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1. Introduction

Let Bt
H, t ∈ R be a fractional Brownian motion (fBm) with Hurst index 0  H  1,

defined on a probability space ,F,P; i.e. a centered Gaussian process with stationary
increments satisfying B0

H  0, with probability 1, and EBt
H2  ∣ t ∣2H, t ∈ R. The

covariance function of this process is given by
Cov Bt

H, Bs
H  1

2 ∣ t ∣2H ∣ s ∣2H −∣ t − s ∣2H , s, t ∈ R2. 1
Note that if the Hurst index equals 1/2, the fBm is simply the ordinary standard Brownian
motion (Bm).

A sub-fractional Brownian motion(sfBm) is another extension of a Bm, that preserves most
of the properties of a fBm, but not the stationarity of the increments. It is the stochastic process
H   t

H; t ≥ 0, defined on ,F,P by:
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 t
H  Bt

H  B−tH

2
, t ∈ R, 2

It is obvious that, when H  1/2, 1/2 is a Bm. We refer to [2-4, 11] for further information on
this process.

In [7] the authors introduced a new Gaussian process that they called the sub-mixed

fractional Brownian motion (smfBm). A smfBm of parameters a,b and H, is a process
XH  Xt

Ha,b; t ≥ 0  Xt
H; t ≥ 0,

defined on ,F,P by:
Xt

H  Xt
Ha,b  a  t  b  t

H, t ∈ R, 3
where H is a fBm, with Hurst index H, and  is an independent Bm (both defined on the same
probability space ,F,P), a and b are two real constants such that a,b ≠ 0,0.

So a smfBm is clearly an other extension, not only of a Bm, but also of a sfBm. This is a
first interest in this process. In [7], it was proved that the parameters H,a and b can be chosen
so that Xt

Ha,b; t ≥ 0 yields a good model, taking not only the sign (like in the case of a
fBm or a sfBm), but also the level of the increments correlation of the phenomenon of interest
into account. This is another main interest of this process. The covariance function of a
smfBm, of parameters a,b and H, is given by:
Cov Xt

Ha,b, Xs
Ha,b  a2 s ∧ t  b2 t2H  s2H − 1

2 s  t2H ∣ t − s ∣2H , 4
for every s ∈ R and t ∈ R.

A smfBm does not have stationary increments but has
EXt

Ha,b − Xs
Ha,b2 ≤ a2 ∣ t − s ∣ b2 ∣ t − s ∣2H s, t ∈ R

2 , 5
where

 
1 if H ≥ 1

2

2 − 22H−1 if H  1
2

. 6

Moreover, from [7], we know that smfBm satisfies the mixed-self-similarity*; i.e. for any
h  0, the processes Xht

Ha,bt∈R and Xt
H ah1/2, bhH

t∈R
have the same law. Then,

without loss of generality, we can restrict the time parameter t to the interval 0,1.
In this article, we present an explicit series expansion of the smfBm and prove its

rate-optimality in sense that the expected uniform norm of the truncated series vanishes at the
optimal rate as the truncation point tends to infinity. Optimality is not only desirable feature if
the expansion is to be used for the simulation of sample paths, but is also important in
connection with estimates of small ball probabilities (see[9], [10], and [8]).

The technique used to obtain our series expansion is the same as the one applied in the
papers [5] and [6], where the authors obtained a rate optimal explicit series expansion of the
fBm. Our proof is based on the expansion of the fBm even part covariance gotten in [5]. Let us
———
*The notion of mixed-self-similarity was introduced in [14].
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specify that in [1], the authors showed the optimality of a wavelet-type expansion of the fBm.
This expansion is of a different type than ours.

As an application of our result, we generate some computer sample paths of SHa,b for
different values of H, a and b. In particular we present some simulation results of some
trajectories of the sfBm.

The remainder of the paper is organized as follows. In the next section we obtain an
explicit series expansion of the smfBm. In section 3 we present some results on the rates of
convergence of the obtained series expansion. Then, in section 4, we show that our expansion
achieves an optimal rate in the sense of Kühn and Linde [8]. The final section reports on some
computer generated smfBm sample paths.

2. Explicit Series Expansion of the smfBm
Recall that for  ≠ −1,−2, . . . the Bessel function J of the first kind of order  can be

defined on the region z ∈ C;∣ argz ∣  as the absolutely convergent sum

Jz ∑
n  0


−1nz/22n

Γn  1Γ n 1
.

