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Abstract. Fluid models are widely used in the performance analysis of Telecommunication
Systems. In this paper, a fluid queue driven by a birth and death process with a catastrophe is
discussed. We have taken a modest attempt to relate a fluid queue driven by a birth and death
process with the Rogers-Ramanujan continued fraction. The stationary solution is expressed
through this continued fraction and a solution for the buffer content of a fluid queue driven by
an M/M/1 queue is obtained as a particular case. Further, we have analyzed the M/M/1 queue
when there are no catastrophes.
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1. Introduction

In this paper we shall study the stationary behavior of the content of a fluid reservoir which
receives and releases fluid flows at rates which are determined by the actual state of birth and
death process evolving in the background. Fluid models play a significant role in ATM
networks since the variations on the cell levels are almost negligible compared to those on the
most important burst levels.

One may refer to Elvalid and Mitra [8], Anick et al [2], Simonian and Virtoma [20] for
further detailed studies. Sericola [19 ], Barbot and Sericola [3] and Parathasarathy et al [18]
have analyzed the input flow into the fluid queue which is characterized by a Markov
modulated input rate process. Fluid models driven by finite state space Markov processes that
modulate the input rate in the fluid buffer have been analyzed by many authors (Anick et al
[2], Coffman et al [6], Gaver et al [11], Mitra [14], [15], Low and Varaiya [13]). Virtoma and
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Norros [22] have analyzed a fluid queue driven by an M/M/1(Markovian arrival
process/Markovian service time/Single server) queue and proposed a spectral-decomposition
method. Adan and Resing [1] have devised the key of the method, to express the generalized
eigenvalues explicitly using the Chebyshev polynomials of the second kind. Explicit
expressions for the stationary distribution of the buffer content for fluid queues driven by an
M/M/1 queue with constant arrival service rates have been obtained by Van Doorn and
Scheinhardt [21]. It was Parthasarathy et al [16] who provided for the first time a continued
fraction method to analyze fluid queues. TCP is able to guarantee that each data packet
transmitted from a server (computer)and leave it momentarily inactivated until the new arrival
occurs, such infected cells may be modeled by catastrophes. Jain and Kumar [12] have
obtained the transient solution of the model with correlated arrival queueing with variable
capacity and catastrophes for the cell traffic generated by New Broadband Communication
Networks in the presence of viruses and noise bursts. Chao [7] has studied a queueing network
model with catastrophes. Many of the above studies have dealt with fluid models driven by a
finite state space Markov process, also the solutions are either based on recurrence relations or
expressed in terms of Laplace transforms and inverted numerically. Now the question arises on
what will happen when the service rates, arrival rates and catastrophe rates are not
independent. So we have to analyze such fluid models when (i) the above rates are independent
and (ii) they are dependent. Rogers-Ramanujan identities arise naturally in the second case. It
is well known that the Rogers-Ramanujan Continued Fraction is of the form

_ 1
R(q) = ; g . (1)

In [15], Parthasarathy et al have studied a birth and death process related to the continued
fraction R(q) and generalized their results to establish a correspondence between birth and
death processes and a larger family of q —continued fractions discussed by Feng et al [9]. One
may also refer to Berndt et al [5] for more details regarding the continued fractions.

As, there is no result on a fluid model driven by a birth and death Process (BDP) with a
catastrophe wherein the arrival rate, service rate and the catastrophe rate are (i) independent
and (ii) dependent, we have made a modest attempt to construct such a fluid model. A birth
and death process related to Rogers-Ramanujan continued fraction has been discussed by many
authors([4], [9], [16], [17], [23]). We analyze the fluid queue driven by birth-death process
with a catastrophe under both independent and dependent rates. We intend to find the
stationary distribution of the buffer content for a fluid queue driven by a BDP with a
catastrophe and having a general boundary condition. This is obtained by transforming the
underlying system of differential equations into a continued fraction and this continued
fraction is employed in finding the complete solution. We show that, for a particular case, our
results coincide with those of a system without a catastrophe.

The rest of this paper is organized as follows. We describe the model in Section 2. In
Section 3, we obtain the stationary solution of this fluid queue driven by a birth and death
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processes queue with a catastrophe. In Section 4, we discuss the BDP related to
Rogers-Ramanujan continued fractions. Some special birth and death processes with
catastrophes are examined as particular cases in Section 5. By using a continued fraction we
derive in Section 6, the stationary solution of this fluid queue driven by an M/M/1 queue in
terms of modified Bessel’s function of the first kind . In Section 7, we show, as a particular
case, that our result coincides with that of Adan and Resing [1] and further we analyze the
M/M/1 queue without catastrophes.

