
Journal of Numerical Mathematics and Stochastics, 6 (1) : 73-83, 2014 © JNM@S
http://www.jnmas.org/jnmas6-6.pdf Euclidean Press, LLC

Online: ISSN 2151-2302

Three-Step Derivative-Free Diagonal Updating Method
for Solving Large-Scale Systems of Nonlinear Equations

L.Y. UBA,and M.Y.WAZIRI

Department of Mathematical Sciences, Faculty of Sciences, Bayero University, Kano State, Nigeria,
E-mail: mywaziri.mth@buk.edu.ng

Abstract. In this paper, we construct a three-step derivative-free diagonal updating method
for solving large-scale systems of nonlinear equations in order to avoid the computation of the
Jacobian matrix which requires first order derivatives. A numerical experiment is reported to
show that the proposed method is quite encouraging.

Key words : Three-Step Derivative-Free Method, Nonlinear Systems of Equations, Diagonal
Update.

AMS Subject Classifications : 60H10, 60H05

1. Introduction

The general form of nonlinear systems of equations is
Fx  0, 1

where F  f1, f2 , . . . , fnT is a mapping from Rn to Rn and x  x1, x2 , . . . , xnT ∈ Rn ,
n ∈ N, and the mapping F is assumed to have the following standard assumptions [4, 5]:
1. The mapping F is continuously differentiable on a convex open set D ⊂ Rn.
2. There exists a solution x∗ of (1) such that Fx∗  0.
3. The Jacobian matrix F ′x is Lipschitz continuous at x∗. That is, there exists a positive
constant K such that ‖Fx − Fx∗‖≤ K‖x − x∗‖, for all x, x∗ ∈ D.
4. F ′x∗ is nonsingular.
The Newton’s method is the well known method for solving (1). It invokes an iterative scheme
which generates an iterative sequence xk:
xk1  xk − F ′xk−1Fxk , k  0,1,2, . . . ,n , 2

where F ′xk is the Jacobian matrix.
Although the Newton’s method has a quadratic convergence and despite it’s reliability and

simplicity to implement, it has some major shortcomings [4, 9, 10], one of which is the
requirement to compute the Jacobian matrix at each iteration. Several efforts have been made

73

Three-Step Derivative-Free Diagonal Method for Systems of Nonlinear Equations 74

to overcome the shortcomings of Newton’s method. Among them is the Broyden’s method
which is a quasi-Newton’s method [1]. It approximates the Newton’s direction by using an
approximation of the Jacobian F ′xk ≈ Bk, which is updated as the nonlinear iteration
progresses.

Algorithm 1.1 (Broyden’s method (BM)). Given x0 ∈ Rn, tolerance , Set B0  In and k  0,
Step 1: Compute Fxk, if ‖Fxk‖≤  stop, else go to step 2.
Step 2: Solve Bk sk  − Fxk for sk.
Step 3: Update xk1  xk  sk.
Step 4: Compute yk  Fxk1 − Fxk.

Step 5: Compute Bk1  Bk 
yk −Bk sk sk

T

sk
T sk

Step 6: set k  k  1, and go to step 1.

The convergence order of Broyden’s method is proven to be superlinear [2]. The main idea
behind this method is to reduce the computational cost of the Jacobian in every iteration by
approximating the Jacobian matrix with a derivative-free matrix which can be updated in each
iteration.

Newton’s Method with Diagonal Jacobian Approximation is also a modification of

Newton’s Method [9, 10] with F ′xk ≈ Dk1  diagdk1
i , dk1

i 
Fixk1 −Fixk

xk1
i
− xk

i ,

i  1,2,,n and k  0,1,2,,n.

Algorithm 1.2 (Newton’s Method with Diagonal Jacobian Approximation (NDJA)).
Considering F as a function from Rn to Rn with the same properties as (1):
Step 1: Given x0 ,  and D0  I0 , set k  0.
Step 2: Compute Fxk.

Step 3: Compute xk1  xk − Dk1
−1 Fxk, where Dk1  diagdk1

i , dk1
i 

Fixk1 −Fixk

xk1
i
− xk

i ,

i,k  1,2,,n, provided |xk1
i − xk

i| , else set dk1
i  dk

i for k  0,1,2,,n.
Step 4: If ‖xk1 − xk‖  ‖Fxk‖≤  stop, else set k  k  1 and go to step 2.

