http://www.jnmas.org/jnmas6-5.pdf

Euclidean Press, LLC Online: ISSN 2151-2302

Mean-field Reflected Backward Doubly Stochastic DE With Continuous Coefficients*

N. CHAOUCHKHOUAN, B. LABED, and B. MANSOURI

Laboratory of Applied Mathematics, University of Biskra, POB 145, Algeria, E-mail: mansouri.badreddine@gmail.com

Abstract. We study the existence and uniqueness of the solutions to mean-field reflected backward doubly stochastic differential equation (MF-RBDSDE), when the driver f is Lipschitzian. We also study the existence in the case where the driver is of linear growth and continuous. In this case we establish a comparison theorem.

Key words: Backward Doubly SDE, Mean-field, Continuous Coefficients, Comparison Theorem.

AMS Subject Classifications: 60H10, 60H05

1. Introduction

After the earlier work of Pardoux & Peng (1990), the theory of backward stochastic differential equations (BSDEs in short) has a significant headway thanks to the many application areas. Several authors contributed in weakening the Lipschitzian assumption required on the drift of the equation (see Lepaltier & San Martin (1996), Kobylanski (1997), Mao (1995), Bahlali (2000)).

A new kind of backward stochastic differential equations was introduced by Pardoux & Peng [5] (1994),

$$Y_t = \xi + \int_t^T f(s, Y_s, Z_s) ds + \int_t^T g(s, Y_s, Z_s) dB_s - \int_t^T Z_s dW_s, \quad 0 \le t \le T$$

with two different directions of stochastic integrals, i.e., the equation involves both a standard (forward) stochastic integral dW_t and a backward stochastic integral dB_t . They have proved the existence and uniqueness of solutions for BDSDEs under uniformly Lipschitzian conditions. Shi et al. [6] (2005) provided a comparison theorem which is very important in studying viscosity solution of SPDEs with stochastic tools.

Bahlali et al. [2] (2009) proved the existence and uniqueness of the solution to the following

^{*}This work is partially supported by the CNPRU project B01420140103

reflected backward doubly stochastic differential equations(RBDSDEs) with one continuous barrier and uniformly Lipschitzian coefficients:

$$Y_t = \xi + \int_t^T f(s, Y_s, Z_s) ds + \int_t^T g(s, Y_s, Z_s) dB_s$$
$$+ K_T - K_t - \int_t^T Z_s dW_s, \quad 0 \le t \le T.$$

In a recent work of Buckdahn et al. [3] (2009), a notion of mean-field backward stochastic differential equation (MF-BSDEs in short) of the form

$$Y_t = \xi + \int_t^T E'f(s,\omega',\omega,Y_s(\omega),Y_s(\omega'),Z_s)ds - \int_t^T Z_s dW_s,$$

with $t \in [0, T]$, was introduced. The authors deepened the investigation of such mean-field BSDEs by studying them in a more general framework, with a general driver. They established the existence and uniqueness of the solution under uniformly Lipschitzian conditions. The theory of mean-field BSDE has been developed by several authors. Du et al. [4] (2001); established a comparison theorem and existence in the case linear growth and continuous condition. Shi et al. [6]; introduced and studied mean-field backward stochastic Volterra integral equations.

Mean-field Backward doubly stochastic differential equations

$$Y_{t} = \xi + \int_{t}^{T} E'f(s,\omega',\omega,Y_{s}(\omega),Y_{s}(\omega'),Z_{s})ds + \int_{t}^{T} E'g(s,\omega',\omega,Y_{s}(\omega'),Z_{s})dB_{s} - \int_{t}^{T} Z_{s} dW_{s},$$

with $t \in [0, T]$, are deduced by Ruimin Xu [7] (2012), who obtained the existence and uniqueness result of the solution with uniformly Lipschitzian coefficients and presented the connection between McKean-Vlasov SPDEs and mean-field BDSDEs.

In this paper, we study the case where the solution is forced to stay above a given stochastic process, called the obstacle. We obtain the real valued mean-field reflected backward doubly stochastic differential equation : with $t \in [0, T]$

$$Y_{t} = \xi + \int_{t}^{T} E'f(s,\omega,\omega', Y_{s}, Y'_{s}, Z_{s}, Z'_{s})ds + \int_{t}^{T} E'g(s,\omega,\omega', Y_{s}, Y'_{s}, Z_{s}, Z'_{s})dB_{s} + K_{T} - K_{t} - \int_{t}^{T} Z_{s} dW_{s}.$$
(1)

We establish the existence and uniqueness of solutions for equation (1) under uniformly Lipschitz conditions on the coefficients. In the case where the coefficient f is only continuous, we establish the existence of maximal and minimal solutions.

