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Abstract. In this paper, we establish sufficient conditions for the existence and uniqueness of
mild solutions for semilinear stochastic functional differential equations with state-dependent
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point theorems.
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1. Introduction

This work is concerned with existence of mild solutions to the following stochastic
functional differential equations with state dependent delay

Dey(t) = Ay(D) +f(t,y(t— p(y(D))) +o(ty(t—p(y®)))dw(t), te J=[0,b],0 <a <1, (1)

yt) = ¢(t), tel[-r0], (2)
where D¢ is the standard Riemman-Liouville fractional derivative. E and K are separable
Hilbert spaces with the norms |.|le and |.|k respectively. A: D(A) c E — E is the
infinitesimal generator of a Cy semigroup {T(t)}wo On E, ¢ : [-r,0] — E a given continuous
function with ¢(0) = 0. For any function y defined on [-r,b] and any t € [0,b] we denote by y:
the element of C([—r, 0], E) defined by:

yt(e) = y(t + 0)1 0 [—r,O].
The functions f : Jx C([-r,0], E) - E and o : J x C([-1,0],E) - LY(K,E) are appropriate
mappings that are specified later. LY(K,E) denotes the space of all Q —Hilbert-Schmidt
operators from K into E, while p is a positive bounded continuous function on E. Letter r is the
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maximal delay defined by
r =sup p(x).
xeE

Stochastic functional differential equations with state-dependent delay appear frequently in
applications as model of equations and for this reason the study of this type of equations has
received great attention in the last years, see for instance [1, 5, 6, 8,13, 14, 22]. Also the study
of partial stochastic differential equations with state-dependent delay has recently been
initiated.

Stochastic differential equations of fractional order play a very important role in describing
some real world problems. For example some problems in physics, mechanics and other fields
can be described with the help of fractional differential equations, see [15, 19, 24, 25]. The
theory of stochastic differential equations of fractional order has recently received a lot of
attention and now constitutes a solid branch of mathematical analysis. In fact numerous
research papers and monographs have appeared devoted to fractional differential equations, for
example see [3, 7, 9, 16, 17, 20, 26] and [5, 22, 23].

Fractional calculus is a generalization of ordinary differentiation and integration to
arbitrary non integer order. The subject is as old as the differential calculus, and goes back to
time when Leibnitz and Newton invented differential calculus. The idea of fractional calculus
has been a subject of interest not only among mathematicians but also among physicists and
engineers. For some recent advances on fractional calculus, differential equations and
stochastic differential equations, the reader is referred to [2, 4, 5, 22, 23].

This paper is organized as follows. In Section 2 we introduce notations, definitions, and
preliminary facts which are used in the sequel. In Section 3 we give our main existence and
uniqueness results for problem (1)-(2).

2. Preliminaries

In this section, we introduce notation, definitions, and preliminary facts which are used
throughout this paper. Let (Q, F, {Fi}wo0, P) be a filtered complete probability space satisfying
the usual condition, which means that the filtration is a right continuous increasing family and
Fo contains all P-null sets. Let w= (Wi)=o be a Q-Wiener process defined on
(Q, F,{Fi}0,P) with the covariance operator Q such that trQ < «. We assume that there
exists a complete orthonormal system e,k > 1 in K, a bounded sequence of nonnegative real
numbers Ay such that Qex = Axek, k = 1,2,..., and a sequence Sk of independent Brownian
motions such that

WD),k = Y A (ene)f, ecKt>o.
k=1

Let LY = LZ(Q%K, E) be the space of all Hilbert-Schmidt operators from Q%K to E with
the inner product < ¢,¢ > 9 = tr[pQ¢.]. C(J,E) is the Banach space of all continuous

functions from J to E with the norm
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IYlleo = sup{Jly(®]]: t € J}.
Fory e C([-r,0],E) the norm of v is defined by

lwllc = sup<{lly(©@)I: 6 € [-r,0]},
while for ¢ € C([-r,0],E) the norm of ¢ is defined by

1910 = sup{ll¢(®)l: ¢  [-r,b]}.

Definition 2.1. A semigroup of class Cy is a one parameter family {T(t)}wo < £(E) satisfying
the conditions

(i) T(0) =1, (I is the identity operator on X),

(i) T(t+s) =T()T(s), Vst>0,

(iif) limp o T(t)X = X, V X Iin E,

when £(E) denotes the Banach space of bounded linear operators from E to E, and the
corresponding norm is denoted by ||. ||.

