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Abstract. This paper studies necessary as well as sufficient conditions of optimality for a
general class of controlled diffusions with Jumps. The state of the system is described by a
nonlinear stochastic differential equation, driven by a Poisson random measure and an
independent Brownian motion. A discussion on verification results is carried out, by using
recent results on the relationship between the adjoint processes and the value function, in
terms of viscosity solutions and the associated super-differentials. In a second step, we prove
the nonsmooth version of the necessity part of the verification theorem in terms of
sub-differentials, rather than derivatives of the value function.
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1. Introduction

In this paper we study stochastic control models which are driven by a stochastic
differential equation (SDE) with jumps, i.e. the dynamics of the controlled system is described

by

dx(t) = b(t,x(t),u(t))dt + o(t,x(t),u(t))dB(t) + IE B x(t-),u(t), e)N(dt, de), W

X(s) = V.

The objective is to minimize the expected cost functional, that is earned during a finite time
horizon,

i
I = B [t x@,umdt+ gx(m) |, @

over the set of the admissible controls u. We shall give a more precise formulation of the
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problem and of the hypothesis on the data in the next sections. Here let us briefly survey the
stochastic background for the model. As for the Brownian motion version, a major approach to
studying this kind of stochastic control problems, is the Bellman dynamic programming
principle. The associated Hamilton-Jacobi-Bellman (HJB) equation is a nonlinear second order
parabolic integrodifferential equation. Pham studied in [16] a mixed optimal stopping and
stochastic control of jump diffusion processes by using the viscosity solutions approach. Some
verification theorems of various types of problems for systems governed by this kind of SDEs
are discussed in gksendal and Sulem [15]. The stochastic maximum principle is another
powerful tool for solving stochastic control problems. Some results that cover the controlled
jump diffusion processes are discussed in [2], [11], and [18]. Necessary and sufficient
conditions of optimality for partial information control problems are given in [2]. In [11], the
sufficient maximum principle and its link with the dynamic programming principle are
discussed. The second order stochastic maximum principle for optimal controls of nonlinear
dynamics, with jump and convex state constraints, was developed via a spike variation method,
by Tang and Li [18]. These underlying conditions are described in terms of two adjoint
processes, which are linear backward SDEs. Such equations have important applications in
hedging problems, see e.g. [10]. Existence and uniqueness of solutions to BSDE with jumps
and nonlinear coefficients have been addressed by Tang and Li [18], and by Barles et al. [4].
The link with integral-partial differential equations is studied in [4]. For a discrete time
approximation of decoupled FBSDE with jumps, the reader is referred to Bouchard and Elie
[6].

Under certain differentiability conditions the relationship between the maximum principle
and dynamic programming is essentially the relationship between the solution of the adjoint
equation, with the spatial gradient of the value function evaluated along the optimal trajectory,
see e.g. [19], in the classical case. For diffusions with jumps, the relationship between the
maximum principle and dynamic programming, was investigated by Framstad et al. in [11].
The smoothness conditions do not hold in general and are difficult to verify a priori. This has
led to the development of the notion of viscosity solution of HIB equations, see [19]. However,
there is a vast literature dealing with the study of the viscosity solutions of integral-partial
differential equations in different contexts. For more details the reader is referred to [1], [5].

The study of the characterization of optimal control by verification theorems is one of the
fundamental tasks of stochastic control theory. When the value function is smooth, it is based
on the fact that the value function is the maximum solution of the HJB equation and the
maximum condition (31). But in many cases the value function is not differentiable. So the
verification theorem does not apply. Without assuming any differentiability conditions, the
problem will be overcome by the viscosity solutions theory to the HIB equation. See [12], [13],
[14], [19], [21], and [20] for more detail.

The organization of the paper is as follows, in the second section, we formulate the
problem and give the notations used throughout the paper. In sections 3 and 4, we give the
stochastic maximum principle (SMP) as well as the dynamic programming principle (DPP) for
systems governed by this kind of SDE. Finally, without assuming the smoothness of the value
function, we derive the necessary and sufficient conditions for optimality, by using some
relationships between the value function and the adjoint processes. These relationships are
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presented via the "super- and sub-differential” which is related to the viscosity solution.

2. Problem Formulation

Let (Q,F, (Ft).[P) be a probability space such that Fo contains the P —null sets,

Fr = Fand (Ft). , that satisfies the usual assumptions. We assume that, (Ft) ., is generated
by a d —dimensional standard Brownian motion B and an independent Poisson measure N on
[0,T]xE , where E = R™{0} for some m > 1. We denote by (F?), (resp. (FV),.,) the
[P —augmentation of the natural filtration of B (resp. N). Obviously, we have

Fi=of [, 0y N@r.de)is < LA € BE) | VolBsis < UV A,

where N denotes the totality of v —null sets, and o1 \V o2 denotes the o —field generated by
o1 U o2. We assume the compensator of N has the form u(dt,de) = v(de)dt for some positive
and o —finite Lévy measure v on E, endowed with its Borel measure B(E). Also we suppose
that IE 1 A le|?v(de) < oo and define the measure P® u on

(Qx[0,T] xE,F x B([0,T])xB(E)) by
P® uG) = E[H[O,M 1o(,t,e)u(dt, de)] for G e F x B([0, T])xB(E).

t=<T

This is called the measure generated by p. Then write N(dt, de) = N(dt,de) — v(de)dt for the
compensated jump martingale random measure of N.