In the case where the coefficient f is continuous with linear growth, we approximate f by a sequence of Lipschitz functions (f_n) and use a comparison theorem established here for MF-RBDSDEs.

The paper is organized as follows: In Sections 2, we give some notations, assumptions, and we define a solution of RBDSDE. In Section 3, we state our main results for existence and uniqueness in the case where the coefficients are Lipschtzian, and we present a comparison theorem. The case where the generator is continuous and linear growth is treated in section 4.

2. Notation, Assumptions and Definitions

Let (Ω, \mathcal{F}, P) be a complete probability space, and T > 0. Let $\{W_t, 0 \le t \le T\}$ and $\{B_t, 0 \le t \le T\}$ be two independent standard Brownian motions defined on (Ω, \mathcal{F}, P) with values in \mathbb{R}^d and \mathbb{R} , respectively. For $t \in [0, T]$, we put,

$$\mathcal{F}_t := \mathcal{F}_t^W \vee \mathcal{F}_{tT}^B$$
, and $\mathcal{G}_t := \mathcal{F}_t^W \vee \mathcal{F}_T^B$,

where $\mathcal{F}_t^W = \sigma(W_s; 0 \le s \le t)$ and $\mathcal{F}_{t,T}^B = \sigma(B_s - B_t; t \le s \le T)$, completed with *P*-null sets. It should be noted that (\mathcal{F}_t) is not an increasing family of sub σ –fields, and hence it is not a filtration. However (\mathcal{G}_t) is a filtration.

Let $M_T^2(0, T, \mathbb{R}^d)$ denote the set of d-dimensional, jointly measurable stochastic processes $\{\varphi_t; t \in [0, T]\}$, which satisfy :

- (a) $E\int_0^T |\varphi_t|^2 dt < \infty$.
- **(b)** φ_t is \mathcal{F}_t -measurable, for any $t \in [0, T]$.

We denote by $S_T^2([0,T],\mathbb{R})$, the set of continuous stochastic processes φ_t , which satisfy:

- (a') $E\left(\sup_{0 \le t \le T} |\varphi_t|^2\right) < \infty$.
- (**b**') For every $t \in [0, T]$, φ_t is \mathcal{F}_t –measurable.

Let $(\overline{\Omega}, \mathcal{F}, \overline{P}) = (\Omega \times \Omega, \mathcal{F}_t \otimes \mathcal{F}_t, P \otimes P)$ be the (non-completed) product of (Ω, \mathcal{F}, P) with itself. We denote the filtration of this product space by $\mathcal{F} = \{\mathcal{F}_t = \mathcal{F}_t \otimes \mathcal{F}_t, 0 \leq t \leq T\}$. A random variable $\xi \in L^0(\Omega, \mathcal{F}, P; \mathbb{R}^n)$ originally defined on Ω is extended canonically to $\overline{\Omega} : \xi'(\omega', \omega) = \xi(\omega'), (\omega', \omega) \in \overline{\Omega} = \Omega \times \Omega$. For every $\theta \in L^1(\overline{\Omega}, \mathcal{F}, \overline{P})$, the variable $\theta(., \omega) : \Omega \to \mathbb{R}$ belongs to $L^1(\overline{\Omega}, \mathcal{F}, \overline{P})$, $P(d\omega) - a.s$, We denote its expectation by

$$E'[\theta(.,\omega)] = \int_{\Omega} \theta(\omega',\omega) P(d\omega').$$

Notice that $E'[\theta] = E'[\theta(., \omega)] \in L^1(\Omega, \mathcal{F}, P)$, and

$$\overline{E}[\theta] = \left(\int_{\overline{\Omega}} \theta d\overline{P} = \int_{\Omega} E'[\theta(., \omega)] P(d\omega)\right) = E[E'[\theta]].$$

Then we consider the following assumptions,

- **H1**) Let $f: \Omega \times [0,T] \times \mathbb{R} \times \mathbb{R}^d \times \mathbb{R} \times \mathbb{R}^d \to \mathbb{R}$ and $g: \Omega \times [0,T] \times \mathbb{R} \times \mathbb{R}^d \times \mathbb{R} \times \mathbb{R}^d \to \mathbb{R}$ be two measurable functions and such that for every $(y,z,y',z') \in \mathbb{R} \times \mathbb{R}^d \times \mathbb{R} \times \mathbb{R}^d$, f(.,y,z,y',z') and, g(.,y,z,y',z') belongs in $M^2(0,T,\mathbb{R})$
- **H2**) There exist constants L > 0 and $0 < \alpha < \frac{1}{2}$, such that for every $(t, \omega) \in \Omega \times [0, T]$ and $(y, z, y', z') \in \mathbb{R} \times \mathbb{R}^d \times \mathbb{R} \times \mathbb{R}^d$,

