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Abstract. For a random polygon generated by n independent points uniformly distributed on a
unit circle in R?, it is known that both its semiperimeter S, and area A, converge to = with
probability 1 as n — o with E(S,) = 7 — 73/n? + O(n73), E(An) = n —473/n? + O(n~2?), and
NS2(Sy — (r — 73n2)) 5 N(0,107%), n%2(An — (r — 47%n2)) - N(0,1607%), where the
notation — means convergence in distribution as n — oo. In this work, we apply various
extrapolation methods to obtain several improved convergence estimates by combining the
semiperimeter S, and the area A, of such a random n-sided polygon, and also the
semiperimeter and the area of a suitably constructed 2n-sided random polygon inscribed in the
unit circle.
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1. Introduction

For n > 3, an n-sided regular polygon inscribed in a unit circle in R? has semiperimeter
Sn=nsinf and area A, = +nsinZ, while a similar n-sided regular polygon
circumscribed about the circle has both semiperimeter and area Sy, = ntan Z. The well-known
Archimedean approximation of = is essentially based on the fact that S, < = < S, and
liMnoo Sn = limn.o, Sy, = 7. Additionally, with the doubling of the sides of the polygons, the
following harmonic-geometric-mean relations for S, and S;,

1USh + 1S, = 218y, SnShy = S5,

made it possible for Archimedes to actually compute S, and S, for n = 6,12,24,48,96 and
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obtain in particular the famous bounds 223/71 < & < 22/7. Note that while it is also true that
limy.. An = 7, we have S, = Az, and A, < Sy < 7. Thus for any fixed n, the semiperimeter
Sn provides a better approximation than the area A,. Following Archimedes, many later
mathematicians (over many centuries) tried hard with larger values of n to obtain more
accurate estimates of 7 [1]. On the other hand, instead of computing S, and S;, for extremely
large values of n, modern extrapolation techniques [7], [9] may be used to obtain significantly
more accurate estimates of = based on S, and S, for even relatively small values of n. In fact,
from the Taylor series expansion for sin@ and tan®, it is easy to see that
3 — / —
Sn—n—;—2+120n4 +0(n%), S, n2 n4 5.

Thus, to cancel the leading source of approximation errors, we may combine, for example, S,
and Sy, or S, and S»,, to obtain,

5 5
2 1q - /A -6 4 _lg — ,__T
3 Sh+ 3 Sp=m+ 2on? +0(n®), 3 Son 3 Sh=rm 250N’

+0(n~®).

Such improvements go back to Snellius and Huygens in the 17th century [1], and provide
significantly more accurate estimates for = than either S,, Sy, or the simple average
+Sn + 58, as originally suggested by Archimedes.

More recently, in [2], Bélisle has considered the case of a random polygon generated by n
independent points uniformly distributed on the unit circle and has shown that the area A, of
such a random n-gon converges to « in probability with E(A,) = 7 — 473/n? + o(n~%?2), and
n%2(A, — (m — 4r%/n?)) £ N(0,1607%) as n — oo where the notation ~, means convergence in
distribution [3], [5], [8]. (Similar results also hold true for the semiperimeter S,.) Separately in
[9], the author has also studied the related problem of approximating = using the semiperimeter
or area of such a random n-gon inscribed in a unit circle. By using elementary analysis but
with some more refined estimates, it has been shown that both S, and A, actually converge to
7 with probability 1asn — oo with

B(Sh) —7r+2( )k(n+-2k) a2 = g nj +O(n?),

Ms

E(An)zﬂﬁ-% ( 1)

kil _ a3 -3
1 e 2k)| (2m) =T + 0O(n™2).

In this work, we extend similar extrapolation analysis for the deterministic Archimedean
polygon case to the above mentioned random approximations of z to obtain improved
convergence estimates based on various combinations of the semiperimeter and area of random
polygons inscribed in the unit circle. One simple such example is the combination

= +Sn — +.An Which clearly also converges to 7 with probability 1 as n — o with

=
1l

_ ka4 nl e oand 5
E(Xn) = 7 — Z( D™ 7~ A2+ 0(n), 1)

and in Section 3 we will show that the distribution of X, is also asymptotically normal in the
sense that
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NY2(X, — (7 — 45/n%)) = JA(N*(Xn — ) +475) — N(0,3616710), 2)

as n - c. However, we note that a random polygon circumscribed about the circle is not
always well-defined (when all random points fall on a semicircle), thus as in [2], [9], we
consider only random polygons inscribed in the unit circle. Additionally, even for an inscribed
random polygon, unlike the Archimedean regular polygon case, the process of doubling of the
sides of the random polygon can be much more complicated and the way this is done can affect
the optimal construction of the extrapolation methods. In particular, we will consider three
different approaches in sections 4, 5 and 6 for independent doubling, equal bisection and
random bisection of the random polygons respectively and establish the corresponding optimal
extrapolation estimates.

