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1. Introduction

The purpose of this paper is to investigate local times and some related sample paths for
Weight fractional Brownian motion (in short WfBm). The WfBm with parameters a and b is a
centered Gaussian process & = {&;, t > 0} with a covariance function

tAS
E(&c) = [ ue(t-u®+(s—u)’Jdu, s, t >0, (1)

where a > -1, -1 <b <1, |b|] <1+a. If a=0, & is the usual fBm with a Hurst parameter
(b + 1)/2 (up to multiplicative constant). This WfBm was introduced by Bojdecki et al in [15].

We will establish new related results by using an approach based on the concept of local
nondeterminism (LND), introduced by Berman [7], to unify and extend his earlier works to
local times of stationary Gaussian processes*.

The joint continuity as well as Holder conditions, in both space and time set of variables of
the local time of a locally nondeterministic (LND) Gaussian process and fields, have been
studied by Berman [4] and [7], Pitt [14], Kbéno [12], Geman and Horowitz [10], and later by
Csorgo, Lin and Shao [8] and by Xiao [16]. Recently, Boufoussi, Dozzi, and Guerbaz [2], then
Guerbaz [11] and Mendy [13] have studied the local time of multifractional Brownian motion

*This research was supported in part by grants from the FIRST (Fonds d’Impulsion pour la Researche
Scientifique et Technique).
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(mBm) and the local time of the filtered white noise and the local time of sub-fractional
Brownian motion. The multifractional Brownian motion extend the fBm in the sense that its
Hurst parameter is no more constant, but a Hélder function of time.

The paper is organized as follows. Section 2 contains a brief review on the local times of
Gaussian processes and Berman’s concept of local nondeterminism. We also give some
properties of the WFBm. In section 3 we prove the existence of a square integrable version of
the local time, the joint continuity and Holder regularity in time and in space. There we will
consider C,Cy,... to denote unspecified positive finite constants which may not necessary be
the same at each occurrence.

2. Preliminaries

Let us recall some aspects of local times and refer to the paper of Geman and Horowitz
[10] for an insightful survey of local times. Assume X = {X(t),t > 0} to be a real valued
separable random process with Borel sample functions. For any Borel set B of the real line, the
occupation measure of X is defined viz

1(A,B) = A{s € A : X(s) € B} V A € B(RY),

where A is the Lebesgue measure on R*. If u(A,.) is absolutely continuous with respect to the
Lebesgue measure on R, we say that X has local times on A and define its local time, L(A,.), as
the Radon-Nikodym derivative of u(A,.). Here x is the so-called space variable, and A is the
time variable. The existence of jointly continuous local time reveals information on the
fluctuation of the sample paths of the process itself ([1], Chapter8). There are several
approaches for proving the joint continuity of the local times. One of them is the Fourier
analytic method developed by Berman to extend his early works on local times of stationary
Gaussian processes. The main tool used in Berman’s approach of [7] is the local
nondeterminism. Here we shall give only a brief review of the concept of local
nondeterminism, while more information on the subject can be found in [7].

Let J be an open interval on the t axis, and assume that {X(t),t > O} is a zero mean
Gaussian process without singularities in any interval of length 6, for some 6 > 0, and without
fixed zeros; i.e. there exists 6 > 0 such that

(P){ BX(D-X()? >0, 0<ft-si<s
E(X(t)? >0, tel
To introduce the concept of local nondeterminism, Berman defines the relative
conditioning error,
_ Var {X(t,) Xt )X,),.... X(t,.) > @)
Var{X(t,)—-X(t,_)} ’
where, for m > 2, ty,...,ty are arbitrary points in J, ordered according to their indices, i.e.

t1 <t <...< tm. We then say that the process X is locally nondeterministic (LND) on J if for
every m > 2,

Vin
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lim inf  Vp > 0. (3)

c\.0" ,0<tm—ti<C

This condition means that a small increment of the process is not almost relatively predictable,
on the basis of a finite number of observations, from the immediate past. Berman has proved,
for Gaussian processes, that the local nondeterminism can be characterized as follows.

Proposition 2.1.[7] X is LND if and only if for every integer m > 2, there exists positive
constants C and 6 (both may depend on m) such that

Var<2 uj[X(t) - X(t,-l)]> > C > u? Var[X(t) - X(t-1)], 4)

=1 j=1
for all ordered pointst; <ty <...< tninJ, witht, —t; <, to = 0and (uy,uz,...,un) € R™.

The proof of this proposition is based on Lemmata 2.1 and 8.1 of [7].

3. Local Times

The purpose of this section is to present sufficient conditions for existence of the local
times of WfBm. Furthermore, using the LND approach and under some conditions on the
parameters a and b, we show that the local times have a jointly continuous version.