$$|f(t,y_{1},z_{1},y'_{1},z'_{1}) - f(t,y_{2},z_{2},y'_{2},z'_{2})|$$

$$\leq L(|y_{1} - y_{2}| + |y'_{1} - y'_{2}| + |z_{1} - z_{2}| + |z'_{2} - z'_{2}|)$$

$$\times |g(t,y_{1},z_{1},y'_{1},z'_{1}) - g(t,y_{2},z_{2},y'_{2},z'_{2})|^{2}$$

$$\leq L(|y_{1} - y_{2}|^{2} + |y'_{1} - y'_{2}|^{2}) + \alpha(|z_{1} - z_{2}|^{2} + |z'_{2} - z'_{2}|^{2}).$$

H3) Let ξ be a square integrable random variable which is \mathcal{F}_T –mesurable.

H4) The obstacle $\{S_t, 0 \le t \le T\}$, is a continuous \mathcal{F}_t –progressively measurable real-valued process satisfying $E\left(\sup_{0 \le t \le T}(S_t)^2\right) < \infty$.

We assume also that $S_T \leq \xi \ a.s.$

Definition 2.1. A solution of equation (1) is a $(\mathbb{R} \times \mathbb{R}^d \times \mathbb{R}_+)$ -valued \mathcal{F}_t -progressively measurable process $(Y_t, Z_t, K_t)_{0 \le t \le T}$ which satisfies equation (1) and

- i) $(Y,Z,K_T) \in S^2 \times M^2 \times L^2(\Omega)$.
- ii) $Y_t \geq S_t$.
- iii) (K_t) is continuous and nondecreasing, $K_0 = 0$ and $\int_0^T (Y_t S_t) dK_t = 0$.

3. Existence of a Solution to the RBDSDE With a Lipschitz Condition

Theorem 3.1. Under conditions, H1), H2), H3) and H4), the MF-RBDSDE (1) has a unique solution.

Proof. For any (y,z) we consider the following MF-RBDSDE, with $t \in [0,T]$

$$Y_{t} = \xi + \int_{t}^{T} E'f(s,\omega,\omega', Y_{s}, y'_{s}, Z_{s}, z'_{s}) ds + \int_{t}^{T} E'g(s,\omega,\omega', Y_{s}, y'_{s}, Z_{s}, z'_{s}) dB_{s}$$

$$+ K_{T} - K_{t} - \int_{t}^{T} Z_{s} dW_{s}.$$

According to Theorem 1 in Bahlali et al. [2], there exists a unique solution $(Y,Z) \in S^2 \times M^2$ i.e., if we define the process

$$K_t = Y_0 - Y_t - \int_0^t E'f(s,\omega,\omega',Y_s,y_s',Z_s,z_s')ds$$
$$-\int_0^t E'g(s,\omega,\omega',Y_s,y_s',Z_s,z_s')dB_s + \int_0^t Z_s dW_s,$$

then (Y,Z,K) satisfies Definition 2.1. Hence, if we define $\Theta(y,z)=(Y,Z)$, then Θ maps $S^2\times M^2$ itself. We show now that Θ is contractive. To this end, take any $(y^i,z^i)\in S^2\times M^2$ (i=1,2), and let $\Theta(y^i,z^i)=(Y^i,Z^i)$. We denote $(\overline{Y},\overline{Z},\overline{K})=(Y^1-Y^2,Z^1-Z^2,K^1-K^2)$ and $(\overline{y},\overline{z},)=(y^1-y^2,z^1-z^2)$. Therefore, Itô's formula applied to $|\overline{Y}|^2e^{\beta t}$ where $\beta>0$, and the inequality $2ab\leq \left(\frac{1}{\delta}\right)a^2+\delta b^2$, lead to

$$E|\overline{Y}_{t}|^{2}e^{\beta t} + \left(\beta - 3L - \frac{8L^{2}}{1-2\alpha}\right)E\int_{t}^{T}|\overline{Y}_{s}|^{2}e^{\beta S}ds + \frac{1}{2}E\int_{t}^{T}e^{\beta S}|\overline{Z}_{s}|^{2}ds$$

$$\leq + E\int_{t}^{T}e^{\beta S}\overline{Y}_{s}(dK_{s}^{1} - dK_{s}^{2})$$

$$+ E\int_{t}^{T}e^{\beta S}\left(\left(L + \frac{1-2\alpha}{2L}\right)|\overline{y}_{s}|^{2} + \left(\frac{1+2\alpha}{4}\right)|\overline{z}_{s}|^{2}\right)ds$$
Choosing $\beta = 3L + \frac{8L^{2}}{1-2\alpha} + \frac{1}{2}\left(\frac{4}{1+2\alpha}\right)\left(L + \frac{1-2\alpha}{2L}\right)$ and setting $M = \left(\frac{4}{1+2\alpha}\right)\left(L + \frac{1-2\alpha}{2L}\right)$ yield