Definition 2.2. The infinitesimal generator A : D(A) c E — E of a Cy semigroup {T(t)} o0 on
a Banach space E is the operator

Ax =lim T(t){(—x’ for x € D(A)
™o

defined for every x in its domain

D(A) = {x € E| limp o 1O

exists}

Theorem 2.1. Let T(t)=o be a semigroup of class Co on E and let A be its infinitesimal
generator. Then

(i) t— |IT(®)] er is bounded on every compact interval [0, T],

(ii) Forall x € E, the functiont — T(t)x is continues on R+,

(111) T(t) is exponentially bounded ; i.e. there exist constants w € R and M > 1 such that

T < Mexp(wt), ¥V t>o.
Proposition 2.1. Let T(t)0 be a Co semigroup and let A be its infinitesimal generator. Then
(i) Foreveryx € Eandt > othere holds

lim L [ T(s)x ds = Tt
im F] Temds = Tox,

(ii) Foreveryx € E and I; T(s)x ds € D(A) there holds
A j ; T(s)x ds = T(t)x — X,

(ii) If x € D(A), then T(t)x € D(A) and
%T(t)x = T()AX = AT(Dx,

(iv) For every x € D(A),t > 0and s > 0 there holds
T(OxX = T(S)X = j: T(z)AX dr = j: AT(2)x dz.
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Remark 2.1. If T(t)=o is a semigroup of class Co of bounded linear operators with an
infinitesimal generator A, then it is unique.

Theorem 2.2. Let A be an infinitesimal generator of a Co semigroup T(t)o then
() D(A) = E,
(ii) A'is a closed linear operator.

Definition 2.3. Let A be a closed linear operator in E. The resolvent set p(A) of A is the set of
all complex numbers A for which Al —A is invertible, i.e. (A1 —A)~! is a bounded linear
operator in E . The family R(1;A) = (Al -A)7, 1 € p(A) of a bounded linear operator is
called the resolvent of A.

Theorem 2.3. A linear operator A is the infinitesimal generator of a Co semigroup T(t)eo if
and only if:

(i) Ais a closed operator and D(A) = E;

(ii) There exist constants w € R and M > 1 such that Ay < p(A) and for 1 € Ay, we have

R(A,A)" <—M _ vneN*,
| ( ) |£(E) (R(),)—W)n

For more details on the theory of Cy semigroups , we refer the reader to the books of
Goldstein [10] and Pazy [21]. Moreover, throughout this paper we adopt the following
definitions of fractional primitive and fractional derivative.

Definition [24, 20] 2.4. The Riemann Liouville fractional integral of order o € R*of a
function h : (0,b] — E is defined by

12 h(t) = ﬁ j;(t—s)a—lh(s)ds,

provided that the right hand side exists pointwise on (0, b], where T" is the gamma function.

Definition [24, 20] 2.5. The Riemann Liouville fractional derivative of order 0 < a < 1 of a
function h : (0,b] — E is defined by

apty - 1 d " ” _ d 1«
Deh(t) = r(l_a)aj.o(t—s) hs)ds = S137oho).

Theorem [11] 2.4. (The Banach contraction principle) Let E a Banach space, andf: E — E
be contractive. Then f has a unique fixed point.

Theorem [11] 2.5. (The nonlinear alternative of Leray-Schauder) Let E be a Banach space
and C c E be convex with 0 € C. Let F : C — C be a completely continuous operator. Then
either



Semilinear SFDEs of Fractional Order With State—Dependent Delay 25

(a) F has a fixed point,
or
(b) thesete = {x € C : x = AF(x),0 < A < 1} is unbounded.

3. Main Result

This section reports on our main existence results for problem (1)-(2). Before stating and
proving these results, we give the definition of the mild solution.

Definition 3.1. We say that a continuous function y : [-r,b] — E is a mild solution of
problem (1)-(2) if y(t) = ¢(t), t € [-r,0], and

YO = T [ =9 T=9) 16y~ py©)es

* ﬁ J ;(t —$)“IT(t—5) o(s,y(s — p(y(s))))dw(s), t  J.

In order to establish the result, we need the following assumptions.

(AL T®) <M, where M =sup | T(®)].

teJ
(A2)The function f : J x C([-r,0],E) — E satisfies the following properties.
(1) Foreacht € Jthe function f(t,.) : C([-r,0],E) — E is continuous.
(i) For each x € C the function f(.,x) : J — E is strongly measurable.
(iii) There exists a non negative constant k such that

|f(t,u) = f(t,v)||le < k|ju—=vV]|c, forteJ andevery u,ve C(-r,0],E).

