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Abstract. We determine the asymptotic speed of the first-passage percolation process on some
ladder-like graphs (or width-2 stretches) when the times associated with different edges are
independent and exponentially distributed but not necessarily all with the same mean. The
method uses a particular Markov chain associated with the first-passage percolation process
and properties of its stationary distribution.
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1. Introduction

Consider a graph G with vertex set V and (undirected) edge set E ⊂ V  V. If there is an
edge e  〈v,v ′ joining vertices v and v ′, they are said to be adjacent. A path v,v ′ between v
and v ′ is an alternating sequence of vertexes and edges v0,e1,v1,… ,en,vn such that
ei  〈vi−1,vi for i  1,… ,n, v0  v and vn  v ′.
We think of each edge e as being associated with a (typically non-negative) random time e.
Formally we define   e,e ∈ E to be a stochastic process indexed by the edges of the
graph, and define the time Tv,v ′ of a path v,v ′ to be
Tv,v ′  ∑

e∈v,v′

e and Tv,v ′ 
v,v′
inf Tv,v ′

as the shortest time of any path between v and v ′. Tv,v ′ is called the first passage time from v
to v ′ and is the subject of investigation in first passage percolation, see e.g. [6].
We may also consider first passage times between sets of vertices. If V1 and V2 are such sets,
then
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Tv,v ′ 
v∈V1,v′∈V2

inf Tv,v ′

is the first passage time from V1 to V2.
Usually, all first passage times under consideration are from some fixed and given set V0 to

a varying set V ′, in which case we denote by TV ′ the first passage time from V0 to V ′, or
Tv ′ if V ′ is the singleton set v ′, and refer to this simple as the first passage time of V ′.
We can think of this as a model for a contagious disease. At time zero a subset V0 of the
vertices are infected and subsequently the disease spreads to adjacent vertices. The time for the
infection to be submitted from v to v ′ along the edge 〈v,v ′ is 〈v,v′.

A typical question, and indeed the one we shall be concerned with, is how fast does the
infection spread? This of course requires some metric on the set of vertices. We shall look at
cases of ladder-like graphs with “height” as the measure of distance and independent edge
times, each having an exponential distribution.

2. First Passage Percolation on Ladder-Like Graphs

A ladder-like graph, or width-2 stretch, is a graph whose vertex set is V  N  0,1, N
denoting 0,1,2,…, with the ordinary Euclidean metric, considered when each vertex is
placed in the (real) plane R2. Our interest is on a particular class L of such graphs where
vertices may be adjacent if they are no more than Euclidean distance 2 away from each other
and, in addition, the graph is translational invariant, see Figure 1. By translational invariant we
mean that we can superimpose the graph on itself by shifting it one unit length to the right in
Figure 1.

Figure 1: Part of the vertices of a ladder-like graph. The possible edges of a
graph in L are dashed. Note that it must also be translational invariant.

A vertex x,y in such a graph is said to be at height x ∈ N and level y ∈ 0,1. We will
consider V0  0,0, 0,1 to be infected at time zero, and we consider first passage times of
the height n, i.e. the set Vn  n, 0, n, 1.
It should be noted that the Euclidean metric only serves as to define the class of graphs we are
interested in. Once this is done, we only consider “height” as a measure of length in the graph.
In this sense, the “length” of the (possible) diagonal edges are not longer that of the (possible)
horizontal edges.

Typically the focus is on the a.s. limit
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  G, 
n→
lim TVn

n ,

called the time constant. Now, the first passage times on these graphs are subadditive and the
almost sure convergence of TVn/n relies on the subadditive ergodic theorem. See Proposition
4.1 of [9] for the details. In our calculations it is rather the asymptotic speed V of percolation
that appears naturally, but this is just the inverse of the time constant, V  1/.

The investigation of the rate, or speed, of percolation on ladder-like graphs began with [2],
which consider the ladder, i.e. where all vertices at distance 1 are connected by an edge. That
paper gives a method of calculating  when e’s are independent with the same discrete
distribution, as well as a method for getting arbitrarily good bounds for the same quantity when
the distribution is continuous (and well behaved).

A few years later [9] and [4] independently studied the case of having independent and
identical exponential times. In [9], six graphs in L are considered and explicit expressions for
 are found for three of them, using recursive distributional equations. It should be noted that
these six graphs are in fact “all” graphs in the class L as far as  is concerned, in the sense that
any other graph is either trivial or it has the same  as one of these six.

Another method for finding  is employed in [4], which studies the ladder. There a Markov
chain is found and the speed of percolation can be calculated “at stationarity”, a method that
will be repeated below in a more general context. The method also allows the study of another
aspect of the percolation process called the residual times, defined in [4].