The advantage of the diagonal updating method is that, it requires only the diagonal entries
and storage of n-entries in every iteration. This paper presents an iterative derivative-free
three-step diagonal updating method for solving systems of nonlinear equations . The rest of
this paper is arranged as follows. In sections 2 and 3 we describe our new method and analyze
its convergence. The numerical results are presented in section 4 and a conclusion is given in
section 5, which is followed by references.

75 L. Y. UBA, and M. Y. WAZIRI

3. Three-Step Derivative-Free Diagonal Updating Method

Consider the iterative scheme

yk  xk − F ′xk−1Fxk, k ∈ N
zk  yk − F ′yk

−1Fyk, k ∈ N
xk1  zk − F ′zk−1Fzk, k ∈ N

, 3

where

wk  xk  Fxk, k ∈ N,  ∈ R ,

  1 − ‖Fyk‖
‖Fwk‖

, k ∈ N ,

  1 − ‖Fyk‖
‖Fwk‖

2‖Fyk‖
3

‖Fwk‖
2‖Fxk‖

, k ∈ N .

4

To complete construction of the proposed method, we introduce a suitable approximation
of the Jacobian matrix using diagonal updating to reduce the number of function evaluations.
So we approximate the Jacobian matrices F ′xk, F ′yk and F ′zk in equation (3), by certain
diagonal matrices Dxk

, Dyk
and Dzk

respectively, which are updated at each iteration. Then

wk  xk  Fxk, k ∈ N,  ∈ R, 5

F ′xk ≈ Dxk
 diagdxk

i, dxk

i 
Fiwk −Fixk

wk
i
− xk

i , i  1,2, . . . , 6

F ′yk ≈ Dyk
 diagdyk

i, dyk

i 
Fixk −Fiyk

xk
i
− yk

i , i  1,2, . . . , 7

F ′zk ≈ Dzk
 D ẑk

− Dyk
 D zk

 diagd ẑk
 − diagdyk

  diagd zk
, 8

where d
ẑk

i 
Fiyk −Fizk

yk
i
− zk

i , d zk

i 
Fixk −Fizk

xk
i
− zk

i , Fiwk is the ith component of the

vector Fwk, Fixk is the ith component of the vector Fxk, Fiyk is the ith component of
the vector Fyk, Fizk is the ith component of the vector Fzk, wk

i is the ith component of
the vector wk, xk

i is the ith component of the vector xk, yk
i is the ith component of the vector

yk, zk
i is the ith component of the vector zk and provided that the denominators in (6)-(8) are

not equal to zero [11]. Substituting (6)-(8) into (3), we get our new scheme

yk  xk − Dxk
−1Fxk, k ∈ N

zk  yk − Dyk
−1Fyk, k ∈ N

xk1  zk − Dzk
−1Fzk, k ∈ N

. 9

Three-Step Derivative-Free Diagonal Method for Systems of Nonlinear Equations 76

Algorithm 2.1 (Three-step derivative-free diagonal updating method (TSDU)). Given an
initial guess x0 ∈ Rn, tolerance  and  ∈ R. set k  0.
Step 1: compute Fxk, If ‖Fxk‖ ≤  stop. Else go to step 2.
Step 2: Compute wk  xk  Fxk.
Step 3: compute yk  xk − Dxk

−1Fxk, where Dxk
is define by (6), provided that

|wk
i − xk

i| , else set dxk

i  dxk−1

i , for k  1,2, . . . ,n.
Step 4: compute zk  yk − Dyk

−1Fyk, where Dyk
is define by (7), provided that

|xk
i − yk

i| , else set dyk

i  dyk−1

i , for k  1,2, . . . ,n.

Step 5: compute xk1  zk − Dzk
−1Fzk, where Dzk

is define by (8), provided that |yk
i − zk

i|,
|xk
i − yk

i| and |xk
i − zk

i| are greater than , else set d
ẑk

i  d ̂zk−1

i , dyk

i  dyk−1

i andd zk

i  d zk−1

i for
k  1,2, . . . ,n.
Step 6: set kk1, and go to step 1.