It is well known that for   −1, the function J has a countable number of real, positive,
simple zeros (see [13], chapter 15). These zeros x1  x2 . . . can be arranged in ascending
order of magnitude and they become arbitrarily large. The following lemma follows from the
asymptotic properties of the Bessel function and its positive zeros (see [13]) and will be useful
throughout this paper.

Lemma 2.1. For   −1, let J be the Bessel function of the first kind of order  and let
z1  z2 . . . be its positive zeros. Then,
1. zn  n, and J1

2 zn  2/n2 as n → ,
2. J−1zn  J1zn  0, for every n  1,2, . . .

Let H ∈ 0,1 and xH,1  xH,2 . . . be the positive real zeros of the Bessel function J1−H,
and for k ∈ N, define

H,k2 
2cH

2

xH,k
2H J−H2 xH,k

, 7

where

cH
2 

Γ12H sinH
 , 8

and Γ is Euler’s gamma function.

The following lemma will be useful to prove the main theorem of this section.

Lemma 2.2. For the partial sum process XN, defined by

Xt
N  a∑

n 1

N 1− cosx1/2,nt
x1/2,n

Yn  b∑
n 1

N 1− cosxH,nt
xH,n

YH,n , 9
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the finite dimensional distributions (fdd’s) converge weakly to the fdd’s of the smfBm.

Proof. In [5], the authors showed that if we denote by BH,e the even part of the fBm BH, then
for all s, t ∈ 0,1 we have

EBs
H,eBt

H,e ∑
n 1

 1− cosxH,ns 1− cosxH,nt
xH,n

2 H,n
2 , 10

where the series converges absolutely and uniformly in s, t ∈ 0,1  0,1.
By the independence of the Gaussian processes  and H, and since H  BH,e  2 , we

get

EXs
HXt

H  2a2∑
n 1

 1− cosx1/2,ns 1− cosx1/2,nt
x1/2,n

2 1/2,n
2

 2b2∑
n 1

 1− cosxH,ns 1− cosxH,nt
xH,n

2 H,n
2 ,

for every s, t ∈ 0,1, where the series converges absolutely and uniformly in
s, t ∈ 0,1  0,1. So the lemma follows immediately. 

The main result in this section is the following theorem.

Theorem 2.1. Let Y1,Y2, . . . and YH,1,YH,2, . . . be independent sequences of independent,
centered Gaussian random variables on a common probability space, with VarYn  1/2,n

2

and VarYH,n  H,n
2 . Then, for a,b ∈ R2 ∖ 0,0, the stochastic process

XHa,b  Xt
Ha,bt∈0,1 given by

Xt
Ha,b  a∑

n 1

 1− cosx1/2,nt
x1/2,n

Yn  b∑
n 1

 1− cosxH,nt
xH,n

YH,n , 11

is well defined and with probability 1, and both series converge absolutely and uniformly in
t ∈ 0,1. The process XHa,b is a smfBm.

Proof. Let C0,1 be the space of continuous functions on 0,1, endowed with the supremum
metric. By the Lévy-Ito-Nisio Theorem (see [12], p. 431), the processes XN converge in C0,1
with probability 1 if and only if they have a weak limit in C0,1. By lemma 2.2, it remains to
show that the sequence XN is asymptotically tight in C0,1. To prove this, we first consider
the terms

X1,t
N  a∑

n 1

N 1− cosx1/2,nt
x1/2,n

Yn , and X2,t
N  b ∑

n 1

N 1− cosxH,nt
xH,n

YH,n ,

and we will just treat the second one. The tightness of the first term can be shown exactly in
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the same manner.
Since X2,.

N is Gaussian, it is a sub-Gaussian process for the standard deviation semimetric
dN defined by:

dN
2 s, t  VX2,t

N − X2,s
N   b2∑

n 1

N cosxH,nt− cosxH,ns
2

xH,n
2 H,n

2 .

According to the maximal inequality for sub-Gaussian processes (see [12], p. 101), we have

E
dNs,t ≤

sup ∣ X2,t
N − X2,s

N ∣≤ Cte 
0


LogN, 0,1,dN d , 12

for every   0, where Cte is a universal constant and N, 0,1,dN is the  − covering number
of the semimetric space 0,1,dN (i.e. the minimal number of balls of radius  needed to cover
0,1). By equations (5) and (6), we get
dNs, t ≤ M ∣ t − s ∣1/2∧H ,

where M  a2  b2 , and consequently,
N, 0,1,dN ≤ N, 0,1,M ∣.∣1/2∧H .