Now, we fix some notation that will be used throughout this paper. Let
Nt 

i∈0,1
sup x : Tx, i ≤ t 1

denote – in the interpretation of the model of a contagious disease – the height of the infection
at time t. And
Mt  supx : maxTx, 0,Tx, 1 ≤ t 2

denotes the largest height at which both levels have an infected vertex.
Now define the front process Ft as

Ft  Nt − Mt. 3
In some situations Ft is a Markov chain on N. As we shall see, the problem of determining the
percolation speed V is more or less equivalent to finding the stationary distribution of this
Markov chain.

We will denote by n  n the property that

n→
lim n

n
 1,

for real sequences n and n. Let zn and zn denote falling and rising factorials, respectively,
which may be expressed as

zn  zz − 1z − n  1  Γz1
Γz1−n ,

and



82 H. RENLUND

zn  zz  1z  n − 1  Γzn
Γz .

3. The Ladder With Heterogeneous Exponential Times

In this section we generalize the result of [4] to a ladder with heterogeneous exponential
times. Let each horizontal edge be associated with an exponential time with intensity h  0
(i.e. an exponential with expectation 1/h) and each vertical edge be associated with an
exponential time with intensity v  0. Random variables associated to different edges are
independent. Notice, since we may equally well measure intensity in units of h, there is no
loss of generality in saying that h  1. Let us do so and denote v simply by .
Note that [4] is concerned with the case   1.

Figure 2: Infected nodes at time t marked as black. HereMt  3, Nt  6 and Ft  3. Not
shown in the picture is that each vertical edge has intensity  and each horizontal edge has

intensity 1.

Now, Ft, defined by (1), (2) and (3), is a continuous time Markov chain on N. This fact
becomes clear as we write down the intensity matrix Q of the process. Denote by
t ′  inft  t0 : Ft ≠ Ft0 the first time, after t0, that the F-process changes its value.

Consider first the case of Ft0  0, which means that Mt0 and Nt0 both equal, say, n. Then
both n, 0 and n, 1 are infected, and there is no infected node at any greater height. The only
states that can be infected at t ′ are n  1,0 or n  1,1, both resulting in Ft′  1, and both as
a result of the infection spreading along a horizontal edge. Informally, we will say that these
edges lead to the state Ft′  1, which is rather inaccurate since edges connect different vertices
and not different states of the front process, but a convenient terminology. So, thus far we have
established that the intensity from state 0 to state 1, is 2, and the intensity away from state 0 is
-2.
If Ft0  3, as in Figure 2, there are 3 vertical edges leading to states 2, 1 and 0 respectively.
There are 2 horizontal edges leading to states 2 and 4, respectively. Thus, the intensities to 0
and 1 are both , to 2 it is 1   and to 4 the intensity is 1.
In a similar manner, one derives the following form (4) of the intensity matrix. This Markov
chain is irreducible, so if we can find a stationary distribution   0,1,… , on N, such that
Q  0, then this is the unique stationary distribution of Ft, and as t → , Ft will converge to
it.
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Q 

−2 2 0 0 0
1   −2 −  1 0 0

 1   −2 − 2 1 0 …

  1   −2 − 3 1
   1   −2 − 4
    1  

 

. 4

Now, our main question is: what is the asymptotic speed of percolation? When Ft0  0 the
intensity by which Nt increases is 2, since there are two horizontal edges from the state Ft0  0
to the state Nt′  Nt0  1 (and no other edge that makes any difference to neither of these
processes). When Ft0  0, there is one horizontal edge leading to Nt′  Nt0  1 (and no other
edge that makes any difference to the Nt-process). Hence, at stationarity we get the speed of
percolation as
V  20  11 − 0  1  0. 5

Next, we proceed to find  through the equation Q  0. One way of doing this is to express
each n, n  0, in terms of 0; n  an0 − bn.
Now, the first entry of 0  Q is
0  −20  1  ∑

j≥1
j.

As∑
j≥1

j  1, which implies∑
j≥1

j  1 − 0, we get

0  −2  0    1 yielding 1  2  0 − . 6
Repeating this procedure for the equations corresponding to columns 2 and 3 of Q, yields, after
isolating 2 and 3,
2  22  7  20 − 22  3, 7

and
3  63  262  22  20 − 63  142  6. 8

Next, taking the difference of equations corresponding to columns k and k  1 for any k ≥ 2
yields
0  k−1 − k  3k  k  2  3k1 − k2,

which we shall rewrite as
n  n  3n−1 − n − 2  3n−2  n−3, n ≥ 4. 9

We formally define an and bn by the relation n  an0 − bn, for n ≥ 1. Thus, for n  1,2,3
they are defined by equations (6), (7) and (8), respectively, and for n ≥ 4 can be found
iteratively through (9), with an or bn in place of n.
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As necessarily n → 0 as n → , we can find 0 as

0 
n→
lim bn

an .

This far we copied the procedure of [4], which proceeded to prove the link to Bessel
functions, along the lines of how this fact was originally discovered. Here, we start instead
with the Bessel functions.

