Journal of Numerical Mathematics and Stochastics, 6 (1) : 73-83, 2014 © JINM@S
http://www.jnmas.org/jnmas6-6.pdf Euclidean Press, LLC
Online: ISSN 2151-2302

Three-Step Derivative-Free Diagonal Updating Method
for Solving Large-Scale Systems of Nonlinear Equations

L.Y. UBA,and M.Y.WAZIRI

Department of Mathematical Sciences, Faculty of Sciences, Bayero University, Kano State, Nigeria,
E-mail: mywaziri.mth@buk.edu.ng

Abstract. In this paper, we construct a three-step derivative-free diagonal updating method
for solving large-scale systems of nonlinear equations in order to avoid the computation of the
Jacobian matrix which requires first order derivatives. A numerical experiment is reported to
show that the proposed method is quite encouraging.

Key words : Three-Step Derivative-Free Method, Nonlinear Systems of Equations, Diagonal
Update.

AMS Subject Classifications : 60H10, 60H05

1. Introduction

The general form of nonlinear systems of equations is

F(x) =0, (1)
where F = (f, f2,..., fn)T is a mapping from R" to R" and X = (X1, X2 ,..., Xn)' € R",
n € N, and the mapping F is assumed to have the following standard assumptions [4, 5]:
1. The mapping F is continuously differentiable on a convex open set D — R".
2. There exists a solution x* of (1) such that F(x*) = 0.
3. The Jacobian matrix F'(x) is Lipschitz continuous at x*. That is, there exists a positive
constant K such that ||F(x) — F(x*)||< K||x — x*||, for all X, x* € D.
4. F'(x*) is nonsingular.
The Newton’s method is the well known method for solving (1). It invokes an iterative scheme
which generates an iterative sequence {Xy}:

Xk = Xk — F'(x)tF(xk), k=0,1,2,...,n, (2)
where F'(xk) is the Jacobian matrix.
Although the Newton’s method has a quadratic convergence and despite it’s reliability and

simplicity to implement, it has some major shortcomings [4, 9, 10], one of which is the
requirement to compute the Jacobian matrix at each iteration. Several efforts have been made

73

Three-Step Derivative-Free Diagonal Method for Systems of Nonlinear Equations 74

to overcome the shortcomings of Newton’s method. Among them is the Broyden’s method
which is a quasi-Newton’s method [1]. It approximates the Newton’s direction by using an
approximation of the Jacobian F'(xx) = Bk, which is updated as the nonlinear iteration
progresses.

Algorithm 1.1 (Broyden’s method (BM)). Given x, € R", tolerance ¢, Set Bo = I, and k = 0,
Step 1: Compute F(x), if ||[F(Xk)||< & stop, else go to step 2.
Step 2: Solve By sk = — F(xk) for sk.
Step 3: Update Xy1 = Xk + Sk.
Step 4: Compute y, = F(Xk:1) — F(Xk).
(Y- By S Sk
S Sk
Step 6: setk = k+ 1, and go to step 1.

Step 5: Compute By1 = Bk +

The convergence order of Broyden’s method is proven to be superlinear [2]. The main idea
behind this method is to reduce the computational cost of the Jacobian in every iteration by
approximating the Jacobian matrix with a derivative-free matrix which can be updated in each
iteration.

Newton’s Method with Diagonal Jacobian Approximation is also a modification of

_ iy g0 F —F;
Newton’s Method [9, 10] with F'(Xy) ~ Dy.1 = diag(d,), d, = '(X'Ef)l) ('i)(xk) .
Xir1 — Xk

i=12---nandk=0,12---n.

Algorithm 1.2 (Newton’s Method with Diagonal Jacobian Approximation (NDJA)).
Considering F as a function from R" to R" with the same properties as (1):

Step 1: Given x,, eand Do = o, setk = 0.

Step 2: Compute F(Xk).

Step 3: Compute X1 = Xk — Dy F(Xk), Where Di1 = diag(d,), d, = Fi(x'g)l) — F(ii)(x") ,

. . _ _ Xir1 = Xk
i,k =1,2,---,n, provided [x\"; — x> ¢, else setd’; = d for k=0,1,2,-,n.
Step 4: If || Xk — Xk|| + |[F(Xk)|I< € stop, else set k = k + 1 and go to step 2.

The advantage of the diagonal updating method is that, it requires only the diagonal entries
and storage of n-entries in every iteration. This paper presents an iterative derivative-free
three-step diagonal updating method for solving systems of nonlinear equations . The rest of
this paper is arranged as follows. In sections 2 and 3 we describe our new method and analyze
its convergence. The numerical results are presented in section 4 and a conclusion is given in
section 5, which is followed by references.