3.1. Square integrability

Theorem 3.1. Assume a >0 and -1 < b < 1. On each time-interval [a,p] < (0,), the
weight fractional Brownian motion & has almost surely a local time L([a, 8],X), continuous in t
for a.e. x € R and such that

jR L([, B],X)2dx < oo.

Proof. By using the following Lemma 3.2 together with theorem 3.1 of [3]. |

So we need the following lemmata for the proof of Theorem 3.1 and for the rest of the
paper. The following first lemma is due to Bojdecki et al ([15], theorem 2.4.)

Lemma 3.1. Assumea >0, —1 < b <1.Then

lim &1 B(Eye — &2 = ﬁta.

-0

Proof. From theorem 2.4 of Bojdecki et al [15], we have
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t+e
e P NR(Ee — Er)2 = 267072 J. ud(t+ & — u)Pdu
t

1
= 2| (t+ey)*(L-y)’dy
0
1
a b _ _2 :a N
- 2t jo(l—y) dy = Tt ase -0,
where the required result appears at the right hand side. |

The second lemma relates to the integrability of the characteristic function of the
increment & — &, foro < @ <s <t < p<oo; sandt are sufficiently close.

Lemma 3.2. Leta > 0, — 1 < b < 1. Then there exists positive numbers (p,H) € (0,%) x (0,1)
and a positive function y € L1(R) such that for all A € R, t, s € [a,f], 0 < |t—s|< p there
holds

- g_gs
Eexp(u’t—ltt_slH )

Proof. Let us consider H = (b + 1)/2. Since £ is Gaussian centered, we have

2
Eexp(ixétﬂ—ﬁ) = exp<—’172 E[(gﬁ”g—;é> J) (5)
lel lel

Now in view of Lemma 3.1 there exists ¢, such that for every ¢ satisfying |¢| < ¢, and for
every t we have

2
)0

where ¢ = —2—q2, Thus, combining (5) and (6) we get for every A, t and s satisfying

< wy(A).

b+1
[t—s| < g,
— 2
‘Eexp(iﬂ%) < exp(—% )
€
2
Then we choose y (1) = exp (—% ) to conclude this proof. |

3.2. LND property of weight fractional Brownian motion
First, we give the following lemma which will be used in the sequel.

Lemma 3.3. Let a>0, —1<b<1 and WBm ¢& is locally self-similar, then for every
t € [a,B] < (0,) the following convergence in distribution holds,
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lim (§(t+8U)—§(t) )U>o _ (ﬂB(mlyz(u)) ’

o (012 Jor1 0

where the convergence is in the sense of the finite dimensional distributions, and B®+Y”2 s a
fractional Brownian motion with a Hurst parameter 0 < (b + 1)/2 < 1.

Proof. Let us start by proving the convergence of the finite dimensional distribution. Because &
is Gaussian, it suffices to illustrate the convergence of the second-order moments. By theorem
2.4 of Bojdecki et al [14], we have for every 0 < u <\,

o1 BLS(t+ 8U) — EO)(E(t+ 8v) - EM)]

= gb1+1 j:+gu X3[(t+ &Uu —X)? + (t+ v —x)P]dx = j:(gx +1)2[(U=x)P + (v —x)P]dx

u a
- ta JO[(u —X)P + (v —x)PJdx = ﬁ(ub+l + Vo — (v —u)bt),

Now it remains to prove the tightness in the space of continuous functions endowed by the
uniform norm. We also consider T > 0 such that t, t+¢u and t+¢v € [0,T] and u < v for
every ¢ > 0. Here also by theorem 2.4 of Bojdecki et al [15], we have

E[( E(trew) — &) E(trew) — £ )1

eb+1)/2 eb+1)/2

= gb1+1 E[ (£(t+ev) — E(t+eu))? ] =2 JTSV X2(t + v — X)Pdx

Y —_y)b — ﬁ _ )b+l
< 2T? Iu(v X)Pdx = ey (v—u)P+,
Here the proof ends. |

Second, in order to study the joint continuity of the local time of the WfBm, we prove now
the LND property of WfBm.

Theorem 3.2. Assume a > 0 and —1 < b < 1. Then for every a > 0, and g > a, the WfBm is
LND on [a, B].