3.1. The Bessel functions

The Bessel functions of the first and second kind, Jz and Yz, as described in e.g. [7],
both satisfy the recursion
C1z  C−1z  2

z  Cz. 10
Define, for any (real numbers) n, A and B ≠ 0,
Ĵn  ĴnA,B  JnA/B2/B and Ŷn  ŶnA,B  YnA/B2/B.

Then Ĵn and Ŷn both satisfy
Ĉn1  Ĉn−1  A  BnĈn. 11

Define the function
n  n,m,A,B  ĴnŶm − ĴmŶn. 12

This function inherits recursion (11) (in parameter n)
n1  n−1  A  Bnn. 13

Next, define
Δn  Δn,m  Δn,m,A,B  n − n−1.

When m and/or A and B are clear from the context, or unimportant, we write Δn or Δn,m
instead of the lengthy Δn,m,A,B. As the next claim makes clear, this function is designed
with (9) in mind.

Claim 3.1. Δk satisfies,
Δn  1  A  Bn − 1Δn−1 − 1  A  Bn − 3Δn−2  Δn−3. 14

Proof. By using the definition Δk  k − k−1 on the right hand side of (14), rearranging terms
so that relation (13) can be applied (as indicated in (15)), we see that the right hand side of (14)
equals

n  n−2

A  Bn − 1n−1

−2n−1 − 2n−3

− 2 A  Bn − 2n−2 

n−2  n−4

 A  Bn − 3n−3  n−1 − 2n−2  2n−3 − n−4 15

 n − n−1, 16
which is the same as the left-hand side of (14).


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Claim 3.2.
n,n,A,B  0 17

and
n  1,n,A,B  B. 18

Proof. The first assertion follows trivially from the definition (12).
For the second assertion, we need two important relations for the Bessel functions. The first is
that
zJ′ z  Jz − zJ1z, ∀. 19

and the same holds with Y replacing J, see 3.2(4), p. 45 and 3.56(4), p. 66 of [7], resp. The
second is a fact relating to the Wronskian, namely that

2
z  JzY′ z − J′ zYz, ∀, z ≠ 0, 20

see 3.63(1), p. 76 of [7].
Relation (19) when inserted in (20) gives

2
z  J1zYz − JzY1z

and z  2/B gives the desired result. 

Remark 3.1. It should be noted that the -function does not solve a recursion of the form (14)
with arbitrary initial conditions. Indeed, by relation (13) we get
Δn1 − Δn  A  Bn − 2n,m,A,B.

Hence, with A and B considered fixed, two points of the sequence of Δ’s (such that
A  Bn − 2 ≠ 0) is enough to determine m - which may not be unique, but in general not
arbitrary - which in turn determines the entire sequence.

From the preceding claim, and relation (13), we are able to state the claim that follows.

Claim 3.3.
Δm,m,A,B  B,
Δm  1,m,A,B  B, and
Δm  2,m,A,B  A  Bm  1 − 1B.

Next, we need some asymptotic properties of n.

Claim 3.4. As n → ,
n,m,A,B  ĴmΓn  A/BBnA/B. 21

Proof. Reference [1] lists the following asymptotic relations, for fixed x and n tending to
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infinity,
Jnx  1

2n
 ex2n 

n and Ynx  − 2
n 

2n
ex 

n,

hence, by the well-known Stirling formula Γn  1  2 nn1/2e−n we conclude
Ĵn  1

Γn A/B1Bn  A/B

and
Ŷn  − 1

 Γn  A/BBn  A/B 22
from which the claim follows. 

Now, we have the tools to continue with the problem of finding the speed of the
percolation process.

3.2. Finding the stationary distribution

If we set A  2   and B   it is clear that relation (14) fits (9). One way of trying to
describe an and bn is through some linear combination of Δ’s. By inspection of Claim 3.3, we
choose to work with Δn, 1 and Δn, 2. Then one finds that

an  2285


 Δn, 1 − 3
  Δn, 2,

bn  2241


 Δn, 1 − 1


 Δn, 2,

is true for n  1,2,3 which makes it true for every n.
Next, with the aid of Claim 3.4, we calculate

0 
n→
lim bn

an 
2 2 4  1 J22/2/− 1 J32/2/
2 2 8 5 J22/2/− 3 J32/2/

, 23

and thereafter, a long, but straightforward, calculation* yields, for n ≥ 1,
n  cĴn−1 − Ĵn, with c  2

2285Ĵ1− 3Ĵ2

,

after which it can be verified that  is indeed a distribution since,

∑
k0

n

k  1 − cĴn → 1,

as Ĵn → 0 by (22).
The speed V of percolation in this model as given by (5) is 1  0, with 0 as in (23), also

depicted in Figure 3 with  ranging from close to zero* to 20.

————–
*An analogous calculation may be found in [4].
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Figure 3: The speed of percolation on the ladder as a function of (exponential)
intensity  on the vertical edges (as measured in units of the intensity of the

horizontal edges), plotted by Maple. note that the speed at   0 is1.