Notation. Any element x € R" will be identified to a column vector with an n-th component,
and the norm |x| = |[X1| +...+Xa|. The scalar product of any two vectors x and y on R" is
denoted by x.y. We denote by MT the transpose of any vector or matrix M. For a function h,
we denote by hy (resp. hyx) the gradient or Jacobian (resp. the Hessian) of h with respect to the
variable x. C always represents a generic constant, which can be different from line to line.
Additionally givens < t,

o L2(E;RM) or LZ is the set of square integrable functions I(.) : E - R" such that

Hl(e) ”i‘z,(E;[R”) = IE||(6)|2v(de) < 00,

o L2([s,t];RM) the set of R" —valued adapted cadlag processes P(.) such that

1
2
IPCO 2wy = E[ sup |P(r)|2J < oo,
refs,t]
o M?([s,t];RM) is the set of progressively measurable R" —valued processes Q(. ) such that

1
2

100 yezgsgany = B[ [ 1Q)Per]* < e

o L2([s,t];R") is the set of B([0,T] x Q) ® B(E) measurable maps R : [0,T] x Qx E » R"
such that

IRC g = B[ [ [ RGe)Pvceyor ] <on

Definition 2.1. Let T be a strictly positive real number and U is a nonempty subset of R". An
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admissible control is defined as a function u : [0,T] x Q — U which is Borel measurable and
F —predictable, such that, the SDE (3) has a unique solution, and u € U.

Let us consider the following stochastic control problem.
For u(.) € U, we assume that the state x(. ), of a controlled jump diffusion in R" , is described,
fort € [0, T], by the following stochastic differential equation

dx(t) = b(t,x(t),u(t))dt + o(t, x(t), u(t) )dB; + j i B(t, x(t—),u(t),e)N(dt, de), @
X(s) =Y,

where (s,y) € [0,T) x R"be given, representing the initial time and initial state respectively, of
the system. As before N(dt, de) = (Nl(dt, de),... ,N|(dt, de))T,

and Nj(dt,de) = N;(dt,de) — vj(de)dt, 1 < j < n.
Suppose next that the cost functional has the form

J(u) = EU:f(t,x(t),u(t))dH g(x(T))J, foru(.) € U, (4)

where E denotes expectation with respect to P. Here
b:[0,T]IxR"xU - R" 6 :[0,T]xR"xU - R™ B:[0,T]xR"xUxE - R",
f:[0,T]xR"xU->Randg: R" > R, are measurable functions.

The objective of the optimality problem, is to minimize the functional J(u(.)) over all
u(.) e Y, i.e. we seek u*(.) such that J(u*(.)) = infy ), J(U(.)). Any admissible control
u*(.) that achieves the minimum is called an optimal control, and it implies an associated
optimal state evolution x*(.) from (3). Here (x*(.),u*(.)) is an optimal solution. Finally, we
introduce the value function associated to the control problem by

V(t,x) = inf JU(.)), V(LX) € [0,T) x R",
u(.)ed (5)
V(T,x) = 9(X).

3. The Stochastic Maximum Principle

It is well known that the maximum principle for a stochastic optimal control problem by
which a necessary or a sufficient condition of optimality can be realized, involves the adjoint
processes which solves the corresponding adjoint equation. In fact, the adjoint equation is in
general a linear backward stochastic differential equation (BSDE in short) for which a terminal
condition on the state has been specified. In this section, we give second-order necessary
optimality condition for problem (3) — (4). Note that, general statements on the maximum
principle were made in [18].

At this point, we need the following basic assumptions
(H1) For each (t,x,u,e) € [0,T] xR" x U x E, The maps b,o, and f are twice continuously
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differentiable in x and all derivatives are bounded. There exists a constant M > 0 such that, for
h=Db,o

h(t,x,u) = h(t,x',u)| + | Bt x,u,e) = Bt X', u,e) || ;, < M Ix=X'], (6)
[Nx(t, X, u) = hy (X )| + 1 Bx(t X, u,8) = Bx(t X, u,e) [l ., < M x =X, @)
I(t, x, u)| + |Bt X, u,e)| < M(L+[x]). Vt e [0,T], x,X' & R". (8)

(H2) For each (t,x,u) € [0,T]xR"xU, The maps f and g are twice continuously
differentiable in x and all derivatives are bounded. There exists a constant M > 0 such that

[f(t,x, u) — £t X, u)[ + [g(x) —g(x)| < M [x = X'|, 9
|fx(t,X,U) - fx(t,X/,U)| + |gX(X) - gX(X,)| = M |X - X/l’ (10)
[fCtx, W) +19()| < ML + [x|). (11)

Remark 3.1. Under the above hypotheses, the SDE (3) has a unique strong solution, and by
standard arguments, see e.g. [16], it is easy to show that for any p > 0,

E[sup |x(t)|'°} < o,

0<t<T
and the cost functional (4) is well defined from ¢/ into R.