$$\begin{split} E|\overline{Y}_{t}|^{2}e^{\beta t} + \frac{1}{2}ME\int_{t}^{T}|\overline{Y}_{s}|^{2}e^{\beta S}ds + \frac{1}{2}E\int_{t}^{T}e^{\beta S}|\overline{Z}_{s}|^{2}ds \\ &\leq E\int_{t}^{T}e^{\beta S}\overline{Y}_{s}(dK_{s}^{1} - dK_{s}^{2}) + \frac{1+2\alpha}{4}E\int_{t}^{T}e^{\beta S}\left(M|\overline{y}_{s}|^{2} + |\overline{z}_{s}|^{2}\right)ds. \\ \text{As} \\ E\int_{t}^{T}e^{\beta S}\overline{Y}_{s}(dK_{s}^{1} - dK_{s}^{2}) < 0, \\ \text{and} \\ E\int_{t}^{T}e^{\beta S}\left(M|\overline{Y}_{s}|^{2} + |\overline{Z}_{s}|^{2}\right)ds \leq \frac{1+2\alpha}{2}E\int_{t}^{T}e^{\beta S}\left(M|\overline{y}_{s}|^{2} + |\overline{z}_{s}|^{2}\right)ds, \end{split}$$

consequently the mapping Θ is a strict contraction on $S^2 \times M^2$ equipped with the norm

$$\|(Y,Z)\|_{\beta} = \left(E\int_{t}^{T} e^{\beta S} \left(M|\overline{Y}_{S}|^{2} + |\overline{Z}_{S}|^{2}\right) ds\right)^{\frac{1}{2}}.$$

Moreover, it has a unique fixed point, which is the unique solution of the MF-RBDSDE with data (ξ, f, g, S) .

4. RBDSDEs With a Continuous Coefficient

In this section we prove the existence of a solution to the MF-RBDSDE where the coefficient is only continuous.

Towards this end, we consider the following assumption.

H5) i) for a.e (t, w), the mapping $(y, y', z, z') \mapsto f(t, y, y', z, z')$ is continuous. ii) There exist constants L > 0 and $\alpha \in (0, \frac{1}{2})$, such that for every $(t, \omega) \in \Omega \times [0, T]$ and $(y, z, y', z') \in \mathbb{R} \times \mathbb{R}^d \times \mathbb{R} \times \mathbb{R}^d$,

$$\begin{cases} |f(t,y,y',z,z')| \leq L(1+|y|+|y'|+|z|+|z'|) \\ |g(t,y_1,y_1',z_1,z_1') - g(t,y_2,y_2',z_2,z_2')|^2 \leq L(|y_1'-y_2'|^2+|y_1-y_2|^2) \\ +\alpha(|z_1'-z_2'|^2+|z_1-z_2|^2) \end{cases}$$

Theorem 4.1. Under assumption H1), H3), H4) and H5), the MF-RBDSDE (1) has an adapted solution (Y,Z,K) which is a minimal one, in the sense that, if (Y^*,Z^*) is any other solution we have $Y \leq Y^*$, P-a.s.

Before giving a proof to this theorem, we invoke first the following classical lemma, which can be proved by adapting the proof given in Alibert and Bahlali [1].

Lemma 4.1. Let $f: [0,T] \times \overline{\Omega} \times R \times R \times R^d \mapsto R$ be a measurable function such that: (a) For almost every $(t,\overline{\omega}) \in [0,T] \times \overline{\Omega}$, $x \mapsto f(t,\overline{\omega},x)$ is continuous,

(b) There exists a constant K > 0 such that for every $(t, y', y, z) \in [0, T] \times R \times R \times R^d$

$$|f(t,y',y,z)| \le K(1+|y'|+|y|+|z|) a.s.$$

(c) For almost every y, z, f(t, y', y, z) is increasing in y'.