Proof. Let us note that the WfBm & is a zero mean Gaussian process, and that

2 T(a+1)I'(b+1)
Ble®)” =2 I'(a+b+2)

foreveryt € [g,T].
Moreover, by Lemma 3.1, there exists 6 > 0 and C > 0 such that

E(&(t) — &(s))? > CJt —s|°*t,

for all |t — s|< 6. Therefore the condition (P) of LND holds.
It remains to show that ¢ satisfies (3). In this respect, using theorem 2.4 of [15], leads to

Var(é(t) — E(s)) < C(M)|t—s|**L, Vst e [&,T]. @)
Then, form > 2 and all pointst < t; <...< tn < t+ 0, we have

Var(&(tm) — &(tm-1)) < C(T)6™*.
Therefore,

ta+b+l >0,
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im var(tm)/E(ty), ..., &(tm — 1)) _ . Var(e®/E(t), .., e(tma))
lin Var(&(tm) — &(tm-1)) =i C(T)5b+1 ®)

Moreover, if we add &(t) to the conditional set we obtain
Var(e(t,)/e(t),...6(, )  Var(e(t,)/e).s(t). .5, )
C(T)s"™ B C(T) s
- var( S0 1,60 - 60, 2t -0

s(t)-S® s, -6 )

b+1 e b+1
0 0

- Var( é(t";f ® JE),

where the last equality follows from the fact that
OED,EM) - €O Enn) ~ 60) = o(e, SO S0,

Letti —t = dujwitho < u; < t, i =1,...,m. Therefore, the fraction in (9) becomes

i var( SLAE0 ) SLAED | S0 )

b+1 b+1 e b+1
50 6" 5" 5"

= ET Var(nys (Um)/E), nes(U), ..., nts(Um-1)),

when using the notation
S(t+0Un1)—=6(O
5b+1

Nts(Um) =

Furthermore,
detCoV(E(t), 7,,(U),e..17,5 (U,
A B A e T e

Now, since the WfBm is locally asymptotically self similar (Lemma 3.3), nts converges
weakly to the fractional Brownian motion B®+’2 with parameter (b + 1)/2. Consequently, the
fraction above converges to

detCov(&(t), B™"(uy),...B" " (u,)

(b+1)/2 (b+1)/2

detCov(&(t), B®*(u),...8" ", )
Therefore
I;rg var(nes(Um)/E®), nes(U1), ..., Mts(Um-1))

Var(B(b+1)/2(u )/B(b+1)/2(t) B(b+1)/2(u ) (b+1)/2(um 1))

> C(D[(Um — Uma) A (t—um)]®72,

where the last inequality follows from lemma 7.1 of [14], and the last term is strictly positive
since0 < Uj <...< Up < t. H
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3.2. Joint continuity and Holder regularity

Let T >0, H= (b+1)/2 and H([0,T]) be the family of intervals I < [0,T] of length at
most 6 (the constant appearing in Theorem 3.2). In this paragraph we shall apply some results
of Berman on an LND process to prove the joint continuity of local times of the WfBm. Our
main result then follows.

Theorem 3.3. Assume a > 0 and —1 < b < 1. Then the WfBm & has, almost surely, a jointly
continuous local time {L(t,x), t € [0,T], x € R}. It moreover satisfies, for any compact
U c R,

(i)
L(t+h,x) — L(t,x)
igg " < 40 a.s., 9)

where 4 < 1 —H and |h|< n, n being a small random variable almost surely positive and finite,
(i) for any I € H([o,T]),
L{Lx) = L(Ly)
su
x,yeUE)#y |X - y|y
wherey < 1A S

<+ a.s., (10)

The proof of the previous theorem relies on the following upper bounds for the moments
of the local times.

Lemma 3.4. Assume a > 0,—1 < b <1 and let 6 be the constant appearing in Theorem 3.2.
Then for any even integer m > 2 there exists a positive and finite constant Cy, such that, for
anyt € [0,+00),any h € (0,8), anyx, y € Rand any a < 1 A L8 there hold
hm(l—H)

" T(1+m(1-H)) ’

E[L(t+h,x) - L({t,x)]" < C (11)

M A-H(@)

E[L(t+h,y) - L(t,y) — L(t+ h,x) + L(t,x)]™ < Cnly — X|™ T(L+m(1-H(1+a)))

(12)

Proof. We will proof only (12), the proof of (11) is similar. It follows from equation (25.7) in
Geman and Horowitz [10] (see also Boufoussi et al [2]) that for any x,y € R, t, t+h € [0,+0)
and for every even integer m > 2,

E[L(t+h,y) — L(t,y) — L(t+ h,x) + L(t,x)]™

= (2n) mJtHh]m ij H u, _ —IXU E( j= 1 Jé( )) 1—[ Hdsj

j=1 j=1
Using the elementary mequallty |1 —ei| < 2l |g|2 forall 0 < @ < 1 and any 0 € R, we obtain
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E[L(t+h,y) = L(t,y) — L(t+ h,x) + L(t,x)]™ < (2%7)™ml]y — x|™*

<Joo o TTieElexe (27, wie) JT T [T, (13)
<tq<..<tm<t+ ) i i1

where in order to apply the LND property of &, we replaced the integration over the domain [t,
t+h] by the subset t < t; <...< tm < t+h. We can deal now with the inner multiple integral
over the u’s. Change the variable of integration by means of the transformation