2. Preliminary Results

2.1. Some inequalities for the sine function

Lemma 2.1. Let 6 >0. Then sinf <0, sinf > 60— %03, sind < 0 — %03 + ﬁ(ﬁ,
sinf > 0 — %93 + &65 — %07.

These inequalities correspond to the partial sums of the Taylor series for the sine function.
The first one, sind < 6, is well-known. By integrating this inequality over the interval [0, 6],
we obtain cosd > 1 - -0, Further integrating cosg > 1 — -0 then gives sind > 6 — +-0°.
Continuing  this  process, we may further obtain  cosf <1- 262+ 164,
sinf < 0 — 5-0° + 2-0°, etc. forall 0 > 0.

2.2. Random divisions of the unit interval (0,1)

Givenn>1,let 0 = Xp < X1 < Xz < -+- < Xp1 < Xy = 1 be the order statistics of n —1
independent and uniformly distributed points on the unit interval. It is known [4] that the
lengths of the resulting n segments (spacings) Xi — Xi_1 are all identically distributed with the
probability density function f(x) = (n—1)(1 —x)"2 for 0 < x < 1, and for any i # j, the joint
probability  density  function of Xi—Xj.1 and X;—Xj1 IS given by
fx,y) = (n—-1)(n-2)(1 —x-y)"3 for x >0, y >0 and x+Yy < 1. Furthermore, the joint
distribution of all Xi - Xi-1 is the same as that of V1/3., Vi, Vo/ 300, Vi, -+, Vel 300V

where V1, Vo, ---, V are independent and identically distributed exponential random variables.
For any positive integer k, it can be checked that for any i # j, we have

2
BOX —Xia) = T B0 = XXy~ Xl = G
oy e @Y - Ki(n—1)! \? _ (2k)! - (k)®
Var(|Xi — Xi_1[) = (+2k—D)! ~ ( (N+k_1)! ) Sy for large n,
. VPN (DS Kin—1)! \? _ K2 (k)?
Cov(Xi = Xiual X = Xjal) = (N+2k—1)! _((n+k—1)!> ¥ Thaket

For convenience, we denote
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n
Dok = D_IXi = Xial 3)
i=1

The next three lemmata contain some asymptotic estimates for D, that will be used frequently
in later sections.

Lemma 2.2. [9] For any positive integers n and k, it always holds that n** < D, < 1, and
for large n, we have E(Dnx) = kIn!/(n +k — 1)! ~ k!/n* and
Var(Dny) = {(2k)! — (1 + k?)(k")?}/n?1,

Lemma 2.3. [2] For any k > 1, we have
JN(NIDyy — k1) = nkY2(Dpy — ki/nk1) £ N(O, (2K)! — (1 + k) (kD)) asn — oo

Lemma 2.4. For any § > 0, we have n“>%D,, — 0 with probability 1as n - oo,

The proof of Lemma 2.2 is straightforward and can be found in [9]. Lemma 2.3 is proved
in [2] by using Cramér’s theorem (for all values of k > —1/2). The strong convergence in
Lemma 2.4 may be proved by using Markov’s inequality and Borel-Cantelli lemma as in [9].
Note that for any ¢ > 0, we have by Markov’s inequality P(n¥29Dy > &) < e XE(n*%9Dyy)
< g7nk 2okl = gkt with 37 P(NK29Dnk > &) < D7 e kInt* < oo, Finally,
Borel-Cantelli lemma implies the almost sure convergence of 2D, - 0 for any § > 0 as
n — oo,

3. Convergence of +S, - + A,

We now turn to the proof of relation (2). Given a random polygon generated by n
independent points uniformly distributed on the unit circle, we will label its vertices
Po,P1,...,Pna,Pn in counterclockwise direction with P, representing the same point as Po on
the circle (after one cycle). Let 0; be the length of the arc from the fixed reference point (1,0)
to Pi with 0o < 01 < -+ < On1 < On = 0o + 2. Then 0,1 — 0 gives the length of the arc

PiPi,1 (or the angle 2 P;OP;,; measured in radian).