Then, the sequence of functions

$$f_n(t,y',y,z) = \inf_{(u,v,w) \in \mathbb{Q}^{2+d}} \{f(t,u,v,w) + n(y'-u)^+ + n|y-v| + n|z-w|\}$$

is well defined for each $n \ge K$ and satisfies:

(1) for every
$$(t, y', y, z) \in [0, T] \times R^{2+d}$$
, $|f_n(t, y', y, z)| \le K(1 + |y'| + |y| + |z|)$,

(2) for every
$$(t, y', y, z) \in [0, T] \times \mathbb{R}^{2+d}$$
, $n \to f_n(t, x)$ is increasing,

(3) for every
$$(t, y', y, z) \in [0, T] \times \mathbb{R}^{2+d}$$
, $y' \to f_n(t, y', y, z)$ is increasing,

$$(4) \, for \, every \, n \geq K, \, \left(t, y'^1, y^1, z^1\right) \in \left[0, T\right] \times R^{2d}, \left(t, y'^2, y^2, z^2\right) \in \left[0, T\right] \times R^{2d}$$

$$|f_n(t,y'^1,y^1,z^1)-f_n(t,y'^2,y^2,z^2)| \leq n(|y'^1-y'^2|+|y^1-y^2|+|z'^1-z'^2|),$$

(5) If
$$(y'_n, y_n, z_n) \rightarrow (y', y, z)$$
, as $n \rightarrow \infty$ then for every $t \in [0, T]$ $f_n(t, y'_n, y_n, z_n) \rightarrow f(t, y', y, z)$ as $n \rightarrow \infty$.

Since ξ satisfies H3), we get from theorem 3.1, that for every $n \in N^*$, there exists a unique solution $\{(Y_t^n, Z_t^n, K_t^n), 0 \le t \le T\}$ for the following MF-RBDSDE

$$\begin{cases} Y_{t}^{n} = \xi + \int_{t}^{T} f_{n}(s, (Y_{s}^{n})', Y_{s}^{n}, Z_{s}^{n}) ds + K_{T}^{n} - K_{t}^{n} + \int_{t}^{T} g(s, (Y_{s}^{n})', Y_{s}^{n}, Z_{s}^{n}) dB_{s} \\ - \int_{t}^{T} Z_{s}^{n} dW_{s}, \quad 0 \leq t \leq T, \\ Y_{t}^{n} \geq S_{t}, \int_{0}^{T} (Y_{s}^{n} - S_{s}) dK_{s}^{n} = 0. \end{cases}$$

$$(2)$$

Since, $|f^1(t, u, v, w) - f^1(t, u', v', w')| \le L(|u - u'| + |v - v'| + |w - w'|)$, we consider the function defined by

$$f^{1}(t,u,v,w) := L(1+|u|+|v|+|w|),$$

then a similar argument as before shows that there exists a unique solution $((U_s, V_s, K_s), 0 \le s \le T)$ to the following MF-RBDSDE:

$$\begin{cases}
U_{t} = \xi + \int_{t}^{T} f^{1}(s, U'_{s}, U_{s}, V_{s}) ds + K_{T} - K_{t} + \int_{t}^{T} g(s, U'_{s}, U_{s}, V_{s}) dB_{s} - \int_{t}^{T} V_{s} dW_{s} \\
U_{t} \geq S_{t}, \\
\int_{0}^{T} (U_{s} - S_{s}) dK_{s} = 0.
\end{cases} \tag{3}$$

We would also need the following comparison theorem.

Theorem 4.2. (Comparison theorem) Let (ξ^1, f^1, g, S^1) and (ξ^2, f^2, g, S^2) be two MF-RBDSDEs. Each one satisfying all the previous assumptions H1), H2), H3) and H4). Assume moreover that:

i)
$$\xi^1 \leq \xi^2$$
 a.s.

$$ii) f^{1}(t, y', y, z', z) \le f^{2}(t, y', y, z', z) dP \times dt \ a.e. \ \forall (y', y, z', z) \in R \times R^{d}.$$

iii)
$$S_t^1 \leq S_t^2$$
, $0 \leq t \leq T a.s$.

Let (Y^1, Z^1, K^1) be a solution of MF-RBDSDE (ξ^1, f^1, g, S^1) and (Y^2, Z^2, K^2) be a solution of MF-RBDSDE (ξ^2, f^2, g, S^2) . We suppose also :

a) One of the two generators is independent of z'.

b) One of the two generators is nondecreasing in y'.

$$Y_t^1 < Y_t^2, 0 < t < T \ a.s.$$

Proof. Suppose that (a) is satisfied by f^1 and (b) by f^2 . Applying Itô's formula to $|(Y_t^1 - Y_t^2)^+|^2$, and passing to expectation, we have

$$\begin{split} E|(Y_{t}^{1}-Y_{t}^{2})^{+}|^{2} + E\int_{t}^{T} 1_{\{Y_{s}^{1}>Y_{s}^{2}\}}|Z_{s}^{1}-Z_{s}^{2}|^{2}ds \\ &= 2E\int_{t}^{T} (Y_{s}^{1}-Y_{s}^{2})^{+}E'\left(f^{1}\left(s,(Y_{s}^{1})',Y_{s}^{1},Z_{s}^{1}\right)-f^{2}\left(s,(Y_{s}^{2})',Y_{s}^{2},(Z_{s}^{2})',Z_{s}^{2}\right)\right)ds \\ &+ 2E\int_{t}^{T} (Y_{s}^{1}-Y_{s}^{2})^{+}dK_{s}^{1}-dK_{s}^{2} \\ &+ E\int_{t}^{T} \left|E'\left(g\left(s,(Y_{s}^{1})',Y_{s}^{1},(Z_{s}^{1})',Z_{s}^{1}\right)-g\left(s,(Y_{s}^{2})',Y_{s}^{2},(Z_{s}^{2})',Z_{s}^{2}\right)\right)\right|^{2} 1_{\{Y_{s}^{1}>Y_{s}^{2}\}}ds. \end{split}$$