The maximum principle involves an admissible pair (u*(.),x*(.)) and a pair of adjoint
variables (v (.),#(.), v(.,.)) and (W(.),®(.),I'(.,.)) associated with (u*(.),x*(.)). Here w(.)
is the unique solution to the first-order adjoint equation

P
dy(t) = — (bx(t, X" (1), u™ (1)) Tw (1) + ox(t, X" (1), u™ (1) " (1)
+jE Bt x* (), u* (1), e) Ty (t, )v(de)
+ fy(t, x*(t),u*(t)))dt + ¢(t)dB + IE y(t,e)N(dt, de),
L v = —gx(x (M),
and W(.) is the unique solution to the second-order adjoint equation

d¥(t) = —(bx(t,X*(t),U*(t))T‘P(t) + W(t). bx(t,x* (1), u" (1))

(12)

Lo (X (1), U (1) TP ()ox(t X (1), u* (1))

+or (X (1), U (1) TO() + D(L). o (L, X* (1), U* (1))

+jE By(t,x* (1), u* (1), ) T(T(L, €) + F(1)) Bx(t, X* (1), u* (1), e )v(de) (13)
+IE(F(t,e).ﬁx(t,x*(t), u*(t),e) + Bx(t,x*(t), u*(t),e)TF(t,e))v(de))dt

+Ha(L X (0,0 0.y (0.6(0), 7t e)dt + 2B+ [Tt e)N(at, de),
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F(T) = —gu(x*(T)).

Note that under assumptions (H1) — (H2), the linear BSDEs (12) and (13) admit unique
Fr-adapted solutions (v, ¢,7) € R" x R™ x R" and (¥, ®,T) € R™" x (R™")% x R™" where
D = ((I),—, forj = 1,..,d> and ®; € R™" with w and ¥ being cadlag processes. Moreover,
since the coefficients by, o, Bx, fx, Ox, Dxx, Oxx, Bxx, fxx @nd gxx are bounded, we deduce from
standard arguments that, there exists a constant C, independent of (x,u), such that the solutions
of (12) and (13) have the following estimates

2 2 2
||l//( ) ” L2([s,T;R™) + ||¢( ) ” M2([s,T];R™d) + ”7( v ) ” L2([sTI,RM) < C1

||\P( ) || EZ([S,T];RW“) + ”(DJ( ) ” iAZ([s,T];R”X”) + ||F( ). ) ” i%([S,T];IR“X”) S C, fOI’j = 1, sy d
Define the usual Hamiltonian for (t,x,u,p,q,X) € [s,T] x R" x U x R" x R™d x R", by
H(t, x,u,p,q,X) = —f(t,x,u) + pb(t,x,u) + qo(t,x,u) + jE X(e)p(t,x,u,e)v(de). (14)

Furthermore, we define the H —function corresponding to a given admissible pair (x,u) as
follows

H(tx,U) = Ht X, u,p (), (), 7(te)) — ot x,u) "W(t)o(t,x* (. ),u*(.))
+ %o(t,x,u)T‘P(t)o(t,x,u) - jE(ﬁ(t,x,u,e)T(\P(t) +y(te)Bx*(),u*(.),e)

—%,B(t,x, u,e)T(P(L) + 7(t )AL, u,e))v(de), (15)

for (t,x,u) € [s,T] x R" x U, where the processes w(t),#(t),y(t,e), and W(t) are determined
by the adjoint equations (12) and (13) corresponding to (x*(.),u*(.)). An immediate
consequence of theorem 2. 1. in [18] is the theorem that follows.

Theorem 3.1. Let (H1) — (H2) hold and let (x*(.),u*(.)) be an optimal pair of problem
(3),(4). Then there are pairs of processes

W), () r(,.)) € L2([s, TERM) x M?([s, T;R™) x L2([s, T];R™),
(P, DC),T(,)) € L[S, THR™) x (M2([s, TR™™) x L2([s, T];R™),

where (y(.),¢(.),y(.,.)) and (W¥(.),®(.),I'(.,.)) are the solutions to (12) and (13)
respectively, corresponding to (x*(.),u*(.)), such that the following maximum condition
holds

H(t,x*(t),u*(t)) =max H(t,x*(t),u), a.e. t, P—a.s.
uel

4. Relation to Dynamic Programming

In a jump-diffusion setting, the connection between the SMP and DPP was reported in
Framstad et al. [11]. Moreover,Theorem 2.1 of [11] says that if V(.,.) € C*3([0,T] x R"M),
then the relationship between the value function (5) of the control problem (3),(4) and the
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adjoint variable (v (.),¢(.),7(.,.)) along an optimal solution (x*(.),u*(.)) is given by

v() = Vutx (1),
¢() = V(X" (0)o(tx*(1),u*(1)),
y(o) = V(X (t=) + rt,x*(t=),u*(t)),e) + Vx(t,X*(1)).