3. Convergence Analysis

In this section, we consider reporting on a result for F which presents the condition under
which the TSDU algorithm converges linearly to x∗.

Lemma [10] 3.1. Let Fx : Rn → Rn be continuously differentiable in an open convex set
D ⊂ Rn. If Dk defined by Dk1  diagdk1

i , where

dk1
i 

Fixk1 −Fixk

xk1
i
− xk

i and D0  In, i  1,2, . . . ,n then Dk is bounded for each k  0.

Theorem 3.1. Let x∗ ∈ D be a solution of sufficiently differentiable function
Fx : D ⊂ Rn → Rn in a convex open interval D. Assume {xk converges to x∗ and initial
guess vector x0 is sufficiently close to x∗, then the convergence rate of the proposed method
defined by (6) is linear.

Proof. Let x∗ be a root of Fx, i.e. Fx∗  0 and F ′x∗ ≠ 0. The Taylor series expansion of
Fxk about x∗ is
Fxk  Fx∗  F ′x∗xk − x∗  O‖xk − x∗‖2. 10

Since Fx∗  0, then we have
Fxk ≈ F ′x∗xk − x∗. 11

Subtraction of x∗ and substitution of (11) in the first step of (9) gives
yk − x∗  xk − x∗ − Dxk

−1F ′x∗xk − x∗, 12

which is the same as

77 L. Y. UBA, and M. Y. WAZIRI

yk − x∗  E − Dxk
−1F ′x∗ xk − x∗, 13

where E is the identity matrix. The Taylor series expansion of Fwk about x∗ is
Fwk  Fx∗  F ′x∗wk − x∗  O‖wk − x∗‖2. 14

Substitution of (5) and (11) in (14) leads to
Fwk ≈ Fx∗  F ′x∗xk − x∗  F ′x∗xk − x∗. 15

Since Fx∗  0, we have
Fwk ≈ F ′x∗E  F ′x∗xk − x∗. 16

The Taylor series expansion of Fyk about x∗ is
Fyk  Fx∗  F ′x∗yk − x∗  O‖yk − x∗‖2. 17

Since Fx∗  0, then we have
Fyk  F ′x∗yk − x∗  O‖yk − x∗‖2. 18

It follows from (18) that
Fyk  F ′x∗yk − x∗. 19

Then substitute (13) in (19) to get
Fyk ≈ F ′x∗ E − Dxk

−1F ′x∗ xk − x∗. 20

From equation (4), we have

  1 − ‖Fyk‖
‖Fwk‖

, where Fwk ≠ 0 and k ∈ N. 21

Substitute (16) and (20) in (21) to obtain

 ≤ 1 −
‖E −Dxk

−1 F′x∗‖
‖E  F′x∗‖

. 22

Subtract x∗ from both sides of the second step of (9) to get
zk − x∗  yk − x∗ −  Dyk

−1Fyk. 23

Then substitution of (13) and (20) in (23) leads to
zk − x∗  E − Dxk

−1F ′x∗ xk − x∗

−  Dyk
−1F ′x∗ E − Dxk

−1F ′x∗ xk − x∗, 24

which is the same as
zk − x∗  E −  Dyk

−1F ′x∗ E − Dxk
−1F ′x∗ xk − x∗. 25

Consider now the Taylor series expansion of Fzk about x∗

Fzk  Fx∗  F ′x∗zk − x∗  O‖zk − x∗‖2. 26
Since Fx∗  0, then we have
Fzk  F ′x∗zk − x∗  O‖zk − x∗‖2, 27