Together with (12), this implies that

E
dNs,t ≤

sup ∣ X2,t
N − X2,s

N ∣ ≤ Cte 
0


LogN, 0,1,M ∣.∣1/2∧H  d

≤ Cte 2 ∨ H−1 
0

 Log M
 d.

Here it is clear that the number of balls of M ∣.∣1/2∧H - radius  that are needed to cover 0,1
is bounded by  M 

−2∨H−1.
The integral on the right hand side converges to 0 as  ↘ 0, so it follows that the processes

X2,.
N are uniformly equicontinuous in probability, hence X2,.

N is tight in C0,1 (see [12], p. 37).
Thus, we have that partial sums of XN converge weakly in C0,1. 

3. Rates of Convergence

With the notations already introduced in theorem 2.1 and in lemma 2.2, in this section we
investigate the rate at which the partial sum process XN approaches the process XH. First we
consider the covariance functions, for which we have the following result.

Proposition 3.1. For all H ∈ 0,1 we have

N→
lim sup N2H∧1

s,t∈0,1
sup |EXs

HXt
H − EXs

NXt
N| ≤ 8a2

c1/2
2

  4b2 cH
2

H2H ,

where cH
2 is defined by (8).

Proof. By theorem 2.1 and (9) we have
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s,t∈0,1
sup |EXs

HXt
H − EXs

NXt
N| ≤ 8 a2∑

n N

1/2,n
2

x1/2,n
2  b2∑

n N

H,n
2

xH,n
2 . 13

On the other hand, by lemma 2.1 we have

∑
n N

H,n
2

xH,n
2 

cH
2

2H ∑
n N

1
n12H and ∑

n N

1/2,n
2

x1/2,n
2 

c1/2
2

 ∑
n N

1
n2 as N → . 14

Furthermore, as for every H ∈ 0,1,

∑
n N

1
n12H  

N

 1
n12H dx  1

2H N2H , 15

we get

a2∑
n N

1/2,n
2

x1/2,n
2  b2∑

n N

H,n
2

xH,n
2  a2

c1/2
2


1
N  b2 cH

2

2H2H
1

N2H , 16

as N → . Here the proof completes. 

In the following theorem we specify the rate of convergence of the sample paths of the
partial sum process XN to the sample paths of the smfBm XH.

Theorem 3.1. For all H ∈ 0,1 we have

i
N→

lim sup N2H∧1

t∈0,1
sup EXt

N − Xt
H2 ≤ 4a2

c1/2
2

  2b2 cH
2

H2H ,

ii
N→

lim sup N2H∧1 E ∥ XN − XH ∥L20,1
2 ≤ 4a2

c1/2
2

  2b2 cH
2

H2H ,

iii
N→

lim sup N1−H∧1/2 E
t∈0,1
sup ∣ Xt

N − Xt
H ∣ , ∀  0,

where cH
2 is defined by (8).

Proof. Lets us prove i and ii in the same time. Observe that we have

Xt
H − Xt

N  a∑
n N

1− cosx1/2,nt
x1/2,n

Yn  b∑
n N

1− cosxH,nt
xH,n

YH,n .

Hence

EXt
H − Xt

N2 ≤ 4a2∑
n N

1/2,n
2

x1/2,n
2  4b2∑

n N

H,n
2

xH,n
2 .

So by equation (16), we obtain the statements i and ii.
For the proof of iii, let us denote by
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Rt
N,H ∑

n N

1− cosxH,nt
xH,n

YH,n and Rt
N ∑

n N

1− cosx1/2,nt
x1/2,n

Yn ,

to be able to write
Xt

H − Xt
N  aRt

N  bRt
N,H.

Since RN,H is a Gaussian process, then according to the maximal inequality for
sub-Gaussian processes (see [12], p. 101), we have for every   0 the inequality

E
dNs,t ≤ 

sup ∣ Rt
N,H − Rs

N,H ∣≤ Cte 
0


LogN, 0,1,dN d, 17

where N, 0,1,dN is the  − covering number of the semimetric space 0,1,dN and dN is
the standard deviation semimetric of RN,H. Now observe that for all p,q  0 we have

dNs, t2pq  ∑
n N

cosxH,nt− cosxH,ns
2

xH,n
2 H,n

2

pq

≤ ∑
n N

H,n
2

xH,n

p

|EXt
H − Xs

H2 |q.