Uj = Vj—Vj1, ] = 1,2,...,m—1; Upn = Vn.
Then the linear combination in the exponent in (13) is transformed according to
m m
D UEW) = D Vi) - &t)),
=1 j=1
where to = 0. Since & is a Gaussian process, the characteristic function in (13) has the form

exp (%Var[Zvj«:(tj) m-mD (14)
=1

And since [x —y|* < |x|* + |y|* forall 0 < a < 1, it follows that

m m-1 m-1
I Juite = T v = viaal®val® - < T TVl + Vil ®)vml . (15)
j=1 =1 j=1

Moreover, the last product is at most equal to a finite sum of 2™ terms of the form
[17,/xi|*é, where &; = 0,10r2and 37 & = m.
Let us write for simplicity GJ-Z = E(&(t) — §(tj_1))2. Combining the result of Proposition 2.1,

(14) and (15), we observe that the integral in (13) is dominated by the sum over all possible
(¢1,...,&m) € {0,1,2}M of the following

m C m m
J J . TIvieeexn| 5= 3 viof | [ ] dtay,
t<ti<.<tm<t+h ¢ R™ i1 i1 -1

where C, is the constant given in Proposition 2.1. The change of variable x; = vjo; converts
the last integral to

m m m m
10 | C 2
o dty...dt f Xj|*€iexp | ——=m X dx;.
J‘t<t1<...<tm<t+h 1_‘[ J ! m RrRM E“ J| p 2 jz=l: J E[ J

=1

We then denote

m m m
J(m, &) = IRm Hlleagj exp (— sz fo) Hde,
=1 j=1 j=1

to arrive at
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E[L(t+h,y) — L(t,y) — L(t+h,x) + L(t,)]™ <

m

Crm J(M, )]y — x|maj [To;" *dts...dtm. (16)

t<ti<..<tm<t+h -
=1
According to Lemma 3.1, for h sufficiently small, namely 0 < h < inf(5,1), we have
B(&(t) - &) = Clti -4, V ti,tj € [t.t+h]. (17)
It follows that the integral on the right hand side of (16) is bounded, up to a constant, by

m

j [1ct; - tio) ety .. dt. (18)
t<ty<..<tm<t+h -1

Since, (t; —tji-1) < 1, forallj € {2,...,m}, we have

(tj — i) MEEED < (1) — i) 2D Vg € {0,1,2},
and by hypothesis a < 5 — &, the integral in (18) is finite. Moreover, an elementary
calculation( cf. Enm [9]), forallm > 1, h > 0 and b; < 1,yields

i v op [0, FA-b)
J H(Sj_sj—l)_bjdsl---dsm A Hj}ll e
t<s1<...<Sm<t+h i-1 F(1+ _ijl b,)
where so = t. Clearly (18) is dominated by
hm(l—H(1+a))

Cm L1+ m(1-H@(+a)))
where Zj"l gj = m. Consequently

matpy m(L-H(L+)

m ly—=X]
BIL+hy) =LAy =L+ o0 + L] < Co 5 mma gy

and by that the proof ends. |

(19)

3.3. Proof of theorem 3.3

Since L(0,x) = o for all x € R, hence if we replace t and t + h by 0 and t respectively in
(12), we obtain

E[L(ty) — L(t,x)]™ < Cnly - X|™. (20)

The joint continuity of the local time follows straightforwardly from (11), (12) and (20) and
the classical parameter Kolmogorov’s theorem (theorem 5.1 of Berman [5]). The Holder
condition (i) of theorem 3.1 follows from (12) and the one parameter Kolmogorov’s theorem
(see also the proof of theorem 2 by Pitt in [14]).

Now we move on to the proof of (ii). According to theorem 3.1 by Berman in [6], the
inequalities (11), (12) and (20) imply that (ii) holds for any A <1-H(1+a), for all
0O<a<1A % Finally, by letting o tends to zero, we obtain the desired result. |

As a classical consequence, we have the following result on the Hausdorff dimension of
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the level set. Here we refer to Adler [1] for definitions and results for the fractional Brownian
motion.

Proposition 3.1. With probability one, for any interval | < [0, T], there holds

dim{te I/é =x} =1-H, (21)

for all x such that L(t,x) > o.

Proof. According to (7) and Kolmogorov’s theorem, the WfBm is g-Holder for every g < H.
Moreover, the WfBm has a jointly continuous local time, then theorem 8.7.3 in Adler [1]
completes the proof of the upper bound, i.e. dim{t € I/ = x} <1-H, a.s. Now by (i) of
Theorem 3.3, the jointly continuous local time of the WfBm is uniform Hoélder of any order

smaller than 1 — H. Then theorem 8.7.4 of Adler [1] implies that dim{t € I/ = x} > 1—-H,
a.s. for all x such that L(t,x) > 0. This completes the proof. |
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