(A3)The function o : J x C([-r,0],E) — LI(K, E) satisfies the following properties.
(i) Foreacht e Jthe functiono(t,.) : C([-r,0],E) — L(E,K) is continuous.

(i) For each x € C the function f(.,x) : J — L(E,K) is strongly measurable.

(iii) There exists a non negative constant M, such that

lo(t,u) —o(t,V)llg < Msllu—Vllc, for teJ andevery u,ve C([-r,0],E).

Our first existence result for problem (1)-(2) is based on the Banach contraction principle.

Theorem 3.1. Let the assumptions (Al)-(A2)-(A3) hold. Then there exists a unique mild
solution of problem (1)-(2) on [-r,b].

Proof. Transform the problem (1)-(2) into a fixed point problem. Consider the operator
F . C([-r,-b],E) — C([-r,—Db], E) defined by
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( o(b), ift e [-r,0],

__1 o
FyO® = < y(t)‘mfo(t—s) IT(t - 9)f(s,y(s — p(y(s))))ds + -

+ —r(la) j;(t—s)a-lT(t—s)o(s,y(s—p(y(S))))dW(S), ift < [0,b].

Let us define the iterates of operator F by
Frt=F F"l=FoF, (4)

and it will be sufficient to prove that 7" is a contraction operator for n sufficiently large. For
every x,y € C([-r,b],E) we have

(KM)" + (MsM)"

(O - F @M < Tha + 1) [y — 2| . (5)
Indeed,
[FY)®)-F2)Ole < F'E"a) — )L (s, y(s — p(y(5)))) —f(s, z(s — p(z(s))))lle ds

+ J.t (t=9)"lo(s,y(s = p(y(s)))) —o(s,z(s = p(a(s))) I Lg)ds)

<

F( ) j (t=9)*Hy(s-p(y(s)))-2(s-p(z(s))) Il cs

hr/I(M ) I (t=9)“Hly(s-p(y(9)))-2(s-p((s))) | cdls

. (kiMoM _ (kMM
—  al(a)  T'(a+1)
Therefore (5) is proved for n = 1. Assuming by induction that (5) is valid for n, then

t]ly-z[ t]ly-z|[ .

) ) KM (kM) ot
IO - FR@O1 < Fas sy -2l [ (- s ises

M — ‘ _g)a-1lgha
* Ty V2l [ o) iss

i+l 7 1
_ (k I\/l)n+ +(|V||V|G)n+ t(n+1)a||y_z||
C([n+1]a+1) .

and then (5) follows for n + 1. ]

(kM) (M, M)
I'(no+1)

contraction of operator F". Consequently F has a unique fixed point by the Banach contraction

th* < 1 illustrates the

Now, taking n sufficiently large in (5) such that
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principle, which gives rise to a unique mild solution to the problem (1)-(2). H

Next we give an existence result based upon the following nonlinear alternative of
Leray-Schauder applied to completely continuous operators. Here the following lemma is
essential to state and prove our main result.

Lemma [12] 3.1. Suppose b > 0, g > 0 and a(t) is a nonnegative function locally integrable
on0<t<T(someT< o), and suppose that u(t) is nonnegative and locally integrable on
0 <t<Twith

u(t) < a(t) + bj;(t— s)Fly(s)ds, 0<t<T.
Then

u(t) < a() + I Z (blf(ig) —s)ifla(s)ds, 0<t<T, (6)

and if a(t) = a, constant on 0 < t < T, then the inequality (6) reduces to
u(t) < agp(br'(p)th).

Proof. Let B¢(t) = bj;(t —s)F1g(s)ds, t > ofor locally integrable functions ¢. Then

n-1
u(t) < a(t) + Bu(t) implies that u(t) < »_ B¥a(t) + B"u(t) and
k=0
n (bre)” -
B'u(t) = J. T(p) ——22 (t-s)"1a(s)ds — Oasn — +ooforeacht e [0,T).
Thenforallt € [0,T)
n-1 n-1 0
u(t) < lim (Z Ba(t) + B”u(t)) < ) Bra(t) < a(t)+ »_ Bka(t)
n—oo k=0 k=1

<a(t) + I Z (blf (52 ;) — 5)iF1a(s)ds.

