach proposed by
[7] to obtain the Ay in [4] using the value of yo,71 and 1y, respectively. If we assume that
y2 = 0and {yj}# = 0, then yy is defined by

—y1=7v2-71 = [IX(y2) = x(y 1)l o

= X1 = Xkl = ISkl

= J51QusK) (6)
and
—=yo =7y2—70 = [[X(v2) = X(70) [l o

= X1 = Xkl Qe = ISk + Sk o

= J((Sk + Ske1) TQ(Sk + Sk-1)) e
let us define & as
f- 7 ®

ViV
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then ux and w are give as

2

Mk = Sk — T2 Sk-1, 9
2
Wk = Yk — veY: Vi1 (10)
Consider (9) and (10) in (5) and the fact that Qx ~ F'~! to obtain
. (i)
o= L (11)
k
Hence
Qua = diag(@ie) | (12)

fori1<i<nandk=0,12...,n Here yﬁi) is the i™ component of the vector uy , wl((i) is the
it component of the vector yy and g\”; is the it" diagonal element of a diagonal matrix Qi1
respectively. To safeguard on the possibly of generating singular Qx.1, we proposed the usage
of
the following updating scheme for Q.
K .
B2 l//k + 01
Qk+1 = l//k
Qk ; otherwise.

Now we are able to present the following main result of this paper.

The 1-2DN Algorithm

Step 1 : Choose an initial guess xo and Qo = I, and letk := 0

Step 2 : Compute F(xk). If ||F(xk)||< 1074, stop

Step 3: If k := 0 define x; = X0 — QoF(Xo). Else if k := 1 set ux = sk and yx = yx , and goto 5
Step 4 : If k > 2 compute y1 ,yo and & via (6)-(8), respectively and find v and uy using (9)and
(10), respectively. If w{ux < 107 |lwll2llukll 2 , et ux = sk and wy = Yy«

Step 5: Let xk1 = Xk — QkF(Xx) and update Q.1 as define by (12)

Step 6 : Check if ||wk|l2 > €1 where €5 = 1074, if yes retain Q.1 that is computed by step 5.
Else set, Q1 = Q«

Step 7 : Set k:=k+1 and goto 2.

3. Numerical Results

In order to evaluate the performance of the proposed method, we apply this updating
scheme to solve five benchmark problems using dimensions ranging from 25 to 50,000
variables. Four Newton’s-like methods are compared and the comparison involves the number
of iterations, CPU time in seconds,storage requirement and floating points operations. The
methods considered namely are:

(1) 1-2DN stands for method proposed in this paper.

(2) The Newton’s method (NM).

(3) The Fixed Newton method (FN).

(4) Broyden method (BM).

All the computational experiments were carried out in double precision. The termination point
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is defind viz.
Iskll+IF(x) (< 1074, (13)
and we have designed the program to terminate whenever:
(i) The number of iterations is at least 500, but no point of x satisfies (13),
(i) CPU time in seconds reaches 500,
(iii) Insufficient memory to initiate the run.
“—"in the tabulated results represents a failure due to any of (i)-(iii).
In the following we present some details of the solution of the benchmark test systems of
nonlinear equations.

Problem 1. System of n nonlinear equations :

fi(x) = 3n— (Z(cosxi - 2)) - (Z Xi + sin(x; — 2))

i=1 i=1

i=12..,n, and  xo = (0,0,...0).
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Figure 1: Comparison of CPU times in the NM, FN, BM and I-2DN methods for Problem 1

Problem 2. The system:
f1(x) = x% — cos(x1 — X2)

fi(x) = (4-3x)(L+sin(x; - 1)) + ij —exp(sin(xj —1)) —n
=1
fn = sec(Xn — Xn-1) + exp(sin(Xn — 1)1) — 2Xn
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i=2,...,n—-1, and Xo = (4,4,4,...,4).

Problem 3. The System :

n
fi(x) = (Zx? + i)(xi D +expxi—1) -1
i1
i=12,...,n, and X0 =(3,3,33...,3).
Problem 4. Extended system of Byeong [12] :

fi(x) = cos(x? —1) - 1

i=12,...,n, and X =(0.50.5,..,0.5) x % = (0.0087,0.0087,...,0.0087).

