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Abstract. We study the existence and uniqueness of the solutions to mean-field reflected
backward doubly stochastic differential equation (MF-RBDSDE), when the driver f is
Lipschitzian. We also study the existence in the case where the driver is of linear growth and
continuous. In this case we establish a comparison theorem.
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1. Introduction

After the earlier work of Pardoux & Peng (1990), the theory of backward stochastic
differential equations (BSDEs in short) has a significant headway thanks to the many
application areas. Several authors contributed in weakening the Lipschitzian assumption
required on the drift of the equation (see Lepaltier & San Martin (1996), Kobylanski (1997),
Mao (1995), Bahlali (2000)).

A new kind of backward stochastic differential equations was introduced by Pardoux & Peng
[5] (1994),

T T T
Vo= &+ [ f(6YaZods+ [ s YeZodBa - [ ZodWs, 0<t<T

with two different directions of stochastic integrals, i.e., the equation involves both a standard
(forward) stochastic integral dW; and a backward stochastic integral dB:. They have proved
the existence and uniqueness of solutions for BDSDEs under uniformly Lipschitzian
conditions. Shi et al. [6] (2005) provided a comparison theorem which is very important in
studying viscosity solution of SPDEs with stochastic tools.

Bahlali et al. [2] (2009) proved the existence and uniqueness of the solution to the following
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reflected backward doubly stochastic differential equations(RBDSDESs) with one continuous
barrier and uniformly Lipschitzian coefficients:

T T
Yi=¢&+ L f(s,Ys, Zs)ds + It g(s,Ys,Zs)dBs

)
+KT—Kt—It ZdWs, 0<t<T.

In a recent work of Buckdahn et al. [3] (2009), a notion of mean-field backward stochastic
differential equation (MF-BSDEs in short) of the form

T ! ! ! T
Vo= &+ [ Ef6,0.0,Ys(0), Ys(@),Z)ds - | Z AW,

with t € [0, T], was introduced. The authors deepened the investigation of such mean-field
BSDEs by studying them in a more general framework, with a general driver. They established
the existence and uniqueness of the solution under uniformly Lipschitzian conditions. The
theory of mean-field BSDE has been developed by several authors. Du et al. [4] (2001);
established a comparison theorem and existence in the case linear growth and continuous
condition. Shi et al. [6]; introduced and studied mean-field backward stochastic Volterra
integral equations.

Mean-field Backward doubly stochastic differential equations

Yi=E+ j: E'f(s,0',0,Ys(®), Ys('),Zs)ds

T T
+jt E'g(s, @', @, Ys(@'), Zs)dBs —jt Zs dWs,

with t € [0,T], are deduced by Ruimin Xu [7] (2012), who obtained the existence and
uniqueness result of the solution with uniformly Lipschitzian coefficients and presented the
connection between McKean-Vlasov SPDEs and mean-field BDSDEs.

In this paper, we study the case where the solution is forced to stay above a given
stochastic process, called the obstacle. We obtain the real valued mean-field reflected
backward doubly stochastic differential equation : witht € [0, T]

T
Yt = 5—'— .[t E/f(s1w;wllYSlY/S’ZS’Z/S)dS

T T
+ jt E'g(s, 0,0, Ys, Y Zs, ZL)dBs + K7 — Kq — jt Zs dWs. (1)

We establish the existence and uniqueness of solutions for equation (1) under uniformly
Lipschitz conditions on the coefficients. In the case where the coefficient f is only continuous,
we establish the existence of maximal and minimal solutions.

In the case where the coefficient f is continuous with linear growth, we approximate f by a
sequence of Lipschitz functions (f,) and use a comparison theorem established here for
MF-RBDSDEs.

The paper is organized as follows : In Sections 2, we give some notations, assumptions,
and we define a solution of RBDSDE. In Section 3, we state our main results for existence and
uniqueness in the case where the coefficients are Lipschtzian, and we present a comparison
theorem. The case where the generator is continuous and linear growth is treated in section 4.
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2. Notation, Assumptions and Definitions

Let (©2,F,P) be a complete probability space, and T > 0. Let {W,0<t<T} and
{Bt,0 <t < T} be two independent standard Brownian motions defined on (Q,F,P) with
values in RY and R, respectively. For t € [0, T], we put,

Fo=FVVvF, and G =F'vIFE,

where 7Y = 6(Ws;0 <s <t) and F2; = 6(Bs — Bi;t < s < T), completed with P-null sets. It
should be noted that (Ft) is not an increasing family of sub o —fields, and hence it is not a
filtration. However (Gy) is a filtration.