Although not defined, the speed as a function of   0 is 1, since   0 must be thought of
as not having any vertical edges at all (or equivalent that the times associated with these are
infinite) and as such the time to reach Vn is the time it takes until the first of two independent
Poisson processes reaches n. Although this is always a bit faster than the time for a single such
process, the effect wears off as n tends to infinity.

Similarly , the speed at    is 2, if we interpret    as having zero time associated
with vertical edges. Then infection between adjacent vertices on different levels is immediate,
and the time it takes to move one step up the ladder is the minimum of two exponential
variables each having one unit of intensity, i.e. an exponential random time having intensity 2.

————–
*It appears to be difficult to evaluate the speed for very small values of , as B  1/ becomes very large. In
Figure 3 it looks as if the speed at   0 is ≈1.2. This is, however not the case.
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a 1  7J52 − 2J42
15J52 − 4J42

b 1  17J51 − 3J31
29J41 − 5J52

c 2  2 7J74 − 3J64
15J74 − 4J64

Figure 4: The speed of percolation when all edges are associated with random variable having
intensity 1.Numerical values to two digits are, from left to right, 1.47, 1.59 and 2.74.

Furthermore, having an intensity of 2 associated with an edge is equivalent to having two
(independent) edges associated with intensity 1, since the minimum time of two intensity 1
exponential random variables is an intensity 2 exponential random variable. Some examples of
the speed of percolation on different ladders are shown in Figure 4. Notice that in the right
most graph, we calculate the speed as two times that of having   1/2.

4. Adding Diagonals to the Ladder

Next, we see what happens when diagonals are added to the ladder. For this model we cannot
find a solution through Bessel function, as was the case with the ladder. Neither can we
consider arbitrary intensities associated to the diagonals, these must be of the same intensity as
the horizontal, else the front process becomes intractable.

Figure 5: Intensities associated with vertical edges have intensity , as measured in the
unit of intensity that is associated with both the horizontal and diagonal edges. Note

that the graph is the same if interchange v and v ′ (without breaking any edges).

Part of the graph we are now considering is depicted in Figure 5. In this figure we see two
nodes v and v ′. If we interchange the positions of these two nodes, without breaking any edges,
the graph is effectively unaltered. The vertical edges are still the same (they are now “upside
down”, but this is irrelevant as edges are undirected). Four horizontal edges have become
diagonal and vice versa, but as these are all associated with the same intensities, nothing has
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essentially changed. This is, of course, the reason we need to have the same intensities on
horizontal and diagonal edges.

Consider the front process, defined by (1),(2) and (3), at time t. If we disregard all nodes
below height Mt, there are 2k different sets of infected nodes (at t) that could yield Ft  k.
From any such state the intensity to move to to any other state that yields Ft′  k ′ is the
same, and as such the front process will be a Markov chain on N.

In Figure 6 we illustrate this when the front process is found to be 2 at t.

Figure 6: Two of the four possible sets of infected nodes at t (disregarding nodes below height
Mt) that would yield Ft  2. The infected nodes are marked in black. The remaining

two sets are found by mirroring the cases above through a horizontal line.

Now, it is straightforward to compute the intensity matrix Q of the front process, e.g. when
in state 2, as in Figure 6, then intensities to state 0 is 1  , to state 1 is 3   and to state 3 is 2,
and by similar considerations we get

Q 

−4 4 0 0 0
2   −4 −  2 0 0
1   3   −6 − 2 2 0 …

1   2   3   −8 − 3 2
1   2   2   3   −10 − 4
1   2   2   2   3  

 

. 24

We proceed to find the stationary distribution   0,1,… . Analogously to the
computation of (6), (7), (8) and (9) we get
n  2  n  3n−1 − 2  n − 2  4n−2  2n−3, n ≥ 4, 25

and if we let n  cn0 − dn, for n ≥ 1, we have
c1,c2,c3  5  , 28  17  22, 226  226  682  63,

and
d1,d2,d3  1  , 8  9  22, 66  98  442  63,

where cn,dn for n ≥ 4 can be determined via relation (25) with cn or dn in place of n. As in
the previous section, we aim to determine 0 via
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n→
lim dn

cn . 26

Once, this is done, the speed of percolation V is
V  40  21 − 0  21  0.

4. 1. Use of generating functions

Next, we employ the recursive techniques of [3] to get an explicit expression for cn and dn.
For ease of comparison, we will adopt the notation of that paper. [3] considers recursively
defined sequences an of the form
an  ∑ i1

K  in − i  ̃ian−i, n ≥ K, 27
where 1,… ,K and ̃1,… , ̃K are given numbers, and the initial part of the sequence
a0,… ,aK−1 is fixed. Also, the numbers have been normalized as to give 1  1. We may work
in this setting if we, for n ≥ 0 set
ân  cn12  −n and an∗  dn12  −n.