Let us denote further aN ∑
n N

H,n
2

xH,n
, and by equations (5) and (6) we get

EXt
H − Xs

H2 ≤ a2  b2 ∣ t − s ∣1∧2H .
Then
dNs, t ≤  ∣ t − s ∣ , 18

where

  a2  b2
q

2pq ∣ aN ∣
p

2pq and   1/2 ∧ H q
pq .

Therefore,
N, 0,1,dN ≤ N   

1/, 0,1,∣.∣ ≤   
1/. 19

It follows from (17) and (19) that
E

t∈0, 1
sup ∣ Rt

N,H ∣ ≤ E
∣t−s∣≤1
sup ∣ Rt

N,H − Rs
N,H ∣

≤ E
dNs,t ≤ 

sup ∣ Rt
N,H − Rs

N,H ∣

≤ Cte 
0


LogN, 0,1,dN d

≤ Cte 
0


1
 Log 

 d.

Hence, a change of variables shows that

E
t∈0, 1
sup ∣ Rt

N,H ∣ ≤ Cte 



0

1
Log 1

x dx.
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By equations 14 and 15 we have aN  cH
2 2H2HN−2H as N → , and consequently,

N→
lim sup N

p
pq H E

t∈0, 1
sup ∣ Rt

N,H ∣  . 20

By the same technique we get

N→
lim sup N

p
2pq E

t∈0, 1
sup ∣ Rt

N ∣  . 21

And equations (20) and (21) yield

N→
lim sup N

p
pq 1/2∧H E

t∈0, t
sup ∣ Xt

N − Xt
H ∣ ,

for every arbitrary positive numbers p and q, which completes the proof. 

Remark 3.1. In theorem 3.1, we have proved that the sample paths of the partial sum process
XN tend to the sample paths of the smfBm XH at the rate NH∧1/2. The dependence of this rate on
H ∧ 1/2 can be explained by the nature of the sample paths of the smfBm. When H ∧ 1/2 gets
smaller, the sample paths of the smfBm fluctuate more widely. Hence, we should expect that
for smaller H ∧ 1/2 we need more terms in the series (9) to achieve a given level of accuracy of
the approximation.

4. Optimality of the smfBm Explicit Series Expansion

In this section, we will prove that the optimal rate of uniform convergence of our series
expansion of the smfBm obtained in theorem2.1 is N−H∧1/2 LogN . Note that assertion iii of
theorem 3.1 states that for any   0, the rate of uniform convergence is faster than
N−1−H∧1/2. By considering the partial sum SN

Ht defined by

SN
Ht  ∑

2N−1 k ≤ 2N

1− cosxH,kt
xH,k

YH,k , t ∈ 0,1, 22

let us first prove the following lemma.

Lemma 4.1. The inequality E
t∈0, 1
sup ∣ SN

Ht ∣≤ Cte  N 2−NH is true.

Proof. For a given   0, cover the interval 0,1 with n ≤ Cte −1 sub-intervals of length 2.
Call the sub-intervals Ii and their centers ti, for i  1, . . . ,n. Then we have
E

t∈0, 1
sup ∣ SN

Ht ∣≤ E
1≤i≤n
sup∣ SN

Hti ∣  E
1≤i≤n
sup

t,u∈Ii

sup∣ SN
Ht − SN

Hu ∣. 23
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Let us first estimate the first term on the right-hand side. By a standard maximal inequality
for Gaussian sequences (see [10], Lemma 2.2.2. ) the first term is bounded by a positive
constant times

1  Log n
1≤i≤n
sup ESN

Hti2 .

But VarYH,k  H,k
2 ; so

ESN
Hti2 ≤ 4 ∑

2N−1 k ≤ 2N

H,k
2

xH,k
2 . 24

Now, by lemma 2.1, we get
ESn

Hti2 ≤ Cte  ∑
2N−1 k ≤ 2N

k−1−2H.