Without loss of generality, we assume 6y = 0. A further rescaling 6; = 2zX; then yields
0=Xp < X1 <Xz < -+ < Xp1 <Xy =1, which corresponds to a random division of the unit
interval by n— 1 uniformly distributed random points. The semiperimeter S, and area A, of
the n-gon can now be expressed as

Sn=>" sinZ 2 =31 sinz(Xi — Xic),

An = % Zin:l sin(f;i — 0i-1) = % Zin:l sin2z(Xi — Xi-1).
To prove (2), first we note, by Lemma 2.1, that
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‘Sn - {775 - Z_lgpn,S + 7;_|5Dn,5} ‘ < H_YDnJ- (4)
Next, by Lemma 2.4, we have n®>?D,; - 0 with probability 1 for all 5 > 0. For simplicity, we
rewrite (4) as

3 5
Sn =T — %Dn’g + %Dn‘S + n_5+50(1), (5)

where 0(1) represents a bounded random variable that converges to 0 with probability 1 as
n — oo,
Similarly, for A, we have

3 5
A = 7= =Dy + LDy 5+ n50(1), (6)

and hence for X, = 4S8, - 1 A,

Ao = 1~ LDy +n590(1), (7)

NO2(X, — (m — 4r%/n%)) = —4Z2n92(Dy g — 51/n) + n2+90(1),

Note that from Lemma 2.3 we have n%2(D, s — 5!/n%) 5 N(0,10! — 26 - (5!)2). Furthermore, by
using 0 < 6 < 1/2 and Slutsky’s theorem, we then obtain the desired asymptotic convergence
estimate (2). The following theorem summarizes our asymptotic results for X, = %Sn - %An.

Theorem 3.1. Letn>3and X, = %Sn - %An. Then X, - = with probability 1 as n -» o
and

- ak_ I 5
E(Xy) = 7 — é(—l)k - (nfék)! p2l =~ A2 4 O(nd),

n%2(X, — (x — 4rx°%n*)) = /N ("X, —7) + 4n®) £ N(0,36167°) asn — oo.

4. Independent Doubling of Random Polygons

To study extrapolation methods based on the doubling of the sides of random polygons
inscribed in the unit circle, we will first consider the relatively easy case of a pair of
independently constructed random n-gon and 2n-gon. This means we have two independent
random divisions of the unit interval, one by n— 1, and the other by 2n — 1, independent and
uniformly distributed points on (0,1). Denote these by 0 = Xo < X1 < +-- < Xp1 < X, = 1 and
0=Yo<VY1<:-<VYami1<Yzm=1 Then note that the two sets of order statistics
{X1,X2,+-Xn1} and {Y1,Y2,---Yon_1} are assumed to be independent.

It is clear that the semiperimeters

Sn=0 sinz(Xi — Xi1) and Sz = 37" sinz(Yi - Yi)

of these random polygons satisfy
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- _ 3 -
m +0(n 4) and E(Son) = - m + O(n 4),

respectively. Thus, to eliminate the leading source of approximation errors, we should again
use a similar combination Yy = 3820 — =Sy With (V) = 7w — 73/(2n3) + O(n™*).

To determine the asymptotic distribution of ), = %Szh - %Sn, we note by Lemma 2.1,
that

3
Sn = m— Z=Dyz+n370(2),

E(Sn) =7 —

3
Son =1 - 7@—!D2n‘3 + n‘3+5o(1),

Vo = 1= ZXDji5 + n-390(1),
where Dnz = 37 [Xi — Xia|, Dang = Do IYi = Yial?, and Dy = %DZHE ~ 1Dy
Next, by Lemma 2.3, we have  n%2(Dy3 - 3!/n?) — N(0,360) and

N%2(Dynz — 31/(2n)?) 5 N(0,45/4). Since Dy 3 and Doz are independent, then by Lemma 2.3,
it follows that
L
nS2Dy = 4nd? (Dm _ ;]—2) — Lps (Dn,g _ %) £ N(0,60),
and thus by using Slutsky’s theorem, when 0 < 6 < 1/2, we have

NS2(YVy — 1) = —Z2nS2D7 4 + nY20(1) 5 N(0,57%/3).