Let M2(0,T,RY) denote the set of d —dimensional, jointly measurable stochastic processes
{p;t € [0, T]}, which satisfy :

(8) EJ] lpidt < oo,

(b) ¢+ is Fr —measurable, forany t € [0, T].

We denote by S%([0,T],IR), the set of continuous stochastic processes ¢, which satisfy :

(@") E(suposi<rlpt]?) < .

(b”) Forevery t € [0,T], o is Ft —measurable.

Let (Q,F,P) = (Q x Q, Ft ® F,P ® P) be the (non-completed) product of (Q, F,P) with
itself. We denote the filtration of this product space by F ={Fi = ;i @ F,0<t<T}. A
random variable & e L%(Q, F,P;R") originally defined on Q is extended canonically to
Q: (o, 0)=Eo) (0,0)e Q=QxQ. For every 0elLY(Q,FP), the variable
0(.,o) : Q - Rbelongs to L1(Q,F,P), P(dw) — a.s,. We denote its expectation by

E'0(,0)] = jg (', )P(dw).
Notice that E'[0] = E'[0(.,®w)] € LY(Q, F,P), and
E[0] = (jﬁ 0dP - jQ E’[G(.,a))]P(dw)) — E[E'[0]].

Then we consider the following assumptions,
Hl) Let f: Qx[0,TIxRxRIxRxR%> Randg: Qx[0,T]xR x R4 xR x R%> R be
two measurable functions and such that for every (y,z,y’,z') € R x R x R x RY, f(.,y,z,y',2')
and, g(.,y,z,Y',z") belongs in M?(0, T, R)
H2) There exist constants L > 0 and 0 < a < <, such that for every (t,0) € Q x [0,T] and
v,2,y,7) e RxRYx R x RY,

|f(t!y1121’yl1’zll) _f(t’y21221y/2’zl2)|
< L(y1 — Y| +Iy1 — Vol + |21 — 22| + |22 — 23])
X |g(t,y1,21,y’l,z’1) - g(tfyZ’ZZ’y/Z!Z,Z)lz

< L(y1-yal* +Iyi - yal*) + a(jzn - 22 + |25 - 2,]).

H3) Let & be a square integrable random variable which is 7t —mesurable.
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H4) The obstacle {S;,0 <t < T}, is a continuous F; —progressively measurable real-valued
process satisfying E (supo<i<r(St)?) < .
We assume also that St < £ a.s.

Definition 2.1. A solution of equation (1) is a (R x RY x R, ) -valued F; —progressively
measurable process (Y, Zt, Kt) o, Which satisfies equation (1) and

i) (Y,Z,Kr) € $2 x M2 x L2(Q).

i) Yi> St

iii) (K¢) is continuous and nondecreasing, Ko = 0 and j;(Yt - Sy)dK¢ = 0.

3. Existence of a Solution to the RBDSDE With a Lipschitz Condition

Theorem 3.1. Under conditions, H1), H2), H3) and H4), the MF-RBDSDE (1) has a unique
solution.

Proof. For any (y, z) we consider the following MF-RBDSDE, witht € [0, T]
T T
Yi= &+ [ Efs,0,0 Yoyt Zozi)ds + | E'g(s,0,0/,Ys,y4,Zs,24) dBs
t t

]
+KT—Kt—It Z, dWs.

According to Theorem 1 in Bahlali et al. [2], there exists a unique solution (Y,Z) € S? x M?
i.e., if we define the process

t
Ki = Yo — Y —jo E'f(s, 0,0, Ys, Y, Zs, 2,)ds

t t
[ Egco0 Ysyizoz) dBs + [ Zodw,,
0 0

then (Y,Z,K) satisfies Definition 2.1. Hence, if we define ®(y,z) = (Y,Z), then ® maps
S2 x M? itself. We show now that ® is contractive. To this end, take any (y',z') € S% x M?
(i=1,2), and let O(y',z") = (Y',Z"). We denote (Y,Z,K) = (Y1 -Y2,Z! - 72 K! - K?) and
(7,2,) = (y* —y?,z* — z2). Therefore, 1t6’s formula applied to |\7|2eﬂt where g > 0, and the
inequality 2ab < (i>a2 +6b?, lead to