Unfortunately, the HIB equation (20) does not necessarily admit smooth solutions.
Without assuming any differentiability conditions the connection between the DPP and SMP is
proved in [13] by using the viscosity solution theory of general nonlinear PDE. In [13] all the
derivatives involved are replaced by the so-called superdifferentials and subdifferentials of the
value function. In this section, we recall some related concepts and results in the theory of
viscosity solution to the generalized Hamilton-Jacobi-Bellman equations to impose the
following conditions
(H3) b, o,r are uniformly continuous in (t,x,u), and there exists a constant M > 0 such that,
forh =b,o

In(t,x,u) —h(t,x",u)] + | Bt x,u,e) = Bt X", u',e) |l , < M(X = X'| +|u—u’]), (16)

In(t,x, w| + Bt xue)ll 2 < ML +[x]), Vt € [0,T], x,x" € R"u,u" € U. 17)
(H4) f,g are uniformly continuous in (t,x,u). There exists a constant M > 0 and an increasing
continuous function 9 : [0,0) x [0,0) — [0,00) which satisfies 3(r,0) = 0, Vr > 0, such that

[f(tx,u) = f(t, X", u)[ +|g(x) —g(x )| < S(x| V X'|, [x = x"]) (18)

f(t,0,u)],]g(0)| < M, Vt € [0, T],x,x' € R",u € U. (19)
The standard approach adopted in the literature to determine an optimal control is to solve
the HJB equation
=Vi(t,x) +sup G(t,x,u,-V(t,x),-Vx(t,X),-Vx(t,x)) = 0, (20)
ueU
where the generalized Hamiltonian function, associated with a function ¢, is defined by

G(t, X, U, (t,X), x(t,X), oxx(t, X)) = @x(t,x).b(t,x,u) + %tr(goxx(t,x)o(t,x,u)o(t,x,u)T)

—f(t,x,u) - IE {o(t,x + B(t,x,u,e)) — o(t,X) — ox(t,X). B(t,X,u,e)}v(de). (21)

The discussion we shall give in this section follows the same lines as of that one given in
[13]. Hence it would be possible to replace the smoothness assumption by a weaker one. To
this end we start with the definition of viscosity solutions of the HIB equation (20).

Definition 4.1. (i) A function W € C([0,T] x R") is called a viscosity subsolution of (20) if
W(T,x) < g(x),vx € R", and for any test function ¢ e C?([0,T] x R"), whenever W — ¢
attains a global maximum at (t,x) € [0,T) x R", then

— oi(t,x) +sup G(t,x,u,—o(t,X), —x(t,X), —px(t,x)) <0,

ueU

(i) A function W e C([0,T]xR") is called a viscosity supersolution of (4.5) if
V(T,X) > g(x),vx € R", and for any test function y e C*?([0,T] x R"), whenever W — y
attains a global minimum at (t,x) € [0,T] x R", then

— xi(t,x) +sup G(t,x,u,—x (t,x), —xx(t,x), —xxx(t,x)) > 0,

ueU
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(iii) If W € C([0, T] x RM) is both a viscosity subsolution and a viscosity supersolution of (4.5),
then it is called a viscosity solution of (20).

In proving the uniqueness result for a viscosity solution of second order equations, it is
convenient to give an intrinsic characterization of viscosity solutions. Here we need to recall
the notion of parabolic semijets as introduced in [9].

Given W € C([0,T] x R") and (t',x") € [0,T) x R", the right parabolic superjet of W at
(t',x") is the set triple

DEEW(E,X') = {(@,p, Q) € R x R" x R™MW(t,x) < W(t',x') +q(t—t') +p.(x = x')
+ 1 =x)Px=x)+o(jt—t'|+x=X|"), ast | ', x > X'}. (22)
Similarly, we consider the right parabolic subjet of W at (s,y) by the set triple
DWW, X') = {(@,p, Q) € R x R" x R™MW(t,x) > W(t',x') +q(t—t') +p.(x = x')
+ 2 =x)Px=x)+o(jt-t'|+x=X|"), ast | ', x > X'}. (23)

According to standard estimates of the theory of SDEs, the assumptions (H3) — (H4) on the
coefficient functions guarantee the fulfillment of the following results.