Since on the set $\{Y_s^1 > Y_s^2\}$, we have $Y_t^1 > S_t^2 \ge S_t^1$, then

$$\int_{t}^{T} (Y_{s}^{1} - Y_{s}^{2})^{+} (dK_{s}^{1} - dK_{s}^{2}) = -\int_{t}^{T} (Y_{s}^{1} - Y_{s}^{2})^{+} dK_{s}^{2} \leq 0.$$

Since f^1 and f^2 are Lipschitzian, we have on the set $\{Y_s > Y'_s\}$,

$$E|(Y_t^1 - Y_t^2)^+|^2 + E \int_t^T 1_{\{Y_s^1 > Y_s^2\}} |Z_s^1 - Z_s^2|^2 ds$$

$$\leq E \int_t^T \left\{ \left(6L + \frac{L^2}{1 - 2\alpha} \right) |(Y_t^1 - Y_t^2)^+|^2 + |Z_s^1 - Z_s^2|^2 \right\} ds ,$$

then

$$E|(Y_t^1-Y_t^2)^+|^2 \le E\int_1^T \left(6L+\frac{L^2}{1-2\alpha}\right)|(Y_t^1-Y_t^2)^+|^2ds.$$

The required result follows by using Gronwall's lemma.

Lemma 4.2. i) a.s. for all t, $Y_t^0 \le Y_t^n \le Y_t^{n+1} \le U_t$. ii) There exists $Z \in M^2$, such that Z^n converges to Z.

Proof. Assertion i) follows from the comparison theorem. We therefore need to prove ii) only. Itô's formula yields

$$\begin{aligned} E|Y_0^n|^2 + E\int_0^T |Z_s^n|^2 ds &= E|\xi|^2 + 2E\int_0^T Y_s^n E'\left(f_n(s,(Y_s^n)',Y_s^n,Z_s^n)\right) ds + 2E\int_0^T S_s dK_s^n \\ &+ E\int_0^T E'\left(\left|g(s,(Y_s^n)',Y_s^n,Z_s^n)\right|^2\right) ds. \end{aligned}$$

From assumption H5), and the inequality $2ab \leq \frac{a^2}{\varepsilon} + \varepsilon b^2$ for $\varepsilon > 0$, we get:

$$E\int_{0}^{T}|Z_{s}^{n}|^{2}ds \leq E|\xi|^{2} + \frac{LT}{\varepsilon} + E\int_{0}^{T}|g(s,0,0,0)|^{2}ds + (3L\varepsilon + \frac{L}{\varepsilon} + 4L)E\int_{0}^{T}|Y_{s}^{n}|^{2}ds + \left(\frac{L}{\varepsilon} + \alpha\right)E\int_{0}^{T}\frac{1}{\varepsilon}|Z_{s}^{n}|^{2}ds + 2E\int_{0}^{T}S_{s}dK_{s}^{n}.$$

On the other hand, we have from (2)

$$K_{T}^{n} = Y_{0}^{n} - \xi - \int_{0}^{T} E' f_{n}(s, (Y_{s}^{n})', Y_{s}^{n}, Z_{s}^{n}) ds - \int_{0}^{T} E' g(s, (Y_{s}^{n})', Y_{s}^{n}, Z_{s}^{n}) dB_{s} + \int_{0}^{T} Z_{s}^{n} dW_{s}.$$

$$(4)$$

Then

$$E(K_T^n)^2 \le C\bigg(1 + E\int_0^T ||Z_s^n||^2 ds\bigg).$$

We also have

$$2 E \int_0^T S_s dK_s^n \leq \frac{1}{\beta} E \left(\sup_t |S_t|^2 \right) + \beta E(K_T^n)^2$$

$$\leq \frac{1}{\beta} E \left(\sup_t |S_t|^2 \right) + \beta C \left(1 + E \int_0^T ||Z_s^n||^2 ds \right),$$

which leads to

$$E\int_{0}^{T}|Z_{s}^{n}|^{2}ds \leq E|\xi|^{2} + \frac{LT}{\varepsilon} + \beta C + E\int_{0}^{T}|g(s,0,0,0)|^{2}ds + (3L\varepsilon + \frac{L}{\varepsilon} + 4L)E\int_{0}^{T}|Y_{s}^{n}|^{2}ds + \left(\frac{L}{\varepsilon} + \alpha + \beta C\right)E\int_{0}^{T}\frac{1}{\varepsilon}|Z_{s}^{n}|^{2}ds + \frac{1}{\beta}E\left(\sup_{t}|S_{t}|^{2}\right).$$