If a(t) = a, a constant, then

u(t) < a+a_[ Z (bl“r(ig) —5)if1ds

g e T

br(p)t”
<ay CHOU < oo,

n=0
where Eg is the function of Mittag-Leffler. |

Our main result reads as follows.
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Theorem 3.2. Let f : Jx C([-r,0],E) — E and o : J x C([-1,0], E) — L9 are continuous.
Assume that:

WIT®)| <M, where M =sup || T(®)].
(2) The semigroup {T(t)}tes its ?:ompact fort > 0.
(3) There exist functions p,q € C(J,R;) such that
[ftt,wle <p® +aq®)lull,, for each teJ, and each ue C([-rb],E).
(4) There exist functions p,q € C(J,R.) such that
llo(t, U)”Lg <p®)+4qM®|ull., for each teJ, and each ue C([-r,b],E).

Then the problem (1)-(2) has at least one mild solution on [-r, b].

Proof. Transform the problem (1)-(2) in to a fixed point problem. Consider the operator

F : C([-r,b], E) — C([-r,b], E), defined in the proof of theorem 3.1, to develop this proof
in four steps.

Step 1: Fis continuous.
Let {yn} be a sequence such thaty in C([-r,b], E).Then

1700 - FOOle = || 7k ([ €979 (s, yas - piyneds
+ [ (-9 1T 90(6.yn(s — Py ()W) )
(J a=92Ta- 9)fs.y(s - py©))es

F(a)
+ [ (-9 - 906y6 - pyENWE) ) B

= F(a) U (t=9)* LTt =9) (5, yn(s = p(yn(8))) —F(s,y(s = p(¥(s))) e ds

+_[O(t =) Tt =) llo(s,yn(s — p(yn(s)))) —o(s,y(s = p(y(SHN Lg)dS

= rlzlx) J ;“ = 9)*L[f(s,Yn(s — p(Yn(5)))) — (s, ¥(s — p(¥())))

+1(s,y(s = p(yn(8)))) —1(s,y(s — p(yn(s)))) e ds

’ rxx) I ;“ = 5)* Y 6(s,Yn(s — p(ya(s)))) — o (s,y(s — p(¥(3))))

+ 0(5,Y(s = p(¥n(s)))) —a(s,y(s = p(yn(s)))) |l gds
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()

j (t=)* (s, yn(s — p(Yn(s)))) —f(s,y(s — pyn(s))))llds

'E/' J (t=9)*If(s,y(s = p(yn(s)))) —f(s,y(s = p(y(s))))llds

I'(a)

()

M I (t=5)**o(s,yn(s = p(¥n($)))) —o(s,y(s — p(yn(s)))) I gds

'V' f (t—9)*o(s,y(s = p(ya(s)))) —a(s,y(s = p(y(s)) |l Lgds

29

Since f and o are a continuous functions, the continuity of p, and by the Lebesgue dominated
convergence theorem the second hand side of the above inequality tends to zero as n —

Thus

| F(yn) —FY)|lo — 0 as n — oo,

Step 2: F maps bounded sets into bounded sets.
It is enough to show that for any ( > 0O, there exists a positive constant 6 such that for each
y € By = {y € C([-r,b],E) :

_F()

IFY)Dlle

+

< _M
~ I'(a)
LM j‘(t_s)a—l(ms)+q<s>||y(s—p(y(s))))uc)ds
I'(a) Jo

lyllo < (},we have F(y) € Bs. Foreacht € Jwe have

H ﬁ J ;(t — ) T(t~ 9)f(s,y(s — p(¥(5))))ds
T [ =9 T = 9)0(sy(s— py(s))aws) H

% J ;“ =) f(s,y(s - p(¥(s)))) [l eds

n % I;(t —9)*Ha(s,y(s — p(y(s))) I gds

I;(t =9)“(p(s) + A [1y(s — p(y()))llc)ds

< 1“'2/(!:) I;(t—s)“lp(s)ds+ FIE/Ia) J;(t—s)“loq(s)ds
1y M [ o194
p(s)ds + (@) _[ (t—s)*1g(s)ds

< My, [ t-9)=tds+ F( AL dlqll [ - 5)*-ias

M (1pil + ) J (t-5)* 1O|S+F

()

Mg [ e-syeds+ ougal -9t

I'()
(1B + Ul ) f(t)"ds

F()
(a
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Mb*“ Mb* . .
SF((Hl) (Iplle + Cliglle) oD Bl + 0114l )