E[V:[%e + (ﬂ 3L - 12&) j|Y %efSds + L Ej e/S|Z;|%ds
T _
<+ EL PV (KL — dK2)
+EjTeﬂS((L+ 120 g [P+ (222 5[ ) s
><L+ 120‘) and setting M = <1+2a>< )

Choosing g =3L+ ==+
yield

1 2& 2 ( 120
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_ T T _
E[Vi e + LME [ |Vs|’efSds+ LE [ efSiZ|ds
t t

T T
Sy S 2 2
<E[ efSTo(dKi - dK2) + 22LE [ erS(Mly,[” +[z]?)ds.
As
LI
Ej PV (dKL — dK2) < 0,
t
and
T BSIMV. 12 . (7 12 w2a 7 aps 2 2
Ejte (MY +12Z )dSSTEIte (MIg,[? + [25]? ) ds,
consequently the mapping @ is a strict contraction on S x M? equipped with the norm
T 1
_ BS(MIV.I2 1+ (7.2 2
10.2)11, = (B[ e (TSP + 127 )"

Moreover, it has a unique fixed point, which is the unique solution of the MF-RBDSDE with
data (&,f,9,95). |

4. RBDSDEs With a Continuous Coefficient

In this section we prove the existence of a solution to the MF-RBDSDE where the
coefficient is only continuous.
Towards this end, we consider the following assumption.
H5) i) for a.e (t,w), the mapping (y,y',z,z') ~ f(t,y,y’,z,2) is continuous. ii) There exist
constants L > 0 and o € (0, 1), such that forevery (t,w) € Q x [0,T] and
(,z,y,7') e Rx R¢ xR x RY,

fCt Y.y 2,2)] < LA+ [yl +ly'| + [2] + [2'])
9(ty1,Y1,21,21) = 9(tY2,¥2,22,29)° < L(lys = yal* + y1 - y2|*)

2
+a<|z’1 —25|" + |21 - zz|2>

Theorem 4.1. Under assumption H1), H3), H4) and H5), the MF-RBDSDE (1) has an adapted
solution (Y, Z,K) which is a minimal one, in the sense that, if (Y*,Z*) is any other solution we
have Y <Y* P-a.s.

Before giving a proof to this theorem, we invoke first the following classical lemma, which
can be proved by adapting the proof given in Alibert and Bahlali [1].

Lemma4.1. Letf : [0,T] x Q x R x R x R — R be a measurable function such that:
(a) For almost every (t,@) € [0,T] x Q, x — f(t,@,X) is continuous,
(b) There exists a constant K > 0 such that for every (t,y’,y,z) € [0,T] x R x R x R¢
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[f(ty"y, 2l K@+ Y[yl +z]) a.s.
(c) For almost every y, z,f(t,y',y,z) is increasing in y'.
Then, the sequence of functions
fot,y,y,2) = inf  {f(t,u,v,w) + n(y’' —u)" +nly — v|+njz — w[}

(u,v,w)eQ?+d

is well defined for each n > K and satisfies:
(1) for every (ty',y,2) € [0,T] x R4, [fa(t,y',y,2)< K(L+Iy'[+ly| + [20),
(2) for every (t,y',y,2) € [0,T] x R%9, n - f,(t,x) is increasing,
(3) for every (t,y',y,z) € [0,T] x R4 y" - f.(t,y',y,2) is increasing,
(4) for every n > K, (t,y"?,y%,z%) € [0,T] x R¥,(t,y?,y?,2%) € [0,T] x R¥

[ty yhzh) = fa(ty2,y%,29)I< n(ly™ = Y2yt - y2 [z - 27%)),
(5) If (yn,¥n,zn) = (¥',y,2), asn — oo then for every t € [0,T] fo(t,yn,¥n,Zn) - f(t,y',y,2) as
n — oo,

Since & satisfies H3), we get from theorem 3.1, that for every n € N*, there exists a unique
solution {(Y{,Z{,K{), 0 <t < T} for the following MF-RBDSDE

YE = £+ [ fa(s, (YD), Y2, ZDds + Kf —KJ + [ o(s, (YD)', Y2, Z2)dBs
[ zzaws, 0<t<T,
Y2 =S, [1(Y1-Ss)dKE = 0. @)
Since, [f(t,u,v,w) —fi(t,u’,v',w)|< L(Ju = u'[+[v —V'| + |w —w'[),we consider the
function defined by
fL(t,u,v,w) == L(1 + Jul+v| + |w]),
then a similar argument as before shows that there exists a unique solution
((Us, Vs, Ks),0 < s < T) to the following MF-RBDSDE:
Ui = &+ [ f1(5,UL, Us, Va)ds + Ky — Ki + [ g(s, UL, Us, Vs)dBs — [ VW
Ut > S,
[} (Us = S5)dK; = 0. 3)

We would also need the following comparison theorem.

