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Abstract. For a random polygon generated by n independent points uniformly distributed on a
unit circle in R2, it is known that both its semiperimeter Sn and area An converge to  with
probability 1 as n →  with ESn   − 3/n2  On−3, EAn   − 43/n2  On−3, and
n5/2Sn −  − 3/n2

L
 N0,106, n5/2An −  − 43/n2

L
 N0,1606, where the

notation
L
 means convergence in distribution as n → . In this work, we apply various

extrapolation methods to obtain several improved convergence estimates by combining the
semiperimeter Sn and the area An of such a random n-sided polygon, and also the
semiperimeter and the area of a suitably constructed 2n-sided random polygon inscribed in the
unit circle.
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1. Introduction

For n ≥ 3, an n-sided regular polygon inscribed in a unit circle in R2 has semiperimeter
Sn  n sin 

n and area An  1
2 n sin 2

n , while a similar n-sided regular polygon
circumscribed about the circle has both semiperimeter and area Sn

′  n tan 
n . The well-known

Archimedean approximation of  is essentially based on the fact that Sn    Sn
′ and

limn→Sn  limn→Sn
′  . Additionally, with the doubling of the sides of the polygons, the

following harmonic-geometric-mean relations for Sn and Sn
′

1/Sn  1/Sn
′  2/S2n

′ , SnS2n
′  S2n

2

made it possible for Archimedes to actually compute Sn and Sn
′ for n  6,12,24,48,96 and
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obtain in particular the famous bounds 223/71    22/7. Note that while it is also true that
limn→An  , we have Sn  A2n and An  Sn  . Thus for any fixed n, the semiperimeter
Sn provides a better approximation than the area An. Following Archimedes, many later
mathematicians (over many centuries) tried hard with larger values of n to obtain more
accurate estimates of  [1]. On the other hand, instead of computing Sn and Sn

′ for extremely
large values of n, modern extrapolation techniques [7], [9] may be used to obtain significantly
more accurate estimates of  based on Sn and Sn

′ for even relatively small values of n. In fact,
from the Taylor series expansion for sin and tan, it is easy to see that

Sn   − 3

6n2  5

120n4  On−6, Sn
′    3

3n2  25

15n4  On−6.

Thus, to cancel the leading source of approximation errors, we may combine, for example, Sn
and Sn

′ , or Sn and S2n to obtain,
2
3 Sn  1

3 Sn
′    5

20n4  On−6, 4
3 S2n − 1

3 Sn   − 5

480n4  On−6.

Such improvements go back to Snellius and Huygens in the 17th century [1], and provide
significantly more accurate estimates for  than either Sn, Sn

′ , or the simple average
1
2 Sn  1

2 Sn
′ as originally suggested by Archimedes.

More recently, in [2], Bélisle has considered the case of a random polygon generated by n
independent points uniformly distributed on the unit circle and has shown that the area An of
such a random n-gon converges to  in probability with EAn   − 43/n2  on−5/2, and
n5/2An −  − 43/n2

L
 N0,1606 as n →  where the notation

L
 means convergence in

distribution [3], [5], [8]. (Similar results also hold true for the semiperimeter Sn.) Separately in
[9], the author has also studied the related problem of approximating  using the semiperimeter
or area of such a random n-gon inscribed in a unit circle. By using elementary analysis but
with some more refined estimates, it has been shown that both Sn and An actually converge to
 with probability 1 as n →  with

ESn   ∑
k1



−1k n!
n  2k! 

2k1   − 3

n2  On−3,

EAn    1
2 ∑

k1



−1k n!
n  2k! 2

2k1   − 43

n2  On−3.

In this work, we extend similar extrapolation analysis for the deterministic Archimedean
polygon case to the above mentioned random approximations of  to obtain improved
convergence estimates based on various combinations of the semiperimeter and area of random
polygons inscribed in the unit circle. One simple such example is the combination
Xn  4

3 Sn − 1
3 An which clearly also converges to  with probability 1 as n →  with

EXn   −∑
k2



−1k 4k− 4
3

n!
n  2k! 