Proposition 4.1. Let V € C([0,T] x R") be a value function. then there exist increasing
continuous functions 93 : [0,00) - [0,0) and 3, : [0,0) x [0,0) — [0,0) which, satisfies
32(r,0) = 0, Vr > 0, such that

V(s,y) < 9u(lyD, V(s,y) € [0,T) xRT, (24)
V(s,y) = V(SLYDl < Syl VIYEIY =Y [+Is =8, V(s,y).(s"y) € [0,T) xR™. (25)

The next result is the existence and uniqueness of a viscosity solution to the generalized
HJB equation (20).

Theorem 4.1. Suppose that (H3) — (H4) hold, then the following equivalent results also hold.
(1) The value function V € C([0,T] x R") defined by (5) is the unique viscosity solution of the
HJB equation (20) in the class of functions satisfying (24) and (25).

(ii) The value function V € C([0,T] x R") is the unique function that satisfies (24), (25) and
the following. For all (t,x) € [0,T) x R",

— g +sup G(t,x,u,—o(t,x),—p,—P) < 0,V(q,p,P) € D5 V(t,x), (26)
ueyU

—q+sup G(t,x,u,—x(t,x),—p,—P) > 0,Y(q,p,P) € DE5V(t,x), (27)
ueU

with the condition V(T,x) =g(x). Here ¢ and y e CY?([0,T]xR"), such that
o(s,y) > V(s,y) and x(s,y) < V(s,¥), V(s,y) = (t,x) € [t,T] x R",

Proof. This theorem can be sorted out from [13]. |
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Now we can present a technical lemma needed later in this study; see Zhou et al. [20] for
its proof.

Lemma4.l. Letv € C([0,T] x R™) be a given function that satisfies
vt x) = vt X)) < c(jt=t]7 +x-x1).

For any (to,Xo) € [O!T) x R", if (plq!Q) € Da,xv(tO!XO) (resp., (prqu) € Df+,xv(t0;X0));
then there exists a function ¢ : [to, T] x R" - R satisfying

1) ¢ € C([to, T} x R") N CH2((to, T] x RM),
2) o(to,Xo0) = V(to,Xo) and ¢(t,x) > v(t,x) (resp., o(t,x) < v(t,x)) for any (t,x) # (to,Xo),
3) lim  @i«(t,x) =p, where |[x —Xo| < N|t—t’|% for any fixed N > 0, ¢x(to,X0) =q and

t>tp+,X->Xg

oxx(to, X0) = Q. )
4) lpt(t,x)] < Cz(1+IX—Xo|/|t—to|?), V(t,X) € (to, T] xR,
5) |ox(t,X) | + [@xx (£, X)| < CA + x| + [x|? + [X|®), V(t,x) € [to, T] x R,

Associated with an optimal pair (x*(.),u*(.)), with a corresponding adjoint processes
satisfying (14) and (15), we define a G —function, where G : [0,T] x R" x U — R such that

g(t,x,u) == H(t,x,u) + %tr(J.E F(t,e)ﬁ(t,x*(t),u*(t),e)ﬁ(t,x*(t),u*(t),e)Tv(de)), (28)

where the H —function is defined in the section 3. The relationship between the SMP and DPP
is established through the following theorem.

Theorem 4.2. Suppose that (H3) — (H4) hold and let (s,y) € [0,T) x R" be fixed. Let (u*,x*)
be an optimal pair for the present stochastic optimal control problem. Let (w(.),¢(.),7(.,.))
and (W(.),®(.),I'(.,.)) be first-order and second-order adjoint processes, respectively. Then

[G(t,x*(t),u*(t)),0) x {-y(t)} x [~¥(t),0) € DEXV(L,x*(t)), a.e.t € [s, T, P—as. (29)
DAV, X* (1)) € [—o0, G(t, x* (1), u* (1)) x {—y ()} x [-o0, ¥(t)), a.e.t € [5,T],P—a.s. (30)

Proof. This result is just Theorem 3.2. in [13]. |

5. The Main Results

The classical verification theorem is of significant importance in the DPP. It says that if an
admissible control satisfies the maximum condition, then the control is indeed optimal for the
stochastic control problem. However, this theorem is based on the assumption that the value
function is smooth. But this smoothness assumption should not necessarily always hold, as
illustrated in example 5. 1.

Without assuming any differentiability of the value function, it turns out that the viscosity
solution theory, provides an excellent framework to deal with the problem.

Theorem 5.1. Suppose that (H3) — (H4) hold and let W € C%?([0,T] x R™) be a solution of
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the HJIB equation (20). Then W(s,y) <Ju(.)), Vu(.) e U, (syy) €[0,T)xR"
Furthermore, if there exists an admissible control u*(.) such that

Wi(t,x*(t)) = max G(t,x*(t),u,-W(t,x*(t)),-Wx(t,x*(t)),-Wxx(t,x*(1))),

ueU
= G(t,x* (1), u™ (1), -W(t,x* (), ~Wx(t,x* () ), ~-Wy(t, X (1) )). (31)
Then
W(s,y) = J(u*(.)).

More specifically, (31) gives both the necessary and sufficient condition for a given
admissible pair (x*(.),u*(.)) to be optimal.