Our main interest is limn dn/cn which will equal limn an∗/ân. So, we aim to find a formula for an
given by (27) where K  3 and 1  1, 3  0 and 2 typically is negative. Set   −2. Then
the parameters
  1

2   ,

̃1  2  3
2    7  2

2   ,

̃2  − 1
2   −

4
2  2  − 6  

2  2

and
̃3  2

2  3 ,

are the same for the sequences ân and an∗, which then “only” differ in initial values

â1,â2,â3  5  , 28 17  22

2  v , 226  226 682 63

2  2 ,

and

a1
∗,a2

∗,a3
∗  1  , 8  9  22

2  v , 66  98  442 63

2  2 .

Following [3] we define the generating function

Az ∑
k0



akzk

for the sequence an. Next, relation (27), with K  3 and parameters as above, yields
Azqz  A ′2pz  rz, 28

with
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pz ∑
i0

3

 izi−1  1 − z,

qz  1 −∑
i0

3

̃izi  1 − ̃1z − ̃2z2 − ̃3z3,

and

rz ∑
i0

2

Rizi, 29

with R0  a0, R1  a1 − ̃1a0, and R2  a2 − 1  ̃1a1 − ̃2a2.
Let I ⊂ R be such that 0 ∈ I and pz ≠ 0 on I. Theorem 3.2 (i) and (iv) of [3] reveals that
there exists a solution A to (28) in I and any such solution satisfies the asymptotic expansion
Az  ∑n0

N anzn  OzN1, as z → 0.
Now, of the three polynomials p, q and r it is only the latter that differs between ân and an∗.

So let us denote these specific polynomials r̂z  ∑ R̂izi−1 and r∗z  ∑ Ri∗ zi−1,
respectively. The coefficients simplify to
R̂0  5  ,

R̂1  281722

2 − 72
2 5    − 7

2  −7,

R̂2  22622668263

22 − 1  22622668263

22

 6
22 5    4

22  42,

R0
∗  1  ,

R1
∗  8922

2v − 72
2 1    1

2  ,

R2
∗  669844263

22 − 1  669844263

22

 6
22 1    0. 30

Still using the notation of [3], we implicitly define  and the rational function gz via
qz
z2pz  z−2  z−1  gz,

so that

   − ̃1  − 62
2 and gz  −̃1−̃2−̃3z

1−z .

We fix an antiderivative G to g as
Gz  Cz  D ln1 − z,
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where

C 
̃3
  22 and D 

̃3

2 
̃2
  ̃1 −   2    1.

Now, we can write down what in [3] is called the principal solution to (28), which we consider
for z  0,

A0z  
0


1 − zt exp −t − G z

1−zt  Gz
r z

1−zt
p z

1−zt
dt

 
0


1 − zt 1−z

D1−ztD

1−tzD
exp − C t z

2

1−z t e−t

 1−zt
1−tz ∑

i0

2

Ri z
1−zt

i
, 31

where by three Taylor expansions, as z ↗ 0, and the relation −xn  −1n xn we get

A0z ∑
i0

2

Ri 
0


1 − ztD1−i∑ j0

N −jDjzj
j!

∑
k0

N
−Ctz2k

k!1−ztk
∑
m0

N
−−tm−D−1mzm

m! e−tzi dt  OzN1

∑
i0

2

Ri∑
j0

N
−jDj

j! ∑
k0

N
−Ck

k! ∑
m0

N
D1m

m!

 
0


1 − ztD1−i−ktk  tme−t dt

:I

 zij2km. 32

The integral I in (32), is, by Taylor expansion, as z ↗ 0,

I  
0


∑
l0

N
−tlD1−i−kl zl

l! tk  tme−t dt  OzN1

∑
l0

N
ki−−D−1l

l! zl 
0

 tkl∑
n0

m m
n

tnm−ne−t dt  OzN1

∑
l0

N
ki−−D−1l

l! zl∑
n0

m m
n

m−nk  l  n!  OzN1. 33

So, from (32) and (33), we get the following formula

A0z ∑
i0

2

Ri∑
j0

N
−jDj

j! ∑
k0

N
−Ck

k! ∑
l0

N
ki−−D−1l

l!

∑
m0

N
D1m

m! ∑
n0

m m
n

m−nk  l  n!zij2klm  OzN1, 34
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which simplifies somewhat since D  1 in our present application. Using this, and letting B0
and B1 be the nonzero summands of∑ j0

 −jDj/j!, i.e. B0  1 and B1  −, and by defining

Fik, l,m 
−Ck

k!
ki−−2l

l!
2m
m! ∑

n0

m m
n

m−nk  l  n!, 35

we can write

A0z ∑
i0

2

Ri∑
j0

N

Bj ∑
k,l,m≥0

Fik, l,mzij2klm.