2k1   − 45

n4  On−5, 1

and in Section 3 we will show that the distribution of Xn is also asymptotically normal in the
sense that
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n9/2Xn −  − 45/n4  n n4Xn −   45
L
 N0,361610, 2

as n → . However, we note that a random polygon circumscribed about the circle is not
always well-defined (when all random points fall on a semicircle), thus as in [2], [9], we
consider only random polygons inscribed in the unit circle. Additionally, even for an inscribed
random polygon, unlike the Archimedean regular polygon case, the process of doubling of the
sides of the random polygon can be much more complicated and the way this is done can affect
the optimal construction of the extrapolation methods. In particular, we will consider three
different approaches in sections 4, 5 and 6 for independent doubling, equal bisection and
random bisection of the random polygons respectively and establish the corresponding optimal
extrapolation estimates.

2. Preliminary Results

2.1. Some inequalities for the sine function

Lemma 2.1. Let   0. Then sin  , sin   − 1
3! 

3, sin   − 1
3! 

3  1
5! 

5,
sin   − 1

3! 
3  1

5! 
5 − 1

7! 
7.

These inequalities correspond to the partial sums of the Taylor series for the sine function.
The first one, sin  , is well-known. By integrating this inequality over the interval 0,,
we obtain cos  1 − 1

2! 
2. Further integrating cos  1 − 1

2! 
2 then gives sin   − 1

3! 
3.

Continuing this process, we may further obtain cos  1 − 1
2! 

2  1
4! 

4,
sin   − 1

3! 
3  1

5! 
5, etc. for all   0.

2.2. Random divisions of the unit interval (0,1)

Given n ≥ 1, let 0  X0  X1  X2    Xn−1  Xn  1 be the order statistics of n − 1
independent and uniformly distributed points on the unit interval. It is known [4] that the
lengths of the resulting n segments (spacings) Xi − Xi−1 are all identically distributed with the
probability density function fx  n − 11 − xn−2 for 0  x  1, and for any i ≠ j, the joint
probability density function of Xi − Xi−1 and Xj − Xj−1 is given by
fx,y  n − 1n − 21 − x − yn−3 for x  0, y  0 and x  y  1. Furthermore, the joint
distribution of all Xi − Xi−1 is the same as that of V1/∑ j1

n Vj, V2/∑ j1
n Vj, , Vn/∑ j1

n Vj ,
where V1, V2,, Vn are independent and identically distributed exponential random variables.
For any positive integer k, it can be checked that for any i ≠ j, we have

E|Xi − Xi−1|k 
k!n − 1!
n  k − 1! , E|Xi − Xi−1|k|Xj − Xj−1|k 

k!2n − 1!
n  2k − 1! ,

Var|Xi − Xi−1|k 
2k!n − 1!
n  2k − 1! −

k!n − 1!
n  k − 1!

2
≈ 2k! − k!2

n2k for large n,

Cov|Xi − Xi−1|k, |Xj − Xj−1|k 
k!2n − 1!
n  2k − 1! −

k!n − 1!
n  k − 1!

2
≈ k2 k!2

n2k1 .

For convenience, we denote
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Dn,k ∑
i1

n

|Xi − Xi−1|k. 3

The next three lemmata contain some asymptotic estimates for Dn,k that will be used frequently
in later sections.

Lemma 2.2. [9] For any positive integers n and k, it always holds that n1−k ≤ Dn,k ≤ 1, and
for large n, we have EDn,k  k!n!/n  k − 1! ≈ k!/nk−1 and
VarDn,k ≈ 2k! − 1  k2k!2/n2k−1.

Lemma 2.3. [2] For any k ≥ 1, we have
n nk−1Dn,k − k!  nk−1/2Dn,k − k!/nk−1

L
 N0, 2k! − 1  k2k!2 as n → .

Lemma 2.4. For any   0, we have nk−2−Dn,k → 0 with probability 1 as n → .