Example 5.1. We now give an example where the verification theorem 5.1. does not hold.
Consider the SDE

dx(t) = x®u(t)dt + x()dB(t) + x(t —)u®)N(dt), t e [s, T],
X(s) =Y.

Here N is a Poisson process with the intensity Adt and N(dt) = N(dt) — Adt, (A > 0),as the
compensated martingale measure, with u € [0,1], and the cost function J(u(.)) = E[-x(T)].
The HJB equation is

Wi (t,x) — AW(t,x) — %XZWXX(I,X) +sup {(1— )W (t,x)xu + AW(t,x(1 +u))}

O=<u<1

(32)

=0,te[sT],
W(T,x) = —X.

Its unique viscosity solution is

Wit) - { X ifx<O0,

—xe™t jifx > 0.

For x = 0, W is differentiable and satisfies the HIB equation. If we consider an admissible
pair (x*(.),u*(.))= (0,0), then condition (31) can not tell if the pair is optimal, since
Wi (t,x*(t)) does not exist on the entire trajectory x*(.).

If the value function is not differentiable, equation (20) should be interpreted in a weaker
sense, then the result (31) does not apply. Adapting the notion of viscosity solutions, we can
derive the nonsmooth version of theorem 5.1. by using the fact that, the value function is the
unique viscosity solution to the generalized HIB equation (20), and to theorem 4.2.

First, let us present a nonsmooth version of the necessity part of theorem 5.1. For this we
need the following abbreviations: For |, = b,o,f,by,0x,fx, and |, = B, Bx, we define
1 (t, x*(t),u*(t)) = I5(t), and lo(t,x*(t),u*(t),e) = I5(t,e).
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Proposition 5.1. Suppose that (H1) — (H4) hold and let (s,y) € [0,T) x R" be fixed. Let
(x*(.),u*(.)) be the optimal pair of the stochastic optimal control (3), (4). Let
(w(.),6(),y(.,.))and (Y(.),®(.),I'(.,.)) be first-order and second-order adjoint processes,
respectively, thena.e. t € [s,T], P —a.s.

0 < r(o* (V™Y - Yo" OD-3tr( PO [_p o)) v(ce))
# (X ® + B (1) ot X () + {y () + 7t )} (1, e))v(de)

where
@ € CL2([0,T] x RM), such that o(t',x') > V(t',x"), V(t',x) = (t,X) € [5,T] x R".

Proof. By (29) and by the fact that V is the viscosity solution of the HIJB equation (20) it
follows, on one hand, that
G(t,x*(t),u*(t)) >sup G(t,x*(t),u*(t),—o(t,x*(1)),w(t),¥()), a.e. t € [s,T], P—a.s.
ueU

On the other hand, according to (28) we observe that
Gt x* (1), u*(t)) = G(t,x*(0),u™(t), —o(t,x* (1)), y (1), ¥ (1))

e OO - Yo" O)) - (¥ [_peepee)vde))
[ 0x @ + B (1)~ ot X ©) + WD) + 7(t.e)}. B (1,€))v(de).

Then, the required result directly follows. |

The next theorem establishes a sufficient condition for optimality in terms of a system of
PDEs. This result is therefore similar to the verification theorem in [13]. The main difference
consists in the fact that in this case we have to work under relationship (29).

Theorem 5.2. Suppose that (H1) — (H4) hold. Let W € C([0,T] x R™) be the unique viscosity
solution of the HJB equation (20). Then

W(s,y) < J(u(.)), Vu(.) € U. (33)
Furthermore, let u*(.) be an admissible control and x*(.) the corresponding solution of the
state SDE (3). Let (w(.),¢(.),7(.,.)) and (W¥(.),®(.),I'(.,.)) be first-order and
second-order adjoint processes, respectively. If fora.e. t € [s,T]

G(t,x*(t),u*(t)) = G(t,x*(t),u*(t),—pt,x* (1)), y(t), ¥(t)), P-a.s., (34)
where ¢ € CY2([0,T] x RM), such that o(t',x") > W(t',x"), V(' x") = (t,x) € [5,T] x R".
Then (x*(.),u*(.)) is an optimal pair for (s,y).

Proof. The conclusion (33) is clear, because W coincides with the value function due to the
uniqueness of the viscosity solution to the HIB equation. Fix t € [s,T] so as the conditions of
theorem 5.2 are satisfied at t for all @ € Qo, and P(Qo) = 1. Then fix o € Qp so as the
regular conditional probability P(.|F? )(w), given F3, is well defined on (Qo, F). The space is
now equipped with a new filtration {f}}re[tﬂ and the control process is adapted to this new
filtration. Since (G(t,x*(t),u*(t)),—w(t),~¥(t)) € DLAV(t,x*(t)), there exists a ¢ which
satisfies the conditions of lemma 4.1. Therefore for h > 0 we obtain by Ito’s formula
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W(t + h,x*(t+h)) = W(t,x* (1)) < o(t+h,x*(t+h)) — p(t,x*(t))