Theorem 4.2. (Comparison theorem) Let (£1,f%,g,S') and (£2,f2,9,5?) be two MF-RBDSDES.
Each one satisfying all the previous assumptions H1), H2), H3) and H4). Assume moreover
that :

i)ét<é&?as.

i) f1(t,y',y, 2, 2) < f2(t,y',y,z',2) dP x dta.e. V(y',y,z',z2) € RxRY.

iii)Sf <82, 0<t<Ta.s.

Let (Y1,Z% K1) be a solution of MF-RBDSDE (&1, f1,g,St) and (Y2,Z2%,K?) be a solution of
MF-RBDSDE (&2,2,9,52). We suppose also :

a) One of the two generators is independent of z'.
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b) One of the two generators is nondecreasing iny'.
then

YE<Y{ 0<t<T as.
Proof. Suppose that (a) is satisfied by f* and (b) by 2. Applying It6’s formula to
|(YE - Y$)+|2, and passing to expectation, we have
T
EI(YE=Y?) P+ E [ Ly l2d - 22°ds
t
T / /
=2 Ejt (V¢ —Y§)+E'(fl<S, (Y%)',Y%,Z%) —fZ(S. (Y2),Y3,(Z%) ,Z§>>d5
T
42 EJ. (Y = Y2)"dKL — dK?2
t
T , 2
+E[ |E'(0(s. () YL @D\ 2) - (5. (3) Y8, @28)\22) ) "L yovs .
Since on the set {Y{ > Y2}, we have Y{ > S? > S{, then
T T
[ ot-v2) (ki -dk?) = - (vi-¥2)'dKZ < 0.
t t
Since f ! and f2 are Lipschitzian, we have on the set {Ys > Y;},

T
E|(Y{ - YtZ)Jr|2 +E It 1{Y§>Y§}|Z% - Z§|2d5

< EI:{(GL + %)KY% YR 4 |zE - z§|2}ds ,
then

)
E[(VE- YD) P < Ef (sL+ 5
t

1-20

)ICrE=Y2)* s,
The required result follows by using Gronwall’s lemma.

Lemma4.2. i)a.s. forallt,Y? < Y] < YP! < Uy ii) There exists Z € M?, such that Z"
converges to Z.

68

Proof. Assertion i) follows from the comparison theorem. We therefore need to prove ii) only.

It6’s formula yields

n|2 T ni2 2 T ng! ny/ yn 7n T n
E[Y3| +EJ.O|ZS| ds = El¢| +2Ej0 YOE (fn(s,(\/s),\(s,zs))ds+2EjO S4dK?®

+ EIZ E'(|g(s. (YD), v2,28)|* ) ds.

From assumption H5) , and the inequality 2ab < %2 +b? fore > 0, we get:
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T T T
E[ |zo)Pds < El¢g2+ L +E 19(,0,0,0) 2ds + (3Le + L +aL)E [ |Y2|2ds
0 € 0