2. Model Description

Let {X(t),t > 0} denote the background birth and death single-server queueing model
taking values in S = {0,1,2,3, ...}, where X(t) denotes the state (number of customers in the
queue) of the background process at time t. Let A, and u, denote the arrival and service rates
respectively, when there are n customers in the queue. The arrival process is a Poisson process
and the service times are exponentially distributed. Catastrophe occurs in the service station at
a Poisson rate of v,, which annihilates the entire system empty, and we start working on the
basis of next arrival. During the busy periods of the server, a fluid commodity which we refer
to as credit accumulation in an infinite fluid buffer at a rate r; > 0 when X(t) = j. The credit
buffer depletes the fluid during the idle periods of the server at a constant rate ro < 0 as long
as the buffer is nonempty. We denote by C(t), the content of buffer at time t. Clearly, the
2-dimensional process {(X(t),C(t)),t > 0} constitutes a Markov process which possesses a
unique stationary distribution under a suitable stability condition. In order that a limit
distribution for C(t) exists ast — oo, the stationary net input rate should be negative, that is,

ro+r,-Z7r,- <0, (2)
=1
where
o (At Vo) (A + V1) (A, +v2).. (A +Via) _, A+ v) (A v2).. (A +Via)
’ Ty 0 [T ’
j=1,2,3,..., and 7o = 1 are called the potential coefficients.

kolllz...lj_

Remark 2.1. When there is no catastrophe i.e.vi - 0, we get z; = TNTRT ~and 7o = 1
12t

which are same as in usual birth and death model.

3. Steady State Equations

Let
Fi(t,x) = P{X(t) = j,C(t) <x},je S, t,x>0.

Then {F;(t,x),j € S,t,x > 0} are joint probability distribution functions of the Markov process
(X(t),C(t)),t > 0 at time t. When the process is stable, we write
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Fi(x) = limeo Fj(t,X),] € S,t,x > 0,
which are independent of the initial state of the process.

Theorem 3.1. Let a fluid model be driven by Birth and Death Processes with
Catastrophe(BDPC) with independent rates A,(arrival), un(service) and v,(catastrophe). Then
the sequence {Fo(t,X),F;(t,x)} of joint distributions of the system {X(t),C(t)} satisfies the
following system of differential equations:

oFo(t,%) . oFo(t,%)

ot = —To—5, — AoFo(t,X) + u1F1(t,X) + vo[1l — Fo(t,X)], 3)

oF;(t,x oF;(t,x

—Jét ) ad —Ja(x ) + A Fia (6X) = (A + 1 + v Fi(6 %) + pinaFiaa (4 %), (4)
j=123,..., t>0, x >0, subject to the initial conditions:

Fo(0,x) =1, Fj(0,x) =0, for j =1,2,3,..., (5)
and boundary conditions:

Fi(t,0) = gj(t), for j =0,1,2,3,.... (6)
Proof. The proof follows by using standard probabilistic arguments, as in [22]. |

Remark 3.1. Here q;j(t) represents the probability that at time t the buffer is empty and the
state of the background Markov process is j. The condition of the buffer decreases and thereby
becomes empty only when the net input rate of the fluid into the buffer is negative. Therefore
when the buffer becomes empty at any time t, the background process should necessarily be in
state zero corresponding to which the effective input rate is ro < 0. Hence we have g;(t) = 0
for j=1,2,3,...andrj >0for j=1,2,3,....

aF, (tx)

When the process is in equilibrium, = 0, we let Fj(t,x) = Fj(x). Then the above
system reduces to a system of ordinary dlfferentlal equations:

LFox) = —F2Fo(0) + 4EF1(0 + F2[1 - Fo(¥)] M

au—’lﬁu%ﬁi%ﬂ#

When the net input rate of fluid flow into the buffer IS positive, the buffer content increases
and buffer cannot stay empty. It follows that the solution to (3.1) and (3.2) must satisfy the
boundary conditions

Fi(0) =0, j=123,... 9)
Fo(0) =a, forsomeconstant 0 < a < 1. (10)
Let F(s) denote the Laplace transform of the function F(t) and define
fo(s) = Fo(s),

iX) + —— F,+1(x) Xx>0,j=123,. (8)
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~1) T .
fi(s) = ( )rlélrﬁi Hi Fi(s), whererj =r, j=1,2,3,...., (11)
with
AjMj
Bi(s) = —2aukil; Fifjt
Aj+ 1y +vj Ajrl + Uj+1 + Vi
S+ ——f— - s+ Fig -
lj+1,Uj+2
r'j+1rj+2 .
=12,..., 12
s+ Ajr2 + Hjs2 + Vis2 J (12)
M2

to state the theorem that follows.