The proof of Lemma 2.2 is straightforward and can be found in [9]. Lemma 2.3 is proved
in [2] by using Cramér’s theorem (for all values of k  −1/2). The strong convergence in
Lemma 2.4 may be proved by using Markov’s inequality and Borel-Cantelli lemma as in [9].
Note that for any   0, we have by Markov’s inequality Pnk−2−Dn,k   ≤ −1Enk−2−Dn,k
≤ −1nk−2−k!/nk−1  −1k!/n1 with ∑n1

 Pnk−2−Dn,k   ≤ ∑n1
 −1k!/n1  . Finally,

Borel-Cantelli lemma implies the almost sure convergence of nk−2−Dn,k → 0 for any   0 as
n → .

3. Convergence of 4
3 Sn − 1

3 An

We now turn to the proof of relation (2). Given a random polygon generated by n
independent points uniformly distributed on the unit circle, we will label its vertices
P0,P1,…,Pn−1,Pn in counterclockwise direction with Pn representing the same point as P0 on
the circle (after one cycle). Let i be the length of the arc from the fixed reference point 1,0
to Pi with 0  1    n−1  n  0  2. Then i1 − i gives the length of the arc
⌢

PiPi1 (or the angle∠PiOPi1 measured in radian).
Without loss of generality, we assume 0  0. A further rescaling i  2Xi then yields

0  X0  X1  X2    Xn−1  Xn  1, which corresponds to a random division of the unit
interval by n − 1 uniformly distributed random points. The semiperimeter Sn and area An of
the n-gon can now be expressed as
Sn  ∑ i 1

n sin i−i−1
2  ∑ i 1

n sinXi − Xi−1,

An  1
2 ∑ i 1

n sini − i−1  1
2 ∑ i 1

n sin2Xi − Xi−1.

To prove (2), first we note, by Lemma 2.1, that
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Sn −  − 3

3! Dn,3  5

5! Dn,5 ≤ 7

7! Dn,7. 4

Next, by Lemma 2.4, we have n5−Dn,7 → 0 with probability 1 for all   0. For simplicity, we
rewrite (4) as

Sn   − 3

3! Dn,3  5

5! Dn,5  n−5o1, 5

where o1 represents a bounded random variable that converges to 0 with probability 1 as
n → .

Similarly, for An, we have

An   − 43

3! Dn,3  165

5! Dn,5  n−5o1, 6

and hence for Xn  4
3 Sn − 1

3 An,

Xn   − 45

5! Dn,5  n−5o1, 7

n9/2Xn −  − 45/n4  − 45
5! n9/2Dn,5 − 5!/n4  n−1/2o1.

Note that from Lemma 2.3 we have n9/2Dn,5 − 5!/n4
L
 N0,10! − 26  5!2. Furthermore, by

using 0   ≤ 1/2 and Slutsky’s theorem, we then obtain the desired asymptotic convergence
estimate (2). The following theorem summarizes our asymptotic results for Xn  4

3 Sn − 1
3 An.

Theorem 3.1. Let n ≥ 3 and Xn  4
3 Sn − 1

3 An. Then Xn →  with probability 1 as n → 
and

EXn   −∑
k2



−1k 4k − 4
3

n!
n  2k ! 

2k1   − 45
n4  On−5,

n9/2Xn −  − 45/n4  n n4Xn −   45
L
 N0,361610 as n → .

4. Independent Doubling of Random Polygons

To study extrapolation methods based on the doubling of the sides of random polygons
inscribed in the unit circle, we will first consider the relatively easy case of a pair of
independently constructed random n-gon and 2n-gon. This means we have two independent
random divisions of the unit interval, one by n − 1, and the other by 2n − 1, independent and
uniformly distributed points on 0,1. Denote these by 0  X0  X1    Xn−1  Xn  1 and
0  Y0  Y1    Y2n−1  Y2n  1. Then note that the two sets of order statistics
X1,X2,Xn−1 and Y1,Y2,Y2n−1 are assumed to be independent.