and it follows from (27) that
Fzk ≈ F ′x∗zk − x∗. 28

Substitute further (25) in (28)to arrive at

Three-Step Derivative-Free Diagonal Method for Systems of Nonlinear Equations 78

Fzk ≈ F ′x∗ E −  Dyk
−1F ′x∗ E − Dxk

−1F ′x∗ xk − x∗. 29

Now,

1 − ‖Fzk‖
‖Fwk‖

≤ 1 −
‖E − Dyk

−1 F′x∗E −Dxk

−1 F′x∗‖
‖E  F′x∗‖

, 30

‖Fwk‖2 ‖Fxk‖≤ ‖F ′x∗‖3‖E  F ′x∗‖2 ‖xk − x∗‖3, 31

2‖Fyk‖
3 ≤ 2‖F ′x∗‖3‖E − Dxk

−1F ′x∗‖3‖xk − x∗‖3, 32

2‖Fyk‖
3

‖Fwk‖
2‖Fxk‖

≤ 1 −
2‖E −Dxk

−1 F′x∗‖3

‖E  F′x∗‖2 , 33

where Fxk ≠ 0, Fwk ≠ 0 and k ∈ N. But,

  1 − ‖Fzk‖
‖Fwk‖

2‖Fyk‖
3

‖Fwk‖
2‖Fxk‖

34

≤ 1 −
‖E − Dyk

−1 F′x∗E −Dxk

−1 F′x∗‖
‖E  F′x∗‖

2‖E −Dxk

−1 F′x∗‖3

‖E  F′x∗‖2 .

Subtract next x∗ from both sides of third step of (9) to obtain
xk1 − x∗  zk − x∗ − Dzk

−1Fzk. 35

Reconsideration of (25) and (29) in (35) yields
xk1 − x∗  k1xk − x∗, 36

where k1  E − Dzk
−1F ′x∗ E − Dyk

−1F ′x∗ E − Dxk
−1F ′x∗ . The norms of both

sides of (36) are
‖xk1 − x∗‖≤ ‖k1‖‖xk − x∗‖, 37

‖xk1 − x∗‖≤ k‖xk − x∗‖, 38
where k  ‖k1‖. From lemma 3.1 and boundedness of the Jacobian,there exist constants
1 ≤ 2 such that 1‖c‖2 ≤ cTF ′xc ≤ 2‖c‖2 for all x,c ∈ Rn. We then let
‖Dk‖≤ max n ,0,1,…,n   and   max1,2, to write

 ≤ 1 − n −−1 
n    , 39

 ≤ 1 −  n −  −1  n −−1 
n   

2 n −−1 3

 n   2
, 40

and
k  ‖k1‖≤  n − −1 n − −1 n − −1, 41

which means that the sequence xk1k≥0 generated by (9) converges linearly to x∗. Here the

79 L. Y. UBA, and M. Y. WAZIRI

proof ends. 

4. Numerical Results

Definition [3] 4.1. Let P and S be the set of problems and the set of solvers respectively. If ns
is the number of solvers and np is the number of problems, then for each problem p ∈ P and
for each solver s ∈ S, we define the performance profile P : R → 0,1 by
P  1

np sizerp,s ≤  : p ∈ P, 42

where

rp,s 
tp, s

mintp, s:s ∈ S , 43

and tp,s(computing time (or number of iterations, e.t.c) required to solve problem p by solver
s). Then, P is the probability for solver s ∈ S that a performance ratio rp,s is within a factor
 ∈ R of the best possible ratio.

We shall apply here our proposed method for solving systems of nonlinear equations and
explore its performance on some benchmark problems, with distinct test functions . We shall
also compare our method with the following three well known methods, which are namely,
1. Newton’s method (NM).
2. Classical Broyden’s method (CB).
3. Newton’s Method with Diagonal Jacobian Approximation (NDJA).

Problem 1: Spare function of Byeong (Beyong et. al, 2010)
Fix  1 − xi2  xi1  xixn−2xn−1xn − 2;
i  1,2, . . . ,n and x0  0.5,0. 5, . . . , 0. 5T

Problem 2: System of n nonlinear equations
Fix  xi

2 − 12 − 2;
i  1,2, . . . ,n and x0  1.2,1. 2, . . . , 1. 2T

Problem 3: Extended system of Byeong, 2010
Fix  cosxi

2 − 1 − 1;
i  1,2, . . . ,n and x0  0.5,0. 5, . . . , 0. 5T

Problem 4: System of n nonlinear equations
Fix  ∑ j1

n xj
2sinxj − xj

4  sinxj
2;

i  1,2, . . . ,n and x0  0.2,0. 2, . . . , 0. 2T

Problem 5: Extended system of Byeong, 2010
Fix  xi

3;
i  1,2, . . . ,n and x0  2,2, . . . , 2T

Three-Step Derivative-Free Diagonal Method for Systems of Nonlinear Equations 80

Table 1. Dimension of problem 1 (n), Number of iterations (NI), Out of memory (-) and
CPU Time (in seconds) and initial guess x0  0.5,0. 5, 0. 5, , 0. 5T and   0.05.