Further, defining Bj  0 if j ∉ 0,1 and Ri  0 if i ∉ 0,1,2 makes

A0z ∑
L0

3

∑
k,l,m≥0

∑
ijL

BjRiFik, l,mzL2klm. 36

Since A0z can be written in the form (34) this allows us, by Theorem 3.2 of [3], to identify
the coefficients of A0z to those of Az, so from (36),

aN ∑
L0

3

∑
2klmN−L

∑
ijL

BjRiFik, l,m, 37

if we follow the convention that an empty sum is zero.
Now, to handle aN, consider
F̂iM  ∑

2klmM

Fik, l,m

 ∑
2klmM

−Ck

k!
ki−−2l

l! m  1∑
n0

m m
n

m−nk  l  n!. 38

Claim 4.1.

Li :
M→
lim F̂iM

M!M̂1i ∑
k0


−Ck

k!Γk1̂i 0

1
1 − x ̂kixex dx, 39

where ̂  − − 3  −/2   ∈ −1,0.

Proof. The details are given in Appendix A. 

We need to find a useful expression for the integral that appears in (39).

Claim 4.2. Define, for n ∈ N,

In  
0

1
1 − x ̂nxex dx and Jn  

0

1
1 − x ̂nex dx. 40

Then
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In  Γ̂n1
n

I0− n
 J0

Γ̂1  1
2 ∑

m0

n
n1−mm

Γ̂1m .

Proof. The details are given in Appendix B. (Note that the result is true for any  ≠ 0 but that
it is essential that ̂  −1.) 

4.2. Evaluating the limit

Now we return to examination of the limits Li given in (39).
By (39), (40) and (61) we have, for i ∈ 0,1,2,

Li ∑
k0


−Ck

k!Γ̂k1i Ik  i Li ∑
k0


−Ck

k!Γ̂k1i Ik  i


I0− i J0
iΓ̂1 S3 −

J0
i1Γ̂1 S4  1

i2 Si, 41

where

S3 ∑
k0


−C/k

k!  e−C/  e−2,

S4 ∑
k0


k−C/k

k!  − C e
−C/  −2e−2,

and

Si ∑
k1



∑
m1

ki

fk,m, i,

where

fk,m, i  −1k2kmki1−m
k!Γ̂1m . 42

This yields, by rearranging (41) and using C/2  2,

Li  1
i

e−2I02J0
Γ̂1 − i  e

−2J0
Γ̂1 

1
2 Si . 43

Recall that  ∈ 0,1/2 and that ̂  −1 so that f defined in (42) satisfies
|fk, l,m| |k  i  1 − m|/k!m! when k ≥ 0 and m ≥ 1, and so the sum Si is absolutely
convergent and we are thus free to interchange the order of summation
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S0 ∑
k0



∑
m1

k

fk,m, 0 ∑
k1



∑
m1

k

fk,m, 0 ∑
m1



∑
km



fk,m, 0

∑
m1



∑
j0



fj  m,m, 0 ∑
j0



∑
m1



fj  m,m, 0

∑
j0



−2jj  1∑
m1


−1m22m

Γm1̂Γm1j  I0, 44

if we define

Ik ∑
j0



−2jj  1  k∑
m1


−1m22m

Γm1̂Γm1j . 45

Similarly to how we handled S0 we get

S1 ∑
j0



∑
m1



fj  m − 1,m, 1

∑
j0



−2j−1j  1∑
m1


−1m22m

Γm1̂Γm1j−1

 − 1
2 ∑

m1


−1m22m

m−1!Γm1̂  I1 
21−̂/2

2̂
J1̂2 2   I1, 46

where J denotes the Bessel function of the first kind, as well as

S2 ∑
k0



∑
m1

k2

fk,m, 2 ∑
k0



∑
m1

k2

fk,m, 2 ∑
k0



fk,k  2,2

∑
m1



∑
j0



fj  m − 1,m, 2  2∑
k0


−1k22k

k!Γk3̂

 − 2
2 ∑

m1


−2k

m−1!Γm1̂  I2 
2−̂/2

2̂
J2̂2 2 

 2 21−̂/2

2̂
J1̂2 2   2−̂/2

2̂
J2̂2 2   I2. 47

4.3. Evaluating the limiting fraction

Now, we go back to the question of determining the limit in (26). First, the formula for aN
in (37) equals, by the result in (39),
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aN  B0R0L0N ̂1N!  B1R0L0N − 1 ̂1N − 1!
 B0R1L1N − 1 ̂2N − 1!  B1R1L1N − 2 ̂2N − 2!
 B0R2L2N − 2 ̂3N − 2!  B1R2L2N − 3 ̂3N − 3!
 N ̂1N!B0R0L0  R1L1  R2L2.

Recall, from preceding equation (35), that B0  1 and the Ri’s we want to use, which we have
denoted R̂i and Ri∗ for âN and aN∗ , respectively, are to be found in (30).
Note also, from (40), that

I0  J0  
0

1
1 − x−/2x  1ex/2 dx

 −2  1 − x1−/2ex/2 x0
x1  2    1/,

and a direct property of Ix, as defined in (45), is

xI0  yI1  zI2  x  y  zI y2z
xyz . 48

Then, from (30), (43), (44), (46), (47) and (45), recalling also that   1/2  , we get

âN
N ̂1N!