It is clear that the semiperimeters
Sn  ∑ i 1

n sinXi − Xi−1 and S2n  ∑ i 1
2n sinYi − Yi−1

of these random polygons satisfy
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ESn   − 3

n 1n 2
On−4 and ES2n   − 3

2n 12n 2
 On−4,

respectively. Thus, to eliminate the leading source of approximation errors, we should again
use a similar combination Yn  4

3 S2n − 1
3 Sn with EYn   − 3/2n3  On−4.

To determine the asymptotic distribution of Yn  4
3 S2n − 1

3 Sn, we note by Lemma 2.1,
that

Sn   − 3
3! Dn,3  n−3o1,

S2n   − 3
3! D2n,3  n−3o1,

Yn   − 3
3! Dn,3

∗  n−3o1,

where Dn,3  ∑ i1
n |Xi − Xi−1|k, D2n,3  ∑ i1

2n |Yi − Yi−1|3, and Dn,3
∗  4

3 D2n,3 − 1
3 Dn,3.

Next, by Lemma 2.3, we have n5/2Dn,3 − 3!/n2
L
 N0,360 and

n5/2D2n,3 − 3!/2n2
L
 N0,45/4. Since Dn,3 and D2n,3 are independent, then by Lemma 2.3,

it follows that

n5/2Dn,3
∗  4

3 n5/2 D2n,3 − 3!
4n2 − 1

3 n5/2 Dn,3 − 3!
n2

L
 N0,60,

and thus by using Slutsky’s theorem, when 0   ≤ 1/2, we have

n5/2Yn −   − 
3

3! n5/2Dn,3
∗  n−1/2o1

L
 N0, 56/3.

Theorem 4.1 below summarizes the above asymptotic estimates for 4
3 S2n − 1

3 Sn and
similar results for 4

3 A2n − 1
3 An. Note that these estimates improve over Sn or S2n, but are

weaker than those for 4
3 Sn − 1

3 An of Theorem 3.1.

Theorem 4.1. Let Yn  4
3 S2n − 1

3 Sn and Zn  4
3 A2n − 1

3 An. Then both Yn and Zn

converge to  with probability 1 as n →  and
EYn   − 3/2n3  On−4, n5/2Yn − 

L
 N0,56/3, as n → ,

EZn   − 23/n3  On−4, n5/2Zn − 
L
 N0,806/3, as n → .

5. Bisection of the Random n-gon

The marked difference between Theorems 3.1 and 4.1 suggests that extrapolation methods
based on independent doubling of the sides of random polygons described in the previous
section is probably not the best approach. Given a random n-gon generated by n independent
points P0, P1, , Pn−1 (and Pn  P0) uniformly distributed on the unit circle, perhaps a more
natural (and less chaotic) approach to generate a random 2n-gon is simply to add n new
vertices by equally bisecting each arc (or angle) so that between any two consecutive points Pi
and Pi−1, a new point Pi−1/2 is added half way between Pi and Pi−1 on the unit circle. Note that
the new 2n-gon constructed this way does not behave the same as a random 2n-gon generated
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directly by 2n independent points uniformly distributed on the unit circle. For this reason, we
will use slightly different notation Ŝ2n and Â2n to represent its semiperimeter and area.

Recall that for the random n-gon, we have Sn  ∑ i 1
n sinXi − Xi−1,

An  1
2 ∑ i 1

n sin2Xi − Xi−1 where 0  X0  X1    Xn−1  Xn  1 defines a random
division of the unit interval by n − 1 independent and uniformly distributed points on 0,1.
Then the above bisection procedure yields Xi −1/2  Xi  Xi−1/2 for vertex Pi−1/2 and the
semiperimeter and area of the newly constructed 2n-gon are now given by

Ŝ2n  2∑
i 1

n

sin Xi−Xi−1
2 , Â2n ∑

i 1

n

sinXi − Xi−1  Sn.