— I:+h((pt(r,x*(r)) + @x(r,x*(r))bx(r) + %o;(r)T(pXX(r,x*(r))g;g(r))dr
# [ ot o8+ [ [ Lok )+ p(re)) - prxe(r -)) Niar de)

+ .':+h J‘E[(p(r,x*(r) L B(r,e)) — o(r,x*(F)) — ox(r, x* (1) B2 (r,e)]v(de)dr. (35)
Now we calculate, for any fixed N > 0,
L[ [ 4ourx (1) = Gt x (0,07 @) AN | = 11(N,h) + 12(N,h),

where the processes 11(N, h), 12(N, h) are respectively given by

1 t+h
) = £8] [ o) - G ©,ur )1

Lari7 |,
Ix*(r)—x*(t)[>N(r—t| 2

_ l t+h i ~ . . :|
IZ(N’h) ) hE|:J.t {q)t(r’x (r)) g(t’x (t),U (t))}llx*(r)—x*(t)ISNlr—q%drlﬁ .

For fixed N > 0, it can be easily deduced from lemma 4. 1. that
sup  {ei(r,x*(r)) = G(t,x*(t),u*(t))} - 0,ash - 0+P-a.s.,

t<r<t+h

on {|x*(r) —-X*(1)| < N|r—t|%}. Thus we conclude by the dominated convergence theorem

that 1,(N,h) — 0 as h - 0 + for each fixed N. On the other hand, from standard estimates in

the theory of SDEs, there are constants C, C(a) > 0, independent of t, such that

E[[x*(r) = x*®)|F¢ ] < CJr —t|, ¥r > t, and sup E[[x*(N|*|7% ] < C(a), Va > 1. Thus, it
S<r<T

follows from the Schwartz and Tschebyshev inequalities that

11(N,h) < % fhE[kpt(r,x*(r)) - Gtx @, )R ]

P[Ix*(r) - x* ()] > N|r—t|%|f?]%dr,

<< - Ouniformlyinh > 0asN - .

This proves that
+h
%EU: <pt(r,x*(r))dr|f?J - E[G(t,x*(t),u*(t))|FE], ash - 0 +.

Moreover, due to lemma 4.1, and from the dominated convergence theorem we get by sending
htoO+



Optimality Conditions by Means of the Generalized HIB Equation 57

lim -LE[ [ x(rx (M)bi (1) + 05 (0T ou(r, X" ()3 (1)
ho0+ t

+ IE[co(r,x*m +B(r,e)) — (r,x*(r)) - cox(r,X*(r))ﬁi(r,6)]V(de)}dr|f?]
= E[-y()bi(t) — Lo () ()i (L)
+ j Lot x () + Br(t.6)) — o(t X" (1) + y (5L, &) Iv(de)| 7 ]

and
lim LE[ [ ndi7 | = Bl O]

h
h—-0+
The last results, together with (35), are the tools we need to get the following inequality

lim sup %E[W(ht h,x*(t+h)) — W(t x* (1) 73]
h-0

< B[G(L X (0.0 (1) -y (OB (0) -~ 305 O (D05 (D)
+ [ Tt @ + 7)) - ot x ) + w7t vl | (36)

Integrate, while interchanging expectation and integration, to obtain, by taking the expectation
conditioned to 73 ,

EW(T - &,x*(T-¢))] - W(s,y)

_ Ih'fg % :+h WL, x*(t))dt — j jh W(t,x*(t))dt}
i 1 [ rT—&+h T—¢ s+h

=lim 8| [ W(t,x*(t))dt—L+h W(t,x*(t))dt—L W(t,x*(t))dt:|,
. 1 [ ¢ T—¢+h T—¢

=lim 8| [ W(t,x*(t))dt—L W(t,x*(t))dt}

— lim TSE—%E[W(Hh,x*(t+h))—W(t,x*(t))m]}dt.
h-0 *s -

From Fatou’s lemma and (36), it follows that
E[W(T —&x*(T—-¢))] - W(s,y)

< T E[Iim sup +E[W(t+h,x*(t+h)) — W(t,x*(1))| 73] Jdt,

s h-0

< LT E[G(t, x*(t),u*(t)) — ()b (t) — Los () ¥ (t)ox(t)

+ JE[Q)(LX*(U +pr(te)) - o(tx* (1) + y()Br(t.e)]v(de) }dt-

Since W is continuous and W(T,x5) = g(x3), it follows, from the condition (34) and the
arbitrariness of ¢, that
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E[g(x*(T)] - W(s.y)
T
= L E[G(t, X" (1), u™ (1), ~p(t,x" (1)), (1), ¥ (1)) — w (DB (1) — $o5 (1) PV (D)