Theorem 3.2. The Laplace transforms of the steady state probability distribution function of

the Fluid model driven by BDPC with independent rates An(arrival), un(service) and v,
(catastrophe) are

o0 k ~ . k
fo(s) = (@+volres) Y () IO kS— (13)
k=0 (s+—)’0:—v0 )
0
and
j
fis) = [ [ o) ®)fo(s), j=1.2.3,.... (14)
k=1
Proof. On taking the Laplace transforms of (7) and (8) , using (9)-(10) we get
[ros + (Lo + vo)IFo(s) — u1F1(s) = roa+ ~¢& (15)
(S + Aj + j + Vi) Fj(s) = AjaFja(s) — ppaFa(s) = 0, j=1,2,3,.... (16)
In terms of the fj(s)'s, we rewrite equations (15) and (16) as
(ros + Ao + vo)fo(s) + f1(s) = rea+ 17
(ris+ A1+ M1+ Vl)fl(S) + /loylfo(S) + fa2(s) = 0, (18)
(I’jS + lj +uj + Vj)fj(S) + /lj_lujfj_l(S) + fj+1(S) =0,]=23,.... (19)
We again write the above system of equations as
_ roa+ (vols)
o) = 5T 7 +vo + (LG (20)
fl(S) _ —lo‘ul (21)
fo(s) ris+ A1+ H1+V1+ (f2(s)/f1(s))
fi(s) _ —Aj1l

- ) =2,3,.... 22
fjfl(S) ris + lj +uj+vj+ (fj+1(S)/fj (s) J (22)



o1 T. VJAYALAKSHMI, and V. THANGARAJ

We, thus, represent fo(s) as a continued fraction:

fote) = —_T0BY L dopts
0 (r0$+lo+Vo)— (r18+11+‘u1+\/1)—...
and
fis) _ —Aj1H Aiftjsa
fiia(s)  (rs+Aj+ 5 +vj) = (aS+ Aja + pja + Vi) —
)uj+1uj+2 j _ 1 2
(F S+ Ajo + lyy+ Vi) = R
AjMjr1
fi(s) _ —Aj-a it FiFje1
firas) o, lj+,t_t.j Vil lj+1+/;t_j+1+vj+1 3
J j+1
lj+1,uj+2
JELI Ci=12...
" Ajs2 + Uj2 + V2 _
lj+2

Then from (23)-(24) using (12),we have

Iros
fo(s) = A Volle
S+ )“OF;VO __rlo $1(5)
fi(s) - :
= ¢i(s), | =1,2,3,....
fj—l(S) ¢J() J

After some algebraic simplifications, we obtain (13) and (14).

(23)

(24)

(25)

(26)

(27)

Theorem 3.3. For every t > 0 and x € [0, r;t), the stationary probabilities of the Fluid model

driven by BDPC with independent rates A, (arrival), un (service) and v, are

(otvo) x (Ao +Wvo)
fo(x) =ae  To + ‘r/—g ie Fo dy
@ (Ao +vo)
k ok 20T Vo)
B ICON T Tt
k-0
. - (Ao +vo) y
k - ro
+ 2 (F) [y,
k=0 0 )

and

(28)
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fo(X) = @1(X) * P2(X) * P3(X) *+ « « xpj(X) * fo(X), j = 1,2,3, ... (29)

Proof. We know that

1 » (Lo +vo) )
Lt o | =g o . (30)
(s+ lo;;\/o) Kl
And
X (Ao +vo)u + Vo)U
k
Lt L =] du = hi(x), (31)
s(s + /lor_t)l/o) : 0

say. On inverting (13) and (14) using the above Laplace inverse formulae, we get the results
(28) and (29) of the theorem. |

4. Rogers-Ramanujan Birth and Death Processes

In all cases, in the literature, A, and u, are independent. In practical situations the service
rate u, depends on the arrival rate A, and catastrophe rate v,. This forces us to state the
definition that follows.

Definition 4.1. A continuous time stochastic process <{X(t),t >0} is called
Rogers-Ramanujan Birth and Death Process (RRBDP) if the arrival rate 4,, and the service
rates u, are not independent and satisfies the usual Kolmogorov system of
differential-difference equations.