Theorem 5.1. Let Ŷn  4
3 Ŝ2n − 1

3 Sn and Ẑn  4
3 Â2n − 1

3 An . Then both Ŷn and Ẑn

converge to  with probability 1 as n →  and
EŶn   − 5/4n4  On−5, n9/2Ŷn − 5/4

L
 N0,11310/8, as n → ,

EẐn   − 45/n4  On−5, n9/2Ẑn −  − 45/n4
L
 N0,361610, as n → .

Proof. Since Â2n  Sn, we have Ẑn  4
3 Sn − 1

3 An  Xn (a similar combination of Ŝ2n and
Â2n produces X̂2n  4

3 Ŝ2n − 1
3 Â2n  Ŷn). The desired asymptotic estimates for Ẑn now

follows directly from those in Theorem 3.1. On the other hand, for Ŷn, by slightly modifying
the same analysis in section 3, we have Ŷn   − 5

4  5!
Dn,5  n−5o1. By using Lemmas 2.2,

2.3, 2.4 and Slutsky’s theorem, with 0   ≤ 1/2, we then obtain similar estimates for the stated
Ŷn. 

It is worth mentioning that in this case, we also have Ŝ2n   − 3
4  3!

Dn,3  n−3o1 with

EŜ2n   − 3/4n2  On−3 and n5/2Ŝ2n − 3/4
L
 N0,56/8 as n → . Additionally,

by combining all three estimates Sn, An and Ŝ2n, we may further obtain the following optimal
extrapolation improvement.

Theorem 5.2. Let   0 and Ŵn  − 4
9 Sn  1

45 An  64
45 Ŝ2n. Then we have

Ŵn   − 7
7! Dn,7  n−7o1, EŴn   − 7/n6  On−7,

and
n13/2Ŵn −  − 7/n6

L
 N0,338214, as n → .

6. Random Bisection

Finally we consider a variation to the above bisection procedure to allow each newly added
vertex Pi−1/2 between the two consecutive vertices Pi and Pi−1 of the original random n-gon to
be uniformly randomly selected on the arc

⌢
PiPi−1 (with each Pi−1/2 also selected independently

of the others). Note that even though the n new vertices of the 2n-gon are also randomly
selected, the distribution of all 2n vertices of the new random 2n-gon constructed this way is
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different from the order statistics of 2n independent points uniformly distributed on the unit
circle. To reflect this distinction, we use here S̃2n and Ã2n for its semiperimeter and area
respectively.

Again, let 0  X0  X1    Xn−1  Xn  1 be the random division of the unit interval
by n − 1 independent and uniformly distributed points on 0,1 so that the semiperimeter and
area of the random n-gon are given by Sn  ∑ i 1

n sinXi − Xi−1,
An  1

2 ∑ i 1
n sin2Xi − Xi−1. For each newly added point Pi−1/2, the rescaled Xi−1/2 can now

be written as Xi −1/2  Xi −1  Xi − Xi −1Ui where U1,U2,,Un are independent and
uniformly distributed over 0,1 and independent of X1, X2, , Xn−1. Then it can be easily
checked that the semiperimeter and area of the newly constructed 2n-gon are now given by
S̃2n  ∑ i 1

n sinXi − Xi −1Ui  sinXi − Xi−11 − Ui,

Ã2n  1
2 ∑ i 1

n sin2Xi − Xi−1Ui  sin2Xi − Xi −11 − Ui.

Similar to (3), we now define
Mn,k  ∑ i1

n |Xi − Xi−1|kUi
k  1 − Uik. 8

Note that since Ui is uniformly randomly distributed over 0,1, each pair Ui, 1 − Ui also
defines a random division of 0,1. Hence Ui

k  1 − Uik follows the same distribution as D2,k.
In particular, since Ui

k  1 − Uik ≤ 1, it follows that Mn,k ≤ Dn,k. Thus by Lemma 2.4, we
can state the following lemmata.