Problem n NM NDJA CB TSDU
NI CPU Time NI CPU Time NI CPU Time NI CPU Time

50 11 0.040085 8 0.003209 10 0.007449 4 0.002590

200 11 0.229625 8 0.003903 10 0.128108 4 0.003184

1 500 11 4.031931 8 0.006046 10 0.268096 4 0.004857

1000 11 32.071952 8 0.008633 10 1.305538 4 0.004767

250000 - - 9 0.803323 - - 4 0.646243

Table 2. Dimension of problem 2 (n), Number of iterations (NI), Out of memory (-) and
CPU Time (in seconds) and initial guess x0  1.2,1. 2, 1. 2, , 1. 2T and   0.0005.

Problem n NM NDJA CB TSDU
NI CPU Time NI CPU Time NI CPU Time NI CPU Time

50 6 0.012765 9 0.001811 11 0.007295 2 0.001769

200 6 0.131159 9 0.003145 11 0.065743 2 0.001964

2 500 6 2.212296 10 0.005431 11 0.256695 2 0.001999

1000 6 16.411831 10 0.006914 11 1.606041 2 0.002130

250000 - - 10 0.490253 - - 2 0.204103

Table 3. Dimension of problem 3 (n), Number of iterations (NI), Out of memory (-) and
CPU Time (in seconds) and initial guess x0  0.5,0. 5, 0. 5, , 0. 5T and   0.5.

Problem n NM NDJA CB TSDU
NI CPU Time NI CPU Time NI CPU Time NI CPU Time

50 37 0.082947 20 0.004176 20 0.012065 5 0.001284

200 59 1.079917 20 0.006523 20 0.096731 6 0.002992

3 500 90 35.062470 21 0.009232 21 0.552159 6 0.005726

1000 - - 21 0.018446 21 3.094933 6 0.009375

250000 - - 24 1.558995 - - 7 0.903323

81 L. Y. UBA, and M. Y. WAZIRI

Table 4. Dimension of problem 4 (n), Number of iterations (NI), Out of memory (-) and
CPU Time (in seconds) and initial guess x0  0.2,0. 2, 0. 2, , 0. 2T and   0.0005.

Problem n NM NDJA CB TSDU
NI CPU Time NI CPU Time NI CPU Time NI CPU Time

50 30 0.137274 16 0.007096 17 0.012739 6 0.004310

200 33 1.144202 - - 27 0.108190 7 0.006489

4 500 34 16.148742 - - 30 0.874449 7 0.024518

1000 35 119.612709 - - 31 4.744052 8 0.038428

250000 - - - - - - 11 6.029565

Table 5. Dimension of problem 5 (n), Number of iterations (NI), Out of memory (-) and
CPU Time (in seconds) and initial guess x0  2,2, . . . , 2T and   0.000001.

Problem n NM NDJA CB TSDU
NI CPU Time NI CPU Time NI CPU Time NI CPU Time

50 51 0.149090 35 0.007965 29 0.020773 7 0.001829

200 52 1.433389 36 0.018387 30 0.092941 8 0.005140

5 500 54 24.569028 36 0.019504 30 0.795550 8 0.009990

1000 55 149.558292 36 0.039307 31 4.757919 8 0.016604

250000 - - 40 9.707047 - - 9 3.760534

Problem 6:(Generalized function of Rosenbrock)
Fix  xi − ∑ j1

n xj
2

n2 ∑ j1
n xj − n;

i  1,2, . . . ,n and x0  0.2,0. 2, . . . , 0. 2T

Table 6. Dimension of problem 6 (n), Number of iterations (NI), Out of memory (-) and
CPU Time (in seconds) and initial guess x0  0.2,0. 2, . . . , 0. 2T and   0.00005.