In this paper we consider RRBDP with catastrophe where the arrival rate, service rate and
catastrophe rate are not independent of one another. Specifically, consider a RRBDP with
catastrophe process whose rates satisfy the conditions.

A‘n +Nn+Vn :1 (32)
A«n_lﬂn = qn, n= 1,2,3,.... (33)

with Ho = 0= Vo and Ao = 1.
With this assumption, we have the following result.

Theorem 4.1. For everyt > 0and x € [0, rit), the stationary probabilities of the Fluid Model
driven by RRBDP with catastrophe are
1

focc) = ae T5% aZ(ro) j v ol e yyay (34)
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and
fj(¥) = qp1(x) * @%p2(X) * P3P (X) *...xqlj(x) * Fo(x), j =1,2,.... (35)
Proof. From (23), using (32) and (33), we have

_ lNoa q q2
fo(s) = rs+1— ris+1— rxs+1-... =

which is the Rogers-Romanujan continued fraction (1) when s =0 and a = 1/ro, hence
justifying the fact that the birth and death process under consideration is related to the
Rogers-Ramanujan continued fraction (1).

From (24), using (32) and (33), we have

fj (S) B _qj qj+1 qj+2

fi-1(s) B rs+1— rjas+1— rjos+1—...° (37)
Make use then of (12) with (32) and (33) to obtain
A B _qj qj+1 qj+2
$i(8) = rs+1— rpaS+1— rjas+1—...° (38)
Moreover, from (37) we have
fi(s)  » -
fj—l(s) - ¢J(S)1 | 112a31---- (39)
Using (39) in equation (36) finally yields
S k
fo(S) Z( o ) (¢l( )) (40)
5+r +¢(s) 0 (s+ )"+l
0
and
j A
fi(s) = (H(d)k(s))fo(s), 1=123,.... (41)
k=1
Inversion of (40)-(41) using (30) and (31) completes this proof. |

5. Special Rogers-Ramanujan Birth-Death Processes with
Catastrophes

We use the Pochhammer symbol for our discussion to let
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n-1

@ =D (1-ag"), (&) = 1,
k=0
and
@) = »_(1-aq"), [gl< 1.
k=0

In terms of this notation, we represent the Rogers-Ramanujan Identity as
_ (@,99)(9%0%)=
@ CRUDMCEH D
Here we exhibit some examples of continued fractions of Ramanujan and Jacobi which
correspond to birth-death processes with catastrophe fluid queueing models of positive rates
An, Mn, and vn. So we define Ag = 1, puo = 0and vo = 0.
a) Let {1} ,{un} be sequences of real numbers of BDP-1 satisfying

bn Z;l,n+l,ln+Vn = 1+qn, n20,1,2,3,...,

dn = ln—lﬂn
=g n=123,...
The corresponding continued fraction for the model BDP-1 is

2
W) = T T (42)
— (qz;q3)°0 43
(@:9%)x )

This continued fraction is Entry 10 in Ramanujan’s second Notebook [3, p.20].
b) Let {An} ,{un} be sequences of real numbers of BDP-2 satisfying

bh=An+pn+vn=1+0¢*", n=0,1,2,3,...,
an = Anaun, n=0,1,2,3,...,
=q>!, n>1,
The corresponding continued fraction for the model BDP-2 is

3
fo(Q) = 5= 1+?12— 1+qq4—"' “44)
— (q3;q4)°0 45
(CHWF )

This continued fraction is Entry 11 in Ramanujan’s second Notebook[3, p.22].
c) Let {An} ,{un} be sequences of real numbers of the model BDP-3 satisfying
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bh=An+pun+vn=1+9®, n=0,123,...,
an = An-1un, N =0,1,2,3,...,
=q®!, n=123,....
The corresponding continued fraction for the model BDP-3 is

19 q°
fa(@) = 1= TP gt (46)

Note the relation between f3(q) and the classical Jacobi theta function (see Folsom [10]) is
9(@) = D q™ = 1+2qfs(q) (47)
N=—o0

d) Let {An} ,{un} be sequences of real numbers of BDP-4 satisfying
bh=An+pun+vn=1+9*, n=0,123,...,
an = Anaapn, N =0,1,2,3,...,
=qg°", n=1,23,....
The corresponding continued fraction birth-death for the model BDP-4

1 _ ¢ q*
f4(Q): 1— 1+q2_1+q4_"' (48)

Note the relation between f4(q) and the classical Jacobi theta function (see Folsom [10]) is

92(q) = D @D = 2qUf,(q) . (49)

N=—o0

6. Fluid Model Driven by an M/M/1 Queue With a Catastrophe

In this section, we consider the fluid model discussed in Section 2 with the background
process as an M/M/1 queue with independent rates A(arrival), u(service), and v(catastrophe).
Also, letriberfori=1,2,3,....