Wb’ : )
<oy (APl + 1Bll) + (e + 1)) =:3<en

Step 3: Fmaps bounded sets into equicontinuous sets in C([-r,b], E).
We consider B,as in Step 2. Let 71,72 € Jand 71 < 72. Thus if € > O0and € < 71 < TowWe
have

I7(y)(z2) = Fy)(z)ll= |l

r(la) j ;2[(” —$)*T(z2 = $)f(s,y(s — p(¥(s))))ds

N F(loz) :;2(12 —9)1T(12 = 5)a(s,Y(s — p(y(s))))dw(s)

- = (1a) .';1(11 —8)* 1T (z1 - 8)f(s,y(s — p(y(s))))ds

B F(la) .';1(“ =8)* ! T(r1 - 9)o(5,y(s — p(Y()))dw(s) |

ol T2 =9 (2= 5) - (1 =9 T - 9))|

I.y(s = pyEMlleds + [ iz =) T(r2 =) = (71 =) T(r1 - 9)]]|

If(s,y(s — p(y(s)))) [l eds + j: I(r2 = $)* 1 T(z2 = ) [[If(s,¥(s — p(y(s)))) | els)

+ ey UL w2 =91 T —9) = (11 =9 1T = 9]

lo(s,y(s = p(y(EN) g ds + f I[(z2 = $)* ' T(r2 = 8) = (z1 = ) T(z1 = 9)]|
lo(s,y(s = p(y(EN) g ds + j I(z2 = $)*T(r2 = s) || |0,y (s — p(Y()))) | LgCls)

Using the following semigroup identities
T(Tz —S) = T(Tz - 71 +€)T(T1 —G—S),
T(r1—-5) = T(r1 — € —95)T(e),

we get

| F(y)(z2) - F@) (@) e < <(“p||m+||b||w)r+(gguqnm+||q||m>>




Semilinear SFDEs of Fractional Order With State—Dependent Delay

(J, "Iz =9 = (71 = 9)* T (z1 - 5) | ds
+[ (@2 =) (e =5 = [T(r2 — 71+ €) = T(e)] | ds
+ I =9)t = (71 = 9)* ! T(z1 - 9)|ds
+[ @2 =) T(r1 - €= 9)[T(r2 — 71+ €) = T(e)][|ds
+] @2 =9 (2~ 5) | ds)

((||p|| A1) +edlall +Ial )M e
() (Io [(z2

T2 —r1+€) =T@ 2@ [, (r2—5)*ds
7 (@2 -9t = (ra = 5)*H]ds

+||T(T2 —-71+¢€)—T(e) ||£(E) IT1_€(7:2 — s)a—lds + J-:(TZ _ S)a—lds )

—8)*t — (71 —9)*1]ds

31

As 71 — 72 and e sufficiently small, the right-hand side of the above inequality tends to
zero. Since T(t) is a strongly continuous operator and the compactness of T(t) for t > 0 implies
the continuity in the uniform operator topology (see [21]). By the Arzela-Ascoli theorem it

suffices to show that F maps B, into a precompact set in E.

Let 0 <t < b be fixed and let € be a real number satisfying 0 < € < t. Fory € B,,, we

define

T(G) t—e o
Fet = T(a) I (t—s— ) T(t—s—e)f(s,y(s - p(y(s)))ds

L 1@
" T(a)

Since T(t) is a compact operator for t > 0 the set

Ye(®) = {F(W)®) 1y € By}
is precompact in E for every e, 0 < € < t. Moreover

[FY® - FOle = = r( ) I (t=s)* ' T(t - s)f(s,y(s — p(y(s))))ds

I (t—s—e)* T(t—s—e)a(s,y(s — p(y(s))))dw(s)

+ iy [yt 97T = 9)a(s,y(6 - py(s))dwCs)
_ﬁ Jy t=s =" Tt =5 - f(s.y(s - p(y(s)))ds

“Fey Jo =50 Tt =5~ o5, y(s ~ py©)NdWS) |

(7)
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a1
< r( )III (t—=9)*T(t-9)f(s,y(s — p(y(s))))ds

[} (=9 1T(t-9)f(s,y(s — p(y(s))))ds
=TT - 90 (5, (s~ p(y(9))dw(S)

+I:_€(t —$)* 1T (t - 5)o(s,Y(s — p(Y(s))))dw(s)