Since the number of terms in the sum is bounded by a constant times 2N, we obtain
ESN

Hti2 ≤ Cte  2−2NH.
All together, we find the bound

E
1≤i≤n
sup∣ SN

Hti ∣≤ Cte  2−NH 1  Log n 25

for the first term.
To estimate the second term we first write

E
1≤i≤n
sup

t,u∈Ii

sup∣ SN
Ht − SN

Hu ∣

≤ E
1≤i≤n
sup

t,u∈Ii

sup ∑
2N−1 k ≤ 2N

∣ YH,k ∣
cosxH,kt− cosxH,ku

xH,n

≤ E
1≤i≤n
sup

t,u∈Ii

sup ∑
2N−1 k ≤ 2N

∣ YH,k ∣ 
t

u
sinxH,kvdv

≤ E
1≤i≤n
sup

t,u∈Ii

sup ∑
2N−1 k ≤ 2N

∣ YH,k ∣∣ u − t ∣

By lemma 2.1, we know that H,k is of the order k1/2−H. Hence,
E

1≤i≤n
sup

t,u∈Ii

sup ∣ SN
Ht − SNu ∣ ≤ Cte    ∑

2N−1 k ≤ 2N

∣ H,k ∣

≤ Cte    ∑
2N−1 k ≤ 2N

k1/2−H ≤ Cte    2N 3
2 −H.

This, in combination with the estimation (25) for the first term, yields the inequality

E
t∈0, 1
sup ∣ SNt ∣≤ Cte 2−NH 1  Log n    2N 3

2 −H .

For   4−N, by the fact that n ≤ Cte  −1, the first term is bounded by a constant times
N 2−NH and the second one is of lower order. 
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Now we can present the main result of this section.

Theorem 4.1. The expansion in theorem 2.1 of the smfBm is rate-optimal,and the inequality

E
t∈0, 1
sup a∑

k N

1− cosx1/2,kt
x1/2,k

Yk  b∑
k N

1− cosxH,kt
xH,k

YH,k ≤ Cte  N−H∧1/2 Log N .

always holds.

Proof. To arrive at this result, it suffices to show that

E
t∈0, 1
sup ∑

k N

1− cosxH,kt
xH,k

YH,k ≤ Cte  N−H Log N ,

and

E
t∈0, 1
sup ∑

k N

1− cosx1/2,kt
x1/2,k

Yk ≤ Cte  N−1/2 Log N ,

for every H ∈ 0,1. This ends the proof of the first statement of this theorem.
The relation’s proof is similar. Let l be the positive integer such that 2l−1  N ≤ 2l. Then by

the triangle inequality,

∑
k N

1− cosxH,kt
xH,k

YH,k  ∑
k 2l

1− cosxH,kt
xH,k

YH,k  ∑
N k ≤2l

1− cosxH,kt
xH,k

YH,k

≤ ∑
j l

∣ Sj
Ht ∣  ∑

N k ≤2l

1− cosxH,kt
xH,k

YH,k

where Sj
H is defined as in (22). We remark that, for every a  1, p  0 and n ∈ 1,2, . . ., we

have

∑
k n

kpa−k ≤ Cte  npa−n.

This, with lemma 4.1, and the fact that 2l−1  N ≤ 2l, yield

∑
j l

E
t∈0, 1
sup ∣ Sj

Ht ∣ ≤ Cte ∑
j l

j 2−jH

≤ Cte  l − 1  2−l−1H ≤ Cte  N−H Log N .

The arguments in the proof of lemma 4.1 show that since 2l−1  N ≤ 2l, we also have
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E
t∈0, 1
sup ∑

N k ≤2l

1− cosxH,kt
xH,k

YH,k ≤ Cte  l  2−lH ≤ Cte  N−H  Log N .

Therefore the desired relation holds and the proof of this theorem is complete. 

5. Computer Generation of smfBm Sample Paths

The main application of the previous expansion, is the simulation of the smfBm sample
paths. We have first truncated the expansion obtained in theorem 2.1 at the level N  2000.
Then, by Matlab software packages we have inserted numerical values of the positive real
zeros of the Bessel function J1−H, for different Hurst parameters H  0.25, H  0.5 and
H  0.75.

Figure 1: Generated sfBm sample paths for different values of the Hurst parameter
(a  0.3,b  0)

Figure 2: Generated sfBm sample paths for different values of the Hurst parameter
(a  0,b  1)
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Finally we simulate the smfBm trajectories and display them in Figures 1 and 2.
The simulation results with different values of H, a and b illustrate the main property of

smfBm: a large value of H corresponds to smoother sample paths. In other words, for smaller
values of H, the sample paths of a smfBm fluctuate more wildly. This is particularly illustrated
in Figure 2 for the generated sample paths of the sub-fractional Brownian motion (sfBm),
corresponding to the sub-mixed fractional Brownian motion (smfBm) with a  0 and b  1.
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