Lemma 6.1. For any   0 and positive integers n, k, we have nk−2−Mn,k → 0 with
probability 1 as n → . More importantly, similar to Lemma 2.3, we also have, for any k ≥ 1,
EMn,k  ED2,kEDn,k ≈ k!ED2,k/nk−1, for large n,

VarMn,k  EDn,2kVarD2,k  ED2,k2 VarDn,k ≈ k
2/n2k−1, for large n,

n nk−1Mn,k − k!ED2,k  nk−1/2Mn,k − k!ED2,k/nk−1
L
 N0,k

2, as n → 
where k

2  2k!ED2,k
2  − 1  k2k!2ED2,k2, ED2,k  2

k  1
, and

ED2,k
2   2

2k  1
1  k!2

2k! .

Lemma 6.2. LetMn,k
∗  Mn,k − ED2,kDn,k. We then have EMn,k

∗   0 and
nk−1/2Mn,k

∗  nk−1/2Mn,k − ED2,kDn,k
L
 N0, 2k!VarD2,k, as n → .

The proofs of Lemmas 6.1 and 6.2 are rather lengthy and will be deferred to the next
section. It is easy to check however that, for k  3 and k  5, we have in particular,
n5/2Mn,3 − 3/n2

L
 N0,126, n9/2Mn,5 − 40/n4

L
 N0,620800,

n5/2Mn,3
∗  n5/2Mn,3 − ED2,3Dn,3

L
 N0,36
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We now return to S̃2n and Ã2n. Using Mn,k and in view of Lemmas 2.1 and 6.1 we can
rewrite S̃2n and Ã2n as

S̃2n   − 3
3! Mn,3  5

5! Mn,5  n−5o1, Ã2n   − 43
3! Mn,3  165

5! Mn,5  n−5o1.
Then, by using Lemma 6.1 and Slutsky’s theorem, we arrive at the theorem that follows.

Theorem 6.1. Both S̃2n and Ã2n converge to  with probability 1 as n →  with
ES̃2n   − 3/2n2  On−3, n5/2S̃2n −  − 3/2n2

L
 N0,76/2,

EÃ2n   − 23/n2  On−3, n5/2Ã2n −  − 23/n2
L
 N0,566.

Next we note that by comparing, for example, ES̃2n with ESn   − 3/n2  On−3, it
is possible to kill the leading approximation error term. A new combination Ỹn  2S̃2n − Sn
should now be used. This leads to

Ỹn   − 3
3! 2Mn,3 − Dn,3  5

5! 2Mn,5 − Dn,5  n−5o1   − 23
3! Mn,3

∗  n−3o1.
Hence by Lemma 6.1, we have
EỸn   − 5/3n4  On−5, n5/2Ỹn − 

L
 N0,46.

Similarly, we have, for Z̃n  2Ã2n − An,

Z̃n   − 83
3! Mn,3

∗  n−3o1,

EZ̃n   − 165/3n4  On−5,

n5/2Z̃n − 
L
 N0,646.

Finally we note that in this case, similar to Xn  4
3 Sn − 1

3 An, the combination
X̃2n  4

3 S̃2n − 1
3 Ã2n satisfies X̃2n   − 45

5! Mn,5  n−5o1 with
n9/2 X̃2n −  − 45

3n4
L
 N0,620810/9.

All this can be summarized in the following theorem.

Theorem 6.2. Let X̃2n  4
3 S̃2n − 1

3 Ã2n, Ỹn  2S̃2n − Sn, Z̃n  2Ã2n − An, then X̃2n, Ỹn and
Z̃n all converge to  with probability 1 as n →  with

EX̃2n   − 45

3n4  On−5, n9/2 X̃2n −  − 45

3n4
L
 N0,620810/9,

EỸn   − 5

3n4  On−5, n5/2Ỹn − 
L
 N0,46,

EZ̃n   − 165

3n4  On−5, n5/2Z̃n − 
L
 N0,646.