 ∑
i0

2

R̂iLi  5  L0 − 7L1  42L2

 e−2I0J0
Γ̂1  1

2 5  vS0 − 7S1  4S2

 1
2

e−2
Γ̂1 

21−̂/2

2̂
J1̂2 2   4 2−̂/2

2̂
J2̂2 2   1

 I ,

where we in the last equality used the result of (48). Similarly we get

aN∗
N ̂1N!

 ∑
i0

2

Ri∗Li  1  L0  L1  0L2

 1
2

e−2
Γ̂1 

21−̂/2

2̂
J1̂2 2   1

 I .

Next, we note that

I ∑
j0



−2jj  1  ∑
m1


−1m22m

Γm1̂Γm1j

∑
j0



−2jj  1  ∑
m0


−1m22m

Γm1̂Γm1j
:I

− 1−e−2

Γ̂1 , 49

where we think of the sum denoted I as a function of the parameter .
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Figure 7: The speed of percolation on the ladder with diagonals (exponential)
intensity  on the vertical edges (as measured in units of the intensity

of the horizontal and diagonal edges), plotted by Maple.

Now, we have an expression for the limiting fraction

0 
n→
lim dn

cn 
2−1e−2

Γ̂1
 1

2  21−̂J1̂  I

2−1e−2

Γ̂1
 1

2  21−̂ J1−̂2 2 J2−̂  I

, 50

in which we have suppressed the argument 2 2  from the Bessel function, i.e. in (50) we
should interpret J as J2 2 . The speed
V  2  20

is plotted in Figure 7 for  ranging from 0 to 20. At zero the speed is 2 2 J1 2 
3J1 2 / 2 −J0 2 

≈ 2.58 -
this exact expression is derived in Section 4.4 below - and as  increases to infinity, the speed
must reach 4.

In Figure 8 we have given numerical values when  is 0, 1 and 2, respectively.
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(a) (b) (c)
Figure 8: The speed of percolation when all edges are associated with random variables having

intensity 1. Numerical values to two digits are, from left to right, 2.58, 2.81 and 2.97.

4.4. The case   0

This special case has already been investigated in [5] by other methods. In this section we
show that our method gives the same result, since this is far from obvious. Also, the case of
  0 appears to be the only case that allows for great simplification of the expression (50).
We note that for   0, since this implies   1/2 and ̂  0, we get from the definition of I
in (49),

I0 ∑
j0



−1jj  3
2 ∑

m0


−1m1/2m

m!mj!

∑
j0



−1jj  3
2  2 jJj 2 

 3
2 ∑
j0



−1j 2 jJj 2  ∑
j0



−1j 2 j−1 2 jJj 2 , 51

and since 2 j Jj 2   Jj−1 2   Jj1 2 , then by relation (10), after cancellation of terms,
we get
I0  1

2 J0 2  − 2 J1 2 .
This, together with the fact that J2 2  that now appears in the denominator of (50), as a
consequence of relation (10), can be written as 2 J1 2  − J0 2 , simplifies (50) to
J0 2 −J1 2 / 2

−J0 2 3J1 2 / 2
,

so that

V  2  20 
2 2 J1 2 

3J1 2 / 2−J0 2 
,

and thus

  1
V  3

4 −
J0 2 

2 2 J1 2 
,

which is what is calculated in [5].
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5. Other Graphs in L

The class L of graphs, defined in Section 2 and Figure 1, contains (at least) 3 more graphs
of interest; these are shown in Figure 9. We will not deal with these graphs here but make
some remarks. We believe that the front process together with the results of [3], used in
Section 4, can be used to calculate the speed of percolation on the graph depicted in Figure
9(c), in principle with arbitrary intensities associated with the vertical, diagonal and the two
different horizontal edges. There would be added complexity as the state space of the front
process would be all the integers, not only the non-negative ones. The speed when the
intensities are the same is 2 tan1−1

2 tan1−2 ≈ 1.90, from the exact expression of the rate of percolation
calculated in [5].
The problem when trying to apply the front process to the other graphs is that the Markov
property is lost.

(a) (b) (c)
Figure 9: Three more graphs in L

6. Appendices

6.1. Appendix A (Proof of Claim 4.1)

Step 1. Let  and K be nonnegative real numbers,  is considered fixed, and define

Am : AmK ∑
j1

m m
j

 jm  K − j!. 52

Then we can write Am as

Am  m  K!∑
j0

m
j
j! 

i0

j−1
m−i
mK−i .