Problem 5. System of n nonlinear equations :

1100 = i — &XP0)

fi(x) = (1+1xi2) + cos(Xiy1) — 2exp(X;)

i=2,...,n-1, X1 =0, and Xo = (0.5,0.5,..,.5).
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Figure 2: Comparison of CPU times in the NM, FN, BM and I-2DN methods for Problem 5

These four methods are compared in terms of CPU time, number of iterations, floating
point operations and matrix storage requirements, as displayed in Table 1.

From the CPU time point of view, Figures 1 and 2 show that the 1-2DN method consumes
less CPU time as compared to the NM, FN and BM methods. This is due to less computational
effort associated with the building of the approximate Jacobian inverse while avoiding the
needs of solving Newtonian (linear) systems in each iteration.

It is remarkable how the I-2DN method significantly reduce the matrix storage requirement
from n? location storage to only a row vector requirement. Therefore, since the storage needed
by the I-2DN method is less than the one utilized by NM, FN and BM methods, [-2DN
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methods appear to be the best available option for solving large-scale systems. Table 1
illustrates also that even as the dimension increases up to 50,000 variables, the 1-2DN method
is able to converge while the NM, FN and BM methods fail to do so. Apparently due to
insufficient memory to initiate the run.

Table 1: Numerical results of the NM, FN, BM and 1-2DN methods.

Problem | Dimension | NM FN BM I-2DN
NI CPU NI CPU NI CPU NI CPU
1 5 0.062 - - 10 0.016 9 0.001
2 6 0.094 45 0.031 — - 15 0.002
3 25 9 0.078 45 0.046 - - 14 0.010
4 6 0.031 63 0.015 8 0.011 26 0.009
5 6 0.031 50 0.047 - - 6 0.001
1 5 0.125 - - 11 0.047 9 0.004
2 6 0.156 45 0.047 - - 13 0.028
3 50 9 0.227 46 0.098 — - 6 0.012
4 6 0.047 75 0.021 9 0.016 27 0.010
5 6 0.094 52 0.053 — - 6 0.014
1 5 2.752 - - 11 0.062 9 0.012
2 6 0.515 45 0.175 — - 15 0.030
3 100 9 0.841 52 0.301 - - 15 0.018
4 6 0.461 90 0.031 9 0.022 27 0.014
5 6 0.468 53 0.187 - - 6 0.014

4. Conclusions

We have presented a new diagonal Newton’s method for solving large-scale systems of
nonlinear equations using a two-step approach, namely I-2DN. The method uses an identity
matrix as initial approximation to the Jacobian inverse which can be updated in each iteration.
The numerical experimentsit indicate that the proposed method is capable of significantly
reducing the execution time ( CPU time), matrix storage requirement and floating points
operations, as compared to NM, FN and BM methods. This happens while maintaining good
accuracy of the numerical solution to some extend. Another fact that makes the 1-2DN method

more appealing is that throughout the tested problems it never failed to converge.
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Finally, we conclude that our I-2DN method is a good alternative to Newton’s-type
methods for solving large-scale nonlinear equations or systems with a nearly singular Jacobian.

Table 1: Numerical results of the NM, FN, BM and 1-2DN methods (Continuation).

Problem | Dimension | NM FN BM I-2DN
Nl | CPU NI CPU NI CPU NI CPU
1 5 10.104 - - 11 2.667 9 0.030
2 6 5.912 45 1.768 - - 13 0.049
3 300 9 10.154 58 4.410 - - 15 0.039
4 6 8.731 - - 10 2.093 27 0.031
5 6 4.803 56 1.602 - - 7 0.022
1 5 114.567 - - 11 15.401 9 0.034
2 6 108.530 - - - - 16 0.072
3 1000 9 165.814 74 18.171 - - 16 0.045
4 6 102.712 - - 10 11.161 31 0.048
5 6 110.371 59 25.319 - - 7 0.031
1 - - - - - - 9 1.001
2 - - - - - - 14 1.669
3 50000 - - - - - - 20 4.627
4 - - - - - - 35 0.589
5 - - - - - - 7 0.743
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