7. Proofs for Lemmas 6.1 and 6.2

The proofs reported here are based on similar ideas as in [2]. First, by using the equivalent
representation
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X1,X2 − X1,, 1 − Xn−1  V1

∑ j1
n Vj

, V2

∑ j1
n Vj

,, Vn

∑ j1
n Vj

, 9

we may write

Mn,k 
∑ i 1

n Vi
kUi

k1−Ui
k

∑ j1
n Vj

k ,

where V1,V2,Vn are independent exponential random variables with a common density
function fVv  e−v for v  0 and   0. Since (9) is invariant under a rescaling of
Vi  Vi, then for simplicity we shall assume below that   1.With the above reformulation
of Mn,k, we may now consider the joint asymptotic distribution of the two sums in the
numerator and the denominator separately by using the multivariate central limit theorem. For
this purpose, we calculate that
1  EVi

kUi
k  1 − Uik  EVi

kEUi
k  1 − Uik  k!ED2,k, 2  EVi  1,

VarVi
kUi

k  1 − Uik  2k!ED2,k
2  − k!2ED2,k2, VarVi  1,

CovVi
kUi

k  1 − Uik,Vi  k  k!ED2,k.
Thus the covariance matrix  for each pair Vi

kUi
k  1 − Uik,Vi is given by

 
2k!ED2,k

2  − k!2ED2,k2 k  k!ED2,k

k  k!ED2,k 1
.

And by the multivariate central limit theorem, we now obtain, as n → ,

n
1
n ∑ i 1

n Vi
kUi

k  1 − Uik

1
n ∑ i 1

n Vi
−

1

2

L
 N0,.

Next, we apply Cramér’s theorem, [6], to determine the asymptotic distribution of Mn,k. For
this purpose, we choose gx,y  xy−k with ∂g

∂x  y−k, ∂g∂y  −kxy−k−1. Then we have

g 1
n ∑

i 1

n

Vi
kUi

k  1 − Uik, 1
n ∑

i 1

n

Vi  nk−1Mn,k

with g1,2  k!ED2,k, ∂g
∂x 1,2  1 and ∂g

∂y 1,2  −k  k!ED2,k. Thus by
Cramér’s theorem, we have, as n → ,

n nk−1Mn,k − k!ED2,k  nk−1/2Mn,k − k!ED2,k/nk−1
L
 N0,k

2,
where
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k
2  1,−k  k!ED2,k

1

−k  k!ED2,k
 2k!ED2,k

2  − 1  k2k!2ED2,k2.

This finishes the proof of Lemma 6.1.
Similarly, to prove Lemma 6.2, we note that the same substitution (9) now yields

Mn,k
∗  Mn,k − ED2,kDn,k 

∑ i 1
n Vi

kUi
k1−Uik−ED2,k

∑ j 1
n Vj

k .

Next, we calculate that
1
∗  EVi

kUi
k  1 − Uik − ED2,k  0, 2

∗  EVi  1,

VarVi
kUi

k  1 − Uik − ED2,k  2k!VarD2,k, VarVi  1,

CovVi
kUi

k  1 − Uik − ED2,k,Vi  0,

with the corresponding covariance matrix for each pair now given by

∗ 
2k!VarD2,k 0

0 1
.

The use of the multivariate central limit theorem happens to yield

n
1
n ∑ i 1

n Vi
kUi

k  1 − Uik − ED2,k

1
n ∑ i 1

n Vi
−

1
∗

2
∗

L
 N0,∗.

Again, with gx,y  xy−k, we have

g 1
n ∑

i 1

n

Vi
kUi

k  1 − Uik − ED2,k, 1
n ∑

i 1

n

Vi  nk−1Mn,k
∗ ,

with g1
∗,2

∗  0, ∂g
∂x 1

∗,2
∗  1, ∂g

∂y 1
∗,2

∗  0, and 1,0∗1,0T  2k!VarD2,k.
Finally, by Cramér’s theorem, we obtain nk−1/2Mn,k

∗ L
 N0, 2k!VarD2,k as n → . This

completes the proof.
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