Theorem 4.1 below summarizes the above asymptotic estimates for %Sgn - %Sn and
similar results for %Azh - %An. Note that these estimates improve over S, or Sa,, but are
weaker than those for %Sn - %An of Theorem 3.1.

Theorem 4.1. Let Vo= +Sxn—+Sy and Z, = +An— +An. Then both Y, and Z,
converge to z with probability 1asn - o and

E(QVn) = m —23/(2n3) + O(n4), nS2(YV, — ) = N(0,52%/3), asn — o,

E(Z,) = 7 — 2733 + O(n4), n%2(Z, — 1) = N(0,807%/3), asn — o.

5. Bisection of the Random n-gon

The marked difference between Theorems 3.1 and 4.1 suggests that extrapolation methods
based on independent doubling of the sides of random polygons described in the previous
section is probably not the best approach. Given a random n-gon generated by n independent
points Po, P1, ---, Pnaa (and P = Po) uniformly distributed on the unit circle, perhaps a more
natural (and less chaotic) approach to generate a random 2n-gon is simply to add n new
vertices by equally bisecting each arc (or angle) so that between any two consecutive points P;
and Pi_1, a new point P;_1, is added half way between P; and P;_; on the unit circle. Note that
the new 2n-gon constructed this way does not behave the same as a random 2n-gon generated
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directly by 2n independent points uniformly distributed on the unit circle. For this reason, we
will use slightly different notation S, and A,y to represent its semiperimeter and area.
Recall that for the random n-gon, we have S,=>" sinz(Xi-Xi1),

An = %Z?leinm(xi — Xi—1) where 0 = Xg < X1 < --- < Xp-1 < Xy = 1 defines a random

division of the unit interval by n— 1 independent and uniformly distributed points on (0,1).
Then the above bisection procedure yields X;_;, = (Xi + Xi_1)/2 for vertex Pi_1» and the

semiperimeter and area of the newly constructed 2n-gon are now given by

n n
Son = ZZSin M, Ao = ZSinﬂ'(Xi - Xi-1) = Sh.

i=1 i=1

Theorem 5.1. Let Yy = $8u - 1S, and Z, = $ 420 — + Ay . Then both 3, and Z,
converge to = with probability 1 as n - « and

E(Vn) = 7 — 25/(4n%) + O(n5), n¥2(P, — 25/4) 5 N(0,11371%/8), asn — oo,

B(Z,) = 7 — 475/n* + O(n5), n%2(Z, — {x — 4z5Mm*}) 5 N(0,3616710), asn — oo,

Proof. Since Az = Sn, We have Z, = 48, — +.An = X, (a similar combination of Sz, and
Aan produces Xz = 48 — L+ A5 = In). The desired asymptotic estimates for Z, now
follows directly from those in Theorem 3.1. On the other hand, for 3y, by slightly modifying

.. . 5 .
the same analysis in section 3, we have }, = 7 — 4”_—5|Dn,5 +n~>*0(1). By using Lemmas 2.2,

2.3, 2.4 and Slutsky’s theorem, with 0 < § < 1/2, we then obtain similar estimates for the stated

Vn. ]

It is worth mentioning that in this case, we also have Sz, = 7 — %Dn,g +n~3*90(1) with

E(S2n) = 7 — 73/(4n?) + O(n~3) and n%2(8y, — n3/4) A N(0,57%/8) as n —» oo. Additionally,
by combining all three estimates Sy, A, and S,n, we may further obtain the following optimal
extrapolation improvement.

Theorem 5.2. Let§ > 0and Wy = —5-Sn + - An + 2-821. Then we have
Wi = 1= ZLDp7 +n7*90(1), EOVy) = 7 — 27/n® + O(n7),

and
NI32ON, — {r — 27/n%}) 5 N(0,3382714), asn — oo,

6. Random Bisection

Finally we consider a variation to the above bisection procedure to allow each newly added
vertex Pi_1, between the two consecutive vertices Pi and Pi-; of the original random n-gon to

be uniformly randomly selected on the arc PiP;_; (with each Pi_1, also selected independently
of the others). Note that even though the n new vertices of the 2n-gon are also randomly
selected, the distribution of all 2n vertices of the new random 2n-gon constructed this way is
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different from the order statistics of 2n independent points uniformly distributed on the unit
circle. To reflect this distinction, we use here S, and Ay, for its semiperimeter and area
respectively.