+ [ Tt @) + B (1)) — ot x ©) + OB (L&) v(de) |t

_ E[—ITf(t,x*(t),u*(t))dt:|.
This means that J(u*(.)) < W(s,y). |

Now, let us revisit example 5.1. For x = 0 we have to check whether (26) and (27) hold.
To see this, note that (27) is trivially fulfilled by the fact that D& W(t,0) = (—o0,0] x & x &,
te[0,T]. On the other hand, it IS worth noting that
D5 "W(t,0) = [0,00) x [-eT,—1] x [0,00), t € [0,T]. For x =0 the HIJB equation is
-W;i(t,0) = 0, so (26) holds, too. Let (s,y) = (0,0), to claim that u*(t)=0 is an optimal
control, and from the SDE (31), we get x*(t)=0, the first-order and second-order adjoint
processes are then (w(t),¢(t),y(t,e)) = (1,0,0) and (W(t), ®@(t),I'(t,e)) = (0,0,0). So (29) is
satisfied. Since g(t,x*(t),u*(t)) = G(t,0,0) = 0, t e [0,T], we have
(G, x* (1), u* (1)), —w(t),—¥(t))=(0,-1,0) € DA W(t,0). For the optimality of u*(.) we
have to check on the maximum principle. In fact, we have Yu € [0,1], H(t,u,x) = 0, so the
maximum principle is trivially satisfied.

Proposition 5.2. Condition (34) in theorem 5.2 is equivalent to the following
T T
]EL G(t,x* (1), u*(1))dt < EL G(t,x* (£),U* (1), —p(t,X* (1)), w(t), ¥(t) ), (37)

where ¢ is the same test function as in theorem 4. 1.

Proof. It is clear that (34) implies (37). Suppose now that (37) holds. Since V is the viscosity
solution of the HJB equation (20), we have from theorem 4.1,

sup G(t,x*(t), u,—p(t,x* (1)), w (1), ¥ (1)) < G(t,x*(t),u*(1)).

ueU

The above inequality along with (37) yields (34). H

Remark 5.1. The condition (34) implies that
G(t,x* (1), u™ (1), —p(t,x* (1)), w (1), ¥ (1)) = max G(t,x*(t),u,—o(t,x* (1)), y (1), ¥(t)).  (38)

ueU

This is easily seen by recalling the fact that V is the viscosity solution of (20), and (29).
Then

—G(t,x* (1), u™(t)) +sup G(t,x*(t),u,—p(t,x* (1)), y (1), ¥(1)) <0, (39)

ueU
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which yields (38) from (34).
To conclude this section, let us present a nonsmooth version of the necessity part of
theorem 5. 2 expressed in terms of subdifferentials.

Theorem 5.3. Suppose that (H1) — (H4) hold then let (s,y) € [0,T) x R" be fixed, and V be
the value function. Let (x*(.),u*(.)) be the optimal pair of the present stochastic optimal
control. If (G(t,x*(t),u*(t)),—w(t),~¥(t)) € DEA V(t,x*(t)) a.e. t € [5,T], P—a.s., then

E[G(,x*(1),u*(1))] < E[G(t,x* (1), u™(t),—e(t,x* (1)), w(1), ¥(1))], a.e. t € [, T],
must hold.

Proof. Fix at e [s,T) s0 as (G(t,x*(t),u*(t)),—w(t),~¥(t)) € D5 V(t,x*(t)), P—a.s. Then
there exists a ¢ which satisfies the conditions of Lemma 4.1. Therefore for h > 0 we obtain by
Ito’s formula

BIV(t+hx*(t+h)) = V(tx*(1)] = Elp(t+h,x*(t+h)) — ot x*(1))]
= E[ﬁm((pt(r,x*(r)) + @x(r,X*(N)BE(N) + 205(1) T (r,x* (1)) o (1)

# [ Totrx(r) + B*(r,e)) = 9(r.x° (1) = pu(r X (D)B (r @) Ivide) ) | (40)
However, since (x*(.),u*(.)) is optimal, we have the following Principle of Optimality
V(r,x*(r)) = ]E[j:f(e,x*(e),u*(e))de + g (T } P—as., Vre[sT],
which implies that
ELV(t+h,x*(t+h)) = V(t.x*(1)] = -E[ [ f(r,x*(r), u*(n)dr | (41)

By the same argument as in the proof of theorem 5.2, we conclude by the dominated
convergence theorem that

fim B[ [ our X (0) + 9u(r X (B0 + 3050 ur. X (D)0 (D)
-0+

+ [ To(rox (0 + B(1,6) = o1 (1) = a1 ()P (1, ) v(de)dr } |
= B[G(t,x*(1),u* (1)) — w(ObI (1) - Tox ()P (t)
+ [ Tt @ + B (1)~ otx ©) + y OB L e)v(de) |
Consideration of (40) and (41) then division of both by h, and letting h — 0 leads to

E[G(t x*(t),u*(1)] < B[ G(t.x*(t),u*(t),— o(t,x* (1)), w (), ¥()) ], a.e. t € [, T].
This completes the proof.
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