Theorem 6.1. The Laplace transforms of the steady state probability distribution functions of a
fluid model driven by M/M/1 queueing system with catastrophe are

/ - Klp—yJp?—a®]*
fo(s) = 2N | (5 %);(2:0) (50)

s+ AtV (s+ 252"
0

o
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f0 - () (4 ) T (o) St i - 12, 5

T \ 21 (s+’1+"> o

Proof. Since i = p' — vp™, with p = (1 + v)/p, it follows from (2) that

ro—r
p< = (52)
Substitute 1; = A, uj = pand vj = v in (23) to get
A Apt
v H et ud
Fo(S) = At Tos Tol r2
S ArJBv_SJr A+;rr+v_s+}t+;rr+v_m

which can be written as

fo(s) — )La + v/ros (53)
S+ r?;v — Wf(S)
where
_ 1 Aulr? B 1
i) = A+pu+v A+p+v B A+u+v  Au ’ (54)

which results in a quadratic relation for f(s), whose negative root is

_ 02 _ 2
[p-yp°—a”] (55)

a?l2 ’

where p = s+ )WL—‘rHV,a = 2 [Aulr. By substituting (55) in (54), pulling out the term

S+ )“Jrr—'LéJrv from the denominator and expanding binomially, we get the first result.

Furthermore substitution of 4; = A, uj = pand vj = v in (23) and (24), leads to
() = o Fo(9)(9) (56)

f(s) =

fi(s) = ‘r#fj_l(s)f(s), j=23.. (57)

which can be put together as

(s) = %(—?—f)l(f(s))jfo(s), =123 .. (58)

Since by (11) we have



S T. VJAYALAKSHMI, and V. THANGARAJ

£ = (£) d©)ifos), j=012,...., (59)

then substitution of (55) and (53) for f(s) and fo(s) respectively, allows equation (59) to be
written as the second result of this theorem. |

Remark 6.1. When there is no catastrophe, i.e. v — 0, we have the stationary solution as

. 0 k _ 2 _ 427k
o) = —2—+a Y (5 ) AP o] (60)
k=1

Vs k+1
St 1oy <S+%%
A iz k[p— pz_aqyk_
Ei(s) = a(i) S (F) - 123, (61)
k=1 <S+ To

which are same as in equations (15) and (19) of Parthasarathy et al [16].
By inverting the results of Theorem 4.1, we arrive at the stationary probabilities as follows.

Theorem 6.2. For every t> 0 and x € [0, rt), the stationary probabilities of the fluid model
driven M/M/1 queue with a catastrophe having independent rates A, u and v are

A+v
F(x)—ae_(/lr—JgV)XJr viire To )
o= A+v
A+p+V j+vy
o e LA (o) e fouatoyye TR
2 'k X-y
k-1 0
© k A+u+v)X-y) «
v o\ - a“ly(a(x —Y))
Forj=1,2,3,...andx >0
i A+u+v)x = K k(i
) —al L Yo F r \ oG +k
Fi(x) —a( 2/1) e r g( 2ro) Tk 1
A+U+V )ty
P Ylik(ax—y)e T o 7,
0 X=Yy y
® K A+p+v)X=Y) «
v o\ [Fa a*l(a(x—Y))

Proof. To invert Iij(S) forj=1,2,3,... w.r.t.s, consider
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fo(S) = _a+vlres. +<a+_s>i(2ro)k p—Jp?—a? ]

gy AtV l+v (s+k+v>kﬂ.

Obviously
L0 - 7= a?)) = L3 ((s+ VLY [+ v+ I n? - a2k
(A+v+pXx
—e T L3((s- JsZ—a?))k (64)
(A+v+ pX
— e r d M’ (65)
k (A+v)X
_ 1 _xke  To
Es]'(W) - X kl ’ (66)
ﬁsl(FTS)) - [ fwa (67)
and
(A +wu
581< s(s + A1V il+v Ykt ) ) J.o e k!rO du = hi(x), (68)
say.