Choosing ε , β such that $(\frac{L}{\varepsilon} + \alpha + \beta C) < 1$, we obtain

$$E\int_0^T \|Z_s^n\|^2 ds \le C.$$

For $n, p \ge K$, Itô's formula gives,

$$E(Y_0^n - Y_0^p)^2 + E \int_0^T ||Z_s^n - Z_s^p||^2 ds$$

$$= 2 E \int_0^T (Y_s^n - Y_s^p) E'(f_n(s, Y_s^n, (Y_s^n)', Z_s^n) - f_p(s, Y_s^p, (Y_s^p)', Z_s^p)) ds$$

$$+ 2 E \int_0^T (Y_s^n - Y_s^p) dK_s^n + 2 E \int_0^T (Y_s^p - Y_s^n) dK_s^p$$

$$+ E \int_0^T ||E'(g(s, Y_s^n, (Y_s^n)', Z_s^n) - g(s, Y_s^p, (Y_s^p)', Z_s^p))||^2 ds.$$

But

$$E\int_{0}^{T}(Y_{s}^{n}-Y_{s}^{p})dK_{s}^{n}=E\int_{0}^{T}(S_{s}-Y_{s}^{p})dK_{s}^{n}\leq 0.$$

Similarly, we have $E \int_0^T (Y_s^p - Y_s^n) dK_s^p \le 0$. Therefore,

$$E\int_{0}^{T} \|Z_{s}^{n} - Z_{s}^{p}\|^{2} ds \leq 2E\int_{0}^{T} (Y_{s}^{n} - Y_{s}^{p})E'(f_{n}(s, Y_{s}^{n}, (Y_{s}^{n})', Z_{s}^{n}) - f_{p}(s, Y_{s}^{p}, (Y_{s}^{p})', Z_{s}^{p})) ds$$

$$+ E\int_{0}^{T} \|E'(g(s, Y_{s}^{n}, (Y_{s}^{n})', Z_{s}^{n}) - g(s, Y_{s}^{p}, (Y_{s}^{p})', Z_{s}^{p}))\|^{2} ds.$$

By Hôlder's inequality and the fact that g is Lipschitzian, we get

$$\begin{split} &E\int_{0}^{T} \|Z_{s}^{n} - Z_{s}^{p}\|^{2} ds \\ &\leq \left(E\int_{0}^{T} (Y_{s}^{n} - Y_{s}^{p})^{2} ds\right)^{\frac{1}{2}} \left(E\int_{0}^{T} E'(f_{n}(s, Y_{s}^{n}, (Y_{s}^{n})', Z_{s}^{n}) - f_{p}(s, Y_{s}^{p}, (Y_{s}^{p})', Z_{s}^{p}))^{2} ds\right)^{\frac{1}{2}} \\ &+ LE\int_{0}^{T} \left(|Y_{s}^{n} - Y_{s}^{p}|^{2} + |(Y_{s}^{n})' - (Y_{s}^{p})'|^{2}\right) ds + \alpha E\int_{0}^{T} |Z_{s}^{n} - Z_{s}^{p}|^{2} ds \end{split}$$

Since sup $E \int_0^T |f_n(s, Y_s^n, (Y_s^n)', Z_s^n)|^2 \le C$, we obtain,

$$E\int_0^T ||Z_s^n - Z_s^p||^2 ds \le C \left(E\int_0^T (Y_s^n - Y_s^p)^2 ds\right)^{\frac{1}{2}}.$$

Hence

$$E\int_0^T ||Z_s^n - Z_s^p||^2 ds \to 0, \text{ as } n, p \to \infty.$$

Thus $(Z^n)_{n\geq 1}$ is a Cauchy sequence in $M^2(\mathbb{R}^d)$.