Again, let 0 = Xp < X1 < --+ < Xp1 < Xp = 1 be the random division of the unit interval
by n — 1 independent and uniformly distributed points on (0,1) so that the semiperimeter and
area of the random n-gon are given by S,= Z?lein r(Xi — Xi-1),

An = < Zin=1 sin2z(X; — Xi-1). For each newly added point Pi_y», the rescaled Xj_» can now
be written as X;_;, = Xj_; + (Xi — X;_1)Ui where U;,Uy,---,U, are independent and

uniformly distributed over (0,1) and independent of X1, X2, ---, Xn-1. Then it can be easily
checked that the semiperimeter and area of the newly constructed 2n-gon are now given by

Son = 21 sin{m(Xi = X; Ui}y + sin{m(Xi — Xiza)(L = Ui},

Aan = 277 sindem(Xi — Xii))Ui} + sind2m(Xi — X;_)(1 - U}
Similar to (3), we now define
Mk = Z?:l IXi = Xia[*{UF + (1 - Up¥}. (8)

Note that since U; is uniformly randomly distributed over (0,1), each pair (U;j,1 — U;) also
defines a random division of (0,1). Hence U¥ + (1 — U;)¥ follows the same distribution as Da.
In particular, since U¥ + (1 — Uj)* < 1, it follows that Mnx < Dnk. Thus by Lemma 2.4, we
can state the following lemmata.

Lemma 6.1. For any & > 0 and positive integers n, k, we have n?° M, - 0 with
probability 1 as n — co. More importantly, similar to Lemma 2.3, we also have, foranyk > 1,

E(Mnx) = E(D2x)E(Dnk) = KIE(D2x)/In%1, for large n,
Var(Mnx) = E(Dna)Var(Dax) + E(D2x)? Var(Dnk) = of/n?-1,  for large n,

JAM Mo — KUE(D2x)) = N2 (Moy — KTE(D2)/n1) 5 N(0,62), asn — oo
where of = (2K)!E(D3)) — (1 +k*)(K1)?E(D2k)?, E(D2x) = 12—, and

, K+1’
(kD
B(D2i) = 2k2+1 (1 TGk )

Lemma6.2. Let M} = Mnk—E(D2x)Dnx. We then have E(M ;) = 0 and
NF2 My = N2 (Mo — B(D2x)Dak) = N(0, (2K)! Var(Dzy)), asn - e,

The proofs of Lemmas 6.1 and 6.2 are rather lengthy and will be deferred to the next
section. It is easy to check however that, for k = 3 and k = 5, we have in particular,

N52(Mns — 3/n2) 5 N(0,126), N¥2(Mns — 40/n*) 5 N(0,620800),

NS2 M, = N52(Mps — E(Dy3)Dns) — N(0,36)
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We now return to S,, and Asn. Using Mk and in view of Lemmas 2.1 and 6.1 we can
rewrite S, and Ay as

3 5 . 3 5
Son = 1= - Moz + E=Mus +n?0(1), A =7m—2Z=Muz+ 2= M5 +n>0(1).

Then, by using Lemma 6.1 and Slutsky’s theorem, we arrive at the theorem that follows.

Theorem 6.1. Both S5, and A, converge to 7 with probability 1 as n — oo with
E(Zam) = 7 — 23/(2n2) + O(n3), n%2(3 — {7 — 73/(2n2)}) 5 N(0,775/2),

E(Axn) = 7 —273M2 +0(n3), n%2(Ay, — {r —273%n?}) 5 N(0,567°).

Next we note that by comparing, for example, E(S2,) with E(Sn) = 7 — z3/n? + O(n~®), it
is possible to kill the leading approximation error term. A new combination Y, = 285, — Sy
should now be used. This leads to

Yo = 1= EX@Mus - Dag) + L2 (2Mas — Das) +N7590(1) = 1 — 2L M5+ n=30(1).
Hence by Lemma 6.1, we have

E(Vn) = 7 —2%(3n%) + O(n%), n%2(Yn — 1) = N(0,47°).
Similarly, we have, for Z, = 24,, — A,

Zy = 1 — L2 M4+ n¥90(1),

E(Z,) = n —167°/(3n*) + O(n™),

nS2(%, — ) 5 N(0,6475).
Finally we note that in this case, similar to X, = 4S5, - %An, the combination

Xon = 480 — +Aan satisfies Xon = m— 2= Mns +n~370(1) with
5
n9’2(5(2n - {n —~ ‘;75—4}) £ N(0,620871°/9).