We are interested in the limit of Am′  Am/m  K! as m tends to infinity.
Now, as m − i/m  K − i is decreasing in i,
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
i0

j−1
m−i
mK−i ≤

m
mK

j
,

and as a consequence, we get

Am
′m/mK. 53
Next, as long as j  m, since lnm − i/m  K − i is a negative and decreasing function

when 0 ≤ i  m, we can calculate,


i0

j−1
m−i
mK−i  exp ∑

i0

j−1

ln m−i
mK−i

≥ exp 
0

j
ln m−x

mK−x dx  mm
mKmK

mK−jmK−j

m−jm−i

 m
mK

j 1− j
mK

mK

1− jm
m

≥1

1− jm

1− j
mK

j

. 54

Since
1− jm

1− j
mK

 1 − jK
mmK−i ,

the last factor in (54) is, by Taylor expansion around 1,

1 − j2K
mmK−j  O

K
mmK−j

2
,

and hence Am′ is bounded below by

∑
j1

m−1
m/mKj

j! 1  O1/m  em/mK1  O1/m. 55

In conclusion; from the upper and lower bounds, (53) and (55) respectively,
Am  m  K! exp m

mK 1  O1/m. 56

Step 2. Let us examine, for l ≥ 0 and K  −1, the fraction Γl  K  1/Γl  1 for large l. By
Stirling’s formula
ΓlK1
Γl1  2 lKlK1/2e−l−K

2 ll1/2e−l
1  Ol  K−1

 l  KlKe−K 1  K
l

l1/2
1  Ol  K−1

 l  KlK1  O1/l. 57

Step 3. Define the function
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Bik  ∑
lmM−2k

Γki̂l1
Γl1 m  1 Amk  l, k ≤ M/2,

where Amk  l is defined in (52). With Bik defined in this way we can write F̂iM from
(38) as

F̂iM  ∑
k≤M/2

−Ck

k!Γki̂1 Bik.

Now, examineBik scaled byMk̂i1M − k!,
Bik

Mk̂i1M−k!
 ∑
lmM−2k

Γki̂l1
Γl1Mk̂i

a

 m1
M

b

 Amkl

M−k!
c

.

From (57) and using l  m  M − 2k we get

a  ̂i−k
M  1 − m

M
ki̂

1  O1/l  1 − m
M

ki̂
1  O1/l.

Obviously b  m/M  1/M, and from (56) we get
c  exp m

M−k 1  O1/m  exp m
M 1  O1/m,

so that, asM → ,

Bik

Mk̂i1M−k!
 ∑
m0

M

1 − m
M

ki̂ m
M exp  mM

 
0

1
1 − xki̂xex dx.

And hence, since alsoMk̂i1M − k!  M ̂i1M!, we have demonstrated the result in (39).

6.2. Appendix B (Proof of Claim 4.2)

Recall that we have defined, for n ∈ N,

In  
0

1
1 − x̂n xex dx and Jn  

0

1
1 − x̂n ex dx, 58

where ̂ ∈ −1,0 and  ∈ 0,1/2, although in this section it is only essential that ̂  −1.
Then I0   and J0  , since ̂  −1. For n ≥ 1, partial integration reveals the recursive
relationship

In  1 − x ̂n x 1
 e

x
x0

x1

− 1
 0

1
−̂  n1 − x̂n−1x  1 − x̂nex dx

 1
 In − 1 − 1

 Jn,
from which follows by iteration that
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In  ̂nn

n I0 − 1
 ∑

j1

n
̂nn−j

n−j
Jj. 59

Note that the above formula holds for any n ≥ 0 if we interpret sums of the form ∑n
m to be

zero if m  n.
Next, we turn our attention to Jn. For n ≥ 1 we get, again by partial integration,

Jn  1 − x ̂n x 1
 e

x
x0

x1


̂n
 0

1
1 − x̂n−1ex dx


̂n
 Jn − 1 − 1

 ,
from which follows by iteration that

Jn  ̂nn

n J0 − 1
 ∑

k1

n−1
̂nk

k
. 60

Employment of (60) in (59) leads to

In  ̂nn

n I0 − J0
n1 S1  1

2 S2 ,

where

S1 ∑
j1

n

̂  nn−j̂  jj  nΓ̂n1
Γ̂1 ,

and

S2 ∑
j1

n

∑
k0

j−1
̂nn−j̂jk

k−j
.

The above simplification of S1 is easily seen to be true by the relation
xn  Γx  1/Γx  1 − m. The same relation can be applied to S2 to give

S2 
Γ̂n1

n ∑
j1

n

∑
k0

j−1
j−k

Γ̂1j−k


Γ̂n1

n ∑
m1

n
n1−mm

Γ̂1m ,

where the last equality follows from noting that k and j only appear in the summation as
m  j − k, and that the values of m, i.e. 1, 2, … , n, appear n, n − 1, … , 1 times, respectively.
So, we have the sought formula
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In  Γ̂n1
nΓ̂1 I0 − n J0


Γ̂n1
n2 ∑

m1

n
n1−mm

Γ̂1m


Γ̂n1

n
I0 − n J0
Γ̂1  1

2 ∑
m1

n
n1−mm

Γ̂1m . 61


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