—f:)_e(t —5—6)*IT(t - s — )f(s,y(s — p(y(5))))ds

B I;—G(t —5—e)*IT(t—s—€)a(s,y(s — p(y(s))))dw(s) ||

< T ([ -9 -9 - (-5- 9 T -s- )|

(s, y(s = p(y(s))) [ ds + It It = 9)**T(t = 9) (s, y(s — p(y(s)))) I ds)

e )(j [(t=5)*1T(t—5) - (t—s — €)= T(t—s— )]

x lo(s,y(s — p(y())l g ds + _[t_e It =) T(t=9) |l lo(s,y(s — p(y(s))))l Lg0s)

< Bl #1810 Gt 1)) ([ - -5 s

+ : (t—s)eids)

B M((||p||w+IIDIILOE;i/i§IIQIIw+IIQIloo))( —(t- o)),

Therefore, the set Y(t) = {F(y)(t) : y € B,} is precompact in E. Hence the operator F is
completely continuous.

Step 4: Now, it remains to show that the set
E=4{yeC(-rbl,E):y=AF(y) foracertain 0<1<1} (8)

is bounded.
Lety € & be any element. Then, foreacht € J

Y - zm [ =9 T-9)6y(s - p(y©)))ds

I [ =9 T (= 5)0(s,y(5 ~ p(y($)))aw(s). )



Semilinear SFDEs of Fractional Order With State—Dependent Delay 33

Moreover

YOl = 127k [ (=94 Tt=5)its.y(s = py©))es

+ zﬁ j;(t —9)*T(t - $)a (s, (s — p(y(s))))dw(s)|

< % j;(t —5)*HIf(s,y(s — p(y(s))))lds
+ M f t (t—9)*o(s,y(s — p(y(s)))) Il g ds
I'(a) Jo ’ g

< R J ;“ — )= L((p(s) + P(S)) + (A(S) + G(9)) Iy(s — p(y(s))) s

< Mbe(IPll + IP]l) . Mliqll-- + lid]l-.)
- I'a+1) I'(a)

I;(t =) Hy(s = p(y(s)) I ds

Note that —r < s — p(y(s)) < sforeachs € Jand consider the function u defined by

u(t) = max{||y(s)||: -r<s<ty, teld (10)
Fort € [0,b]

Mb([IPlle + IPll) . Mgl + 1G00) [ et
u(t) < D + 0 | (=9 Lu(s)ds. (11)
An appl@tion of Lemma 3.1 inLll) yields
uty < MOAPLAPL) ¢ MAUGLAIGL) Fooyay < o

I'(a+1) I'(a)

Hence

IYlle < max{l¢llc, A}, Vy €&,

and the set £ is bounded. As a consequence of theorem 2.5, we deduce that the operator F has
a fixed point which is a mild solution of the problem (1)-(2). |

Next we give a uniqueness result for solutions of problem (1)-(2).

Theorem 3.3. Assume that the hypotheses of theorem 3.2 hold. Suppose moreover that there
exists a nonnegative constant K and M, such that

o [f(t,u) —f(t, V)| <Kllu-v|., forted, and every u,ve C([-r0],E),
e |o(t,u) —o(t,v)||Lg < Msllu-v|., forteld, and everyu,v e C([-r,0],E).
Then the problem (1)-(2) is uniquely solvable on [-r,b].
Proof. The existence of at least one integral solution y(t) of problem (1)-(2) is insured by

theorem 3.2. To prove the uniqueness of y(t), let z(t) be another solution of problem (1)-(2).
Then y(t) = z(t) = ¢(t),t € [-r,0], and, for each t € J we have
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ly® —z®lle = =~ r( ) f (t =) T(t - s)f(s,y(s — p(y(s))dt

N r(la) .O(t_s)a—lT(t—S)G(S,Y(S—P(Y(S))))dw(t)
1 (" - — -

-t J -9 IT(t - s)f(s, 2(s — p(z(s))))dt

3 F(la) ! (t—s)*1T(t—9s)o(s,z(s — p(z(s))))dw(t) |

= r( T | f (t =) T(t = 9)[f(s,y(s = p(¥(5)))) —F(s,2(s - p(z(s))))]ds
+ [ -9 9oy~ pYN) ~ 06,265~ pEE)NIAW)|
< FL [ =96 - p(S)) ~ 15,206 - pE@) s

+ % | ;(t =) Ha(s,y(s = p(y(s)))) —o(s,2(s = p((s)) |l gds

< LT [ =9Iyt p(y(s)) —2(s = pe(&))] ot

Now, using lemma 3.1 with an a(t) = 0 yields the uniqueness of y(t). |
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