Using (64), (66), (67) and (68), on inverting (50) w. r. t. the s variable, we get the first result of
Theorem 6.2 for x > 0.
Now, to obtain other probabilities Fj(x),j = 1,2,3,.., we consider

2 ooy _ r VY~ \lp-ypP-a®)c
Fi(s) = <a+ %)(ﬂ) ; (Zro) <S+ ’lr“’)kﬂ for j=1,2,3, ...
0

By similar arguments as before, inverting Fj(s) w.r.t. s yields the second result of this
theorem. |

Remark 6.2. When there is no catastrophe, i.e. v - 0, we have the stationary solution as

—AX (A+wx = ( )k

= r - _r
Fo(x) =ae To +ae r org
k=1
X /1 T = r;L 2
k X — e 0

Forj=1,2,3,... andx > 0, we have
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Fi(x) = a(i)je——(/l +r”)x i( r )k o+ k)

= 2 T'k+1
Nt T
x Ylk(ax—y)ye T To”
[, i dy (70)

which are the same as in (15) and (19) of Parthasarathy et al [16].

7. Buffer Content Probability

In this section we obtain the Laplace transform of the probability distribution of the buffer
content of the fluid queue with a catastrophe.

Theorem 7.1. Let F(x) = Pr(C < x) = Z,io Fj(x). be the probability distribution of the buffer

content of a fluid queue driven by an M/M/1 queue with catastrophe having independent rates
A, 1, and v. Then the Laplace Transform F(s) of F(x) is

~ . ([ args+v
F(s) = ( 2s(rs + v) )
y ( rs?(ro—r) +As(ro —r) +vs(ro —r) — us(ro + r) + ns(ro — r) — 2vu ) (71)
ros2(ro—r) + As(ro —r) + vs(ro —r) —Sp ro — v '

Proof. Using (59), the Laplace transform F(s) of F(x) is
2oy fo(s)
FO) = T0inie) (72)

According to (53) and (55), the above relation can be written as

If(s) _ 4ro(a+ viroS)u
C[@ro=0s+A-pu+v+nln-Us+i+v—p)]’

where n = J(rs + A+ v+ u)? —4iu . By multiplying and dividing the above expression by the
term (rs+ A + v — u) +n, we obtain,

2« (ro@+virgS)(rs+A+v—u) +n
F(S)_( rs[(2ro—rs+A—u+v+n] ) "

Further Multiplication and division of the above relation by (2ro —r)s+ A — u+v) — n leads,
after some manipulations, to the required result. H

Remark 7.1. As v - 0in (71), the above equation reduces to
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E(s) = (aro )(rs(ro—r)+/l(ro—r)—u(ro+r)+n(ro—r)>’ (74)

2rs roS(ro—r)+ A(ro—r) — uro

which coincides with (22) of Parthasarathy et al [16].

Remark 7.2. Whenro = —-1andr = 1, equation (71) becomes

B = (a3v>< S(S+A+V)+uv+sJ(rs+A+v+u)? —4apu ) (75)

Stv s(s(2s—24—2v+ u) — uv)

The Laplace-Stieltjes transform F(s) of F(x) is therefore given by

B - (asv>< S(s+A+V)+uv+sf(rs+A+v+u)? —4du ) 76

S+v (25— 2 — 2v + w) — uv

Obviously, when there is no catastrophe, i.e. v — 0, the last relation becomes

. a[s+A+ [(s+2A+u)?—4Au]

F(s) = 25— 24+ p | {77)

Furthermore, under the assumption that a = (1 — 2p), the above result happens to coincide
with T*(s) in Adan and Resing [1].

Remark 7.3. As v —» 0 in equation (73), the resulting relation coincides with equation (21) of
Parthasarathy et al [16],

Aoy roa(rs+A—pu) +n
F0 = (tons omes )

8. Conclusion

This paper reveals the amazing connection between fluid queueing models and the
legendry Rogers-Ramanujan Continued fraction in a novel way to get elegant results. In this
paper, a fluid model driven by birth and death processes (BDPs) with catastrophes is discussed.
A system of differential equations satisfied by the fluid model has been set up. The Laplace
transform of the stationary-state probability distribution of the fluid queue is obtained through
continued fractions and a stationary solution for an M/M/1 fluid queue is obtained. Also birth
and death related to the Rogers-Ramanujan continued fraction is discussed as an initial step
and some special BDPs with a catastrophe are discussed as particular cases. The pertaining
system has moreover been studied, when there are no catastrophes, and hence confirmed the
respective results obtained by other researchers.
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