+<L+a> I |Z”2ds+2Ej S<dK?.
On the other hand, we have from (2)
= YB- &~ [ E'fa(s (YD), Y2, Z0)ds - [ E'g(s, (YD), Y1, Z8)dBs
+ [z dws,
Then
;
E(KD)? < C(l £ ||zg||2ds).
0
We also have
T
2 EJ. SsdKD < %E(sup |st|2> + BE(K})?2
0 t
;
< %E(sup |st|2> + ﬁC(l + Ej ||ZQ||2ds),
t 0
which leads to
T T T
Ej z2)%ds < Ej¢? + LL + pc + Ej 19(5,0,0,0)|%ds + (3Le + L +4L)Ej IY2|2ds
0 0 0
L T Lizni2gs 4 L ( 2)
+<g +a+ﬁC>EIO =]Z3|°ds + ﬁE Sltlp|St| .
Choosing ¢, 8 such that (% +a+ pC) < 1, we obtain
T
Ej 1Zo)12ds < C.
0
Forn, p > K, It6’s formula gives,
T
E(Yg—Yg)2+Ej 122 — Z8|12ds
0
T n PyE! n ny/ 7n p py/ —p
_5 Ejo(vs —YD)E!(Fa(s, Y2, (YD), ZD) — (s, Y2, (Y2)', Z2))ds
T
+2 Ej (Y2 = YB)dKD + 2 E [ (Y8 - YD)dKe
+E [ E (a6 8., (), 28) - 965, Y2 (8) . ZD)) | s,
But
T T
EJ. (YD — YB)dK?D = Ej (Ss — YB)dK? < 0.
0 0

Similarly, we have EIZ(YE — YNdK? < 0. Therefore,

4)
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T T /
E | 122~ Z8)17ds < 2B [ (¥5 - YDE (fa(s, YE, (YD), Z8) ~ fo(s, Y, (¥2)' ZE))ds

T /
i Efo IE' (g6, Y2, (YD), Z2) — 965, Y2, (Y8)',22)) || “cs.
By Holder’s inequality and the fact that g is Lipschitzian, we get
T
E[ I1z0-28)%ds
0
T % T / / %
< (B ern-¥Das ) (E ] EGhas, Y2, (12)',20) ~ fo(s,YE, (YD) 28y )
0 0
T P2 ! Py/12 T P2
+LE [ (Y2 = V8P +10YD) - (vB)'[?)ds + aE | |22 - Z82ds
0 0

Since sup Ef;|fn(s,YQ,(YQ)/,ZQ)|2 < C, we obtain,
n

1
2

T T
EJ. 120 — Z8|2ds < C(Ej (YD —YE)st)
0 0
Hence
T
EI |Z2 — Z8)|2ds — 0, as n, p - 0.
0
Thus (Z™)ns1 is a Cauchy sequence in M2(RY). H

4.1. Proof of Theorem 4.1.

Let Y; =sup Y}, and we have (Y",Z") - (Y,Z) in S2(RY) x M2(RY). Then, along a

n
subsequence which we will still denote as (Y",Z"), we have
YM,zZ") - (Y,2), dt®dPa.e.

Then, by using Lemma 4.1, we get f(t,YP, (YD), ZD) - f(t, Yy, (Y1), Zy) dPdta.e. On the

other hand, since Z" — Z in M?(RY), then there exists an A € M2(R) and a subsequence,

which we continue to denotes as denote Z", such that vn,|Z"|< A, Z" — Z, dt ® dP a.e.
Moreover, from H5), and Lemma 4.2, we have

Ifa (6, Y2, (YD), ZP)| < (L +sup YD+ sup |(Y])'|+Ay) € L2([0,T], dt), P-a.s.
n n
It follows from the dominated convergence theorem that,
T
Ej |E'(Fa(s, Y2, (YD), Z2) — (5, Y5, (Y5), Z5)) | ds — 0, n — oo,
0

Subsequently,
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.
E | IE'(9(s,Y2,22) ~ 9(s,Ys,Z5)) | 2ds
T
< CE jo E'(JYD = Ys]2+ (YD) = (Ys)']?)ds

T
+aE [ 28 -2%ds — 0, asn - oo,
0
It is not difficult to show that (Y, Z) is a solution to our MF-RBDSDE. Indeed, let
T
Yy = ¢+ I E/f<S1Ys, (Ys)/,zs>d8 + Kt - Kt
t

+LT E'g(s,Ys, (Ys)', Zs)dBs —j: Z.dWs,

V\4here ZeM? YeS? Krel? Yy>S, (Ky) is continuous and nondecreasing, Ko = 0 and
jo(\?t - S1)dK; = 0, and (Y*,Z*,K*) be a solution of (1). Then, by theorem 4.2, we have for
every n € N*, Y" < Y*, Therefore, Y is a minimal solution of (1).

Remark 4.1. Using the same arguments and the following approximating sequence
Eha(t,x,y,2) = sup  {h(u,v,w) — n|x — u[-nly — v|-njz — wl},

(u,v,w)eQP

one can prove that the MF-RBDSDE (1) has a maximal solution.
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