All this can be summarized in the following theorem.

Theorem 6.2. Let Xon = 58 — +Azn, Yo = 2820 — Sn, Zn = 2420 — An, then X, Y and
Z, all converge to 7 with probability 1 as n — oo with

_ o 4AT> 5 ) . _amd ) 4 10
E(Xzn) = 7 na TO0™), n (in {n nd }) N(0,620871%/9),
EQh) = 7= Z5 +0(%), n%2(Fh - 1) = N©47°),

E(Z) = 7~ ﬁlif O, NnS2(Z,— 1) 5 N(0,647%).

7. Proofs for Lemmas 6.1 and 6.2

The proofs reported here are based on similar ideas as in [2]. First, by using the equivalent
representation
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V V V
(Xl,XZ—Xl,"',l_X—l): - y : y "7y . ’ (9)
' PPATED TR WY
we may write
> VUL
Mn,k = N k
(Zj=1 V”)

where V1,Va,---V, are independent exponential random variables with a common density
function fy(v) = e for v >0 and A > 0. Since (9) is invariant under a rescaling of
Vi » AVj, then for simplicity we shall assume below that A = 1. With the above reformulation
of Mpnx, we may now consider the joint asymptotic distribution of the two sums in the
numerator and the denominator separately by using the multivariate central limit theorem. For
this purpose, we calculate that

p1 = BVI{US + (1 - U)X = B(VOEUYS + (1-U)¥) = KIE(D2x), p2 = E(Vi) = 1,
Var(Vi{Uf + (1 - U)*}) = @K)!IE(D3y) - (KDZE(D2)?,  Var(Vi) = 1,
Cov(VK{U X + (1 = U)X, Vi) = k « KIE(D2x).
Thus the covariance matrix T for each pair (V¥{U¥ + (1 — Uj)*},V;) is given by
. [ (KN E(D3) ~ (K)?E(D2i)? k- KIE(Da) ]
k « KIE(D2x) 1

And by the multivariate central limit theorem, we now obtain, asn - oo,

T 2 VU@ - U

JA N &i=1 11 ; B H1 £ N(0,).
i Vi Ha

Next, we apply Cramér’s theorem, [6], to determine the asymptotic distribution of M. For

this purpose, we choose g(x,y) = xy* with % =yK 2—8 = —kxy~*1. Then we have

g(ﬁ ZV'{{U'{ +(1-UD)", & ZW) = NI Mk
i=1 i=1

with g(u1,p2) = KUE(D2x), 2 (u1,p2) =1 and %g(ul, 12) = —k +KIE(D2x). Thus by
Cramér’s theorem, we have, as n — oo,

JAM Mo — KTE(D2x) = N2 (Mox — KTE(D2)/n1) 5 N(O, 62),
where
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o2 =(1,-k k! E(Dz,k))2< s k!Ila(Dz,k) ) = (2K)!B(D3,) — (1 +k2)(K)2E(D2x)2.

This finishes the proof of Lemma 6.1.
Similarly, to prove Lemma 6.2, we note that the same substitution (9) now yields

> VUK (1-UD -E(D, )}

(V)

nk = Mok —E(D2x)Dnk =

Next, we calculate that
pi = B(VI{UF+ - Uk —E(D2x)}) =0, w3 =E(\Vi) =1,
Var(VE{UK + (1 - U)* - E(D2x)}) = (2K)!'Var(D2x), Var(Vi) = 1,

Cov(VK{UX + (1 - U)X = E(D2x)}, Vi) = 0,
with the corresponding covariance matrix for each pair now given by

o (2k)!' Var(Dzx) ©
- 0 1|

The use of the multivariate central limit theorem happens to yield

20 VIHUE + (- UD¥* ~ E(D2p)} i . )
JA o - £ N@©,2%).
n Zizlvi Ha

Again, with g(x,y) = xy*, we have

n n

g(ﬁ D VEUE+ (- U = B(D200}, Zvi> = n“TMyy

i=1 i=1
with gluiuz) =0, S-(uipz) =1, S-(ui,p3) =0, and (LO)T*(LO)T = (2K)! Var(Dz).
Finally, by Cramér’s theorem, we obtain nk¥2 A} £ N(0, (2k)! Var(D2y)) as n — oo. This
completes the proof.
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