4.1. Proof of Theorem 4.1.

Let $Y_t = \sup_n Y_t^n$, and we have $(Y^n, Z^n) \to (Y, Z)$ in $S^2(\mathbb{R}^d) \times M^2(\mathbb{R}^d)$. Then, along a subsequence which we will still denote as (Y^n, Z^n) , we have

$$(Y^n, Z^n) \rightarrow (Y, Z), dt \otimes dP a.e.$$

Then, by using Lemma 4.1, we get $f_n(t, Y_t^n, (Y_s^n)', Z_t^n) \to f(t, Y_t, (Y_t)', Z_t)$ $dPdt \ a.e.$ On the other hand, since $Z^n \to Z$ in $M^2(\mathbb{R}^d)$, then there exists an $\Lambda \in M^2(\mathbb{R})$ and a subsequence, which we continue to denotes as denote Z^n , such that $\forall n, |Z^n| \leq \Lambda, Z^n \to Z, dt \otimes dP \ a.e.$

Moreover, from H5), and Lemma 4.2, we have

$$|f_n(t,Y_t^n,(Y_t^n)',Z_t^n)| \le \kappa(1+\sup_n |Y_t^n|+\sup_n |(Y_t^n)'|+\Lambda_t) \in L^2([0,T], dt), \quad P-a.s.$$

It follows from the dominated convergence theorem that,

$$E\int_0^T \left| E'\left(f_n(s,Y_s^n,(Y_t^n)',Z_s^n) - f(s,Y_s,(Y_s)',Z_s)\right) \right|^2 ds \to 0, \quad n \to \infty.$$

Subsequently,

$$E \int_{0}^{T} ||E'(g(s, Y_{s}^{n}, Z_{s}^{n}) - g(s, Y_{s}, Z_{s}))||^{2} ds$$

$$\leq CE \int_{0}^{T} E'(|Y_{s}^{n} - Y_{s}|^{2} + |(Y_{s}^{n})' - (Y_{s})'|^{2}) ds$$

$$+ \alpha E \int_{0}^{T} ||Z_{s}^{n} - Z_{s}||^{2} ds \to 0, \text{ as } n \to \infty.$$

It is not difficult to show that (Y, Z) is a solution to our MF-RBDSDE. Indeed, let

$$\overline{Y}_t = \xi + \int_t^T E'f(s, Y_s, (Y_s)', Z_s) ds + K_T - K_t$$

$$+\int_{t}^{T}E'g(s,Y_{s},(Y_{s})',Z_{s})dB_{s}-\int_{t}^{T}\overline{Z}_{s}dW_{s},$$

where $\overline{Z} \in M^2$, $\overline{Y} \in S^2$, $K_T \in L^2$, $\overline{Y}_t \geq S_t$, (K_t) is continuous and nondecreasing, $K_0 = 0$ and $\int_0^T (\overline{Y}_t - S_t) dK_t = 0$, and (Y^*, Z^*, K^*) be a solution of (1). Then, by theorem 4.2, we have for every $n \in \mathbb{N}^*$, $Y^n \leq Y^*$. Therefore, \overline{Y} is a minimal solution of (1).

Remark 4.1. Using the same arguments and the following approximating sequence

$$Eh_n(t,x,y,z) = \sup_{(u,v,w)\in\mathbb{Q}^p} \{h(u,v,w) - n|x-u|-n|y-v|-n|z-w|\},\,$$

one can prove that the MF-RBDSDE (1) has a maximal solution.

Acknowledgements

The authors would like to thank the referee for some comments which have led to an improvement of the paper.

References

- [1] J. J. Alibert, and K. Bahlali, Genericity in deterministic and stochastic differential equations, *Séminaire de Probabilités XXXV*, *Lecture Notes in Mathematics* **1755**, (2001), 220-240.
- [2] K. Bahlali, M. Hassani, B. Mansouri, and N. Mrhardy, One barrier reflected backward doubly stochastic differential equations with continuous generator, *Comptes Rendus Mathematique* **347**(19), (2009), 1201-1206.
- [3] R. Buckdan, B. Djehiche, J. Li, and S. Peng, Mean-field backward stochastic differential equations: a limit approach, *Annals of Probability* **37**, (2009), 1524-1565.
- [4] H. Du, J. Li, and Q. M. Wei, Mean-field backward stochastic differential equations with continuous coefficients, In *Proceedings of the 30th Chinese Control Conference*, July 22-24, Yantai, China, 2012.
- [5] E. Pardoux, and S. Peng, Backward doubly stochastic differential equations and systems of quasilinear SPDEs, *Probability Theory and Related Fields* **98**, (1994), 209-227.

- [6] Y. Shi, Y. Gu, and K. Liu, Comparison theorems of backward doubly stochastic differential equations and applications, *Stochastic Analysis and Applications* **23**, (2005), 97-110.
- [7] R. Xu, Mean-field backward doubly stochastic differential equation and related SPDEs, *Boundary Value Problems* **2012**:**114**, (2012).
- [8] L. Zhi, and J. Luo, Mean-field reflected backward stochastic differential equations, *Statistics and Probability Letters* **82**, (2012), 1961-1968.

Article history: Submitted October, 11, 2014; Accepted February, 05, 2015.