Problem n NM NDJA CB TSDU
NI CPU Time NI CPU Time NI CPU Time NI CPU Time

50 4 0.018255 16 0.003565 9 0.003218 2 0.000725

200 4 0.103352 12 0.002480 8 0.046891 1 0.000824

6 500 4 1.649348 10 0.002435 8 0.189331 1 0.001838

1000 4 12.297475 10 0.005326 7 0.949198 1 0.001936

250000 - - 772 62.543454 - - - -

Three-Step Derivative-Free Diagonal Method for Systems of Nonlinear Equations 82

The numerical results of the comparison between the methods is shown in Tables 1 to 6.
Each problem is tested with five different dimensions, namely, n 50, 200, 500, 1000 and
250000. All functions are tested using a specified starting point. In all the tables NI stand for
number of

Figure 1. Comparison of the performance profile of NM, NDJA, CB and TSDU methods as the
dimension increases (in terms of number of iterations)

iterations and CPU time is in seconds. In this paper TSDU stands for the method proposed.
Comparing the performance of the methods in all the Tables shows that TSDU is better than all
the methods compared, in terms of number of iterations and CPU time, and for all the tested 6
problems.The computational experiments were done using MATLAB 7.5 with double
precision arithmetic, and the comparison was done based on performance profile of the
methods in terms of the number of iterations. The stopping criterion used is:
‖Fxk‖≤ 10−8.

4. Conclusion
In this work, we proposed a linear convergence iterative derivative-free diagonal updating

method for solving large-scale systems of nonlinear equations. The proposed method uses
Newton’s method in all the three steps with approximate Jacobian matrix as a diagonal matrix.
The proposed method is attractive as it converges with less iterations than the Classical
Newton’s, Broyden’s and Newton’s method with diagonal Jacobian approximation. Finally, we
may conclude that the proposed method can be a good alternative to Classical Newton’s and

83 L. Y. UBA, and M. Y. WAZIRI

Broyden’s methods, especially for large scale nonlinear systems of equations.

Acknowledgements
The authors would like to thank the referee for some comments which have led to an
improvement of the paper.

References

[1] C. G. Broyden, A class of methods for solving nonlinear simultaneous equations,
Mathematics of Computation 19 (92), (1965), 577-593.

[2] J. E. Dennis, and J. J. Jr. More, A characterization of superlinear convergence and its
application to quasi-Newton methods, Mathematics of Computation 28, (1974), 199-208.

[3] E. D. Dolan, and J. J. More, Benchmarking optimization software with performance
profiles, Mathematical Programing 91, (1964), 201-213.

[4] C. T. Kelly, Iterative Methods for Linear and Nonlinear Equations, SIAM, Philadelphia,
PA, 1995.

[5] C. T. Kelly, Solving Nonlinear Systems With Newton Method, SIAM, Philadelphia, PA,
2003.

[6] K. Natasa, and L. Zorana, Newton-like methods with modification of the right hand side
vector, Mathematics of Computation 71, (2002), 237-250.

[7] J. F. Steffenses, Remarks on iteration, Skand Aktuar Tidsr 16, (1933), 64-72.

[8] R. Thukral, A family of three-point derivative-free methods of eighth-order for solving
nonlinear equations, Journal of Modern Methods in Numerical Mathematics 3(2), (2012), p.11.

[9] M. Y. Waziri, W. J. Leong, M. A. Hassan, and M. Monsi, Jacobian computation-free
Newton’s method for systems of nonlinear equations, Journal of Numerical Mathematics and
Stochastics 2(1), (2010), 54-63.

[10] M. Y. Waziri, W. J. Leong, M. A. Hassan , and A. U. Moyi, Two-step derivative-free
diagonally Newton’s method for large-scale nonlinear equations, World Applied Sciences
Journal 21 (Special issue of Applied Mathematics), (2013), 86-94.

[11] M. Y. Waziri, W. J. Leong, M. A. Hassan, and M. Monsi, A Newton’s method with
diagonal Jacobian approximation for systems of nonlinear equations, Journal of Mathematics
and Statistics 6(3), (2010), 246-252.

Article history: Submitted November, 17, 2014; Accepted March, 21, 2015