75 L.Y.UBA, and M. Y. WAZIRI

3. Three-Step Derivative-Free Diagonal Updating Method

Consider the iterative scheme

(v =x-F () F(x), keN

Sz =Ye-nF)Ry, keN 3)
Xkt = Z - (F'(z0)'F(z¢), ke N

where

(Wy = Xk + BF(Xk), ke N, peR",

a1 JFOOL
. IFawyl @

3
‘- (1_ IFyl X 2F) (N
L [Fwi) | IFwWiO 1" ITF)
To complete construction of the proposed method, we introduce a suitable approximation
of the Jacobian matrix using diagonal updating to reduce the number of function evaluations.

So we approximate the Jacobian matrices F'(x«), F'(y,) and F'(z«) in equation (3), by certain
diagonal matrices D, , D, and D, respectively, which are updated at each iteration. Then

Wk = Xk + BF(Xx), ke N, peR",)
F(x) = Dy, = diag(d),) = TMI=EHD g5 (6)
k k Wk . Xk
, o by Fix)—F; .
F'(y,) ~ Dy, = diag(dy), dj = (53 '(f)yk) i=12..., (7)
Xk — Yk
F'(zk) = DZk = Dz”k - Dyk + Dz“k = diag(dzAk) - diag(dyk) + diag(dzvk), (8)
where d% - F‘(yg_Fi(i()zk), d? = Fi(xl‘g_Fi(i()zk), Fi(wy) is the i component of the
‘ Y — Z ‘ X = Zi

vector F(wy), Fi(xk) is the i™ component of the vector F(xy), Fi(y,) is the i component of
the vector F(y,), Fi(z«) is the i component of the vector F(z), WS) is the i™" component of
the vector wy, X|(<I) is the i™ component of the vector xy, y|((') is the i component of the vector

Yio ZS) is the i™" component of the vector z¢ and provided that the denominators in (6)-(8) are

not equal to zero [11]. Substituting (6)-(8) into (3), we get our new scheme
Y« =Xc—Dy 'F(x), keN
Zx =Yx—nDy F(y), keN . 9
X1 = 2k — (D, 'F(zx), keN

Three-Step Derivative-Free Diagonal Method for Systems of Nonlinear Equations 76

Algorithm 2.1 (Three-step derivative-free diagonal updating method (TSDU)). Given an

initial guess x, € R", tolerance ¢ and p € R*. setk = 0.

Step 1: compute F(Xx), If ||F(Xk)|| < & stop. Else go to step 2.

Step 2: Compute wy = Xk + BF(Xk).

Step 3: compute y, = Xk — ka‘lF(xk), where Dy, is define by (6), provided that

w” = x|> &, else set dy =df fork=12...n.

Step 4: compute zk =y, — 1Dy, “F(y,), where Dy, is define by (7), provided that

X —y> &, else set dSk) = dSk’_l, fork =1,2,...,n.

Step 5: compute Xxi1 = Zx — {Dzkle(zk), where D, is define by (8), provided that |yﬁ') - Z|(<I) :
(ONIIO) M _ M _ g0 4O _ 4O O _ 40

IX,” =Y 'land [x,” —z, | are greater than ¢, else set dz~k = dzkil’ dyk = dyki1 anddzvk = dzkil for

k=12...,n

Step 6: set k=k+1, and go to step 1.

3. Convergence Analysis

In this section, we consider reporting on a result for F which presents the condition under
which the TSDU algorithm converges linearly to x*.

Lemma [10] 3.1. Let F(x) : R" » R" be continuously differentiable in an open convex set
D < R™. If D defined by D1 = diag(d\),), where
i F: —F; . .
d = '(X'gr)l) ('i)(xk) and Do =1ln, i=1,2,...,nthen Dy is bounded for each k > 0.
Xir1 — Xk

Theorem 3.1. Let x* € D be a solution of sufficiently differentiable function

F(x) : D < R" - R"in a convex open interval D. Assume {xx} converges to x* and initial
guess vector Xo is sufficiently close to x*, then the convergence rate of the proposed method
defined by (6) is linear.

Proof. Let x* be a root of F(x), i.e. F(x*) = 0 and F'(x*) # 0. The Taylor series expansion of
F(xk) about x* is

F(x) = F(X*) + F'(x*)(Xk = x*) + O([[xx — x*||?). (10)
Since F(x*) = 0, then we have

F(xi) = F'(X*)(Xx —X*). (11)
Subtraction of x* and substitution of (11) in the first step of (9) gives

Y= X* = Xk = x* = Dy T (x*) (xk — X*), (12)

which is the same as

I L.Y.UBA, and M. Y. WAZIRI

Y —X* = [E—D, F'(x*) [(xk —x*),

where E is the identity matrix. The Taylor series expansion of F(w,) about x* is

F(wi) = F(x*) + F'(x*) (Wi — X*) + O([|wi — x*[|).
Substitution of (5) and (11) in (14) leads to
F(wk) = F(X*) + F'(x*)[Xk — X* + BF'(X*)(Xk — X*)].
Since F(x*) = 0, we have
F(wk) = F'(X*)[E + BF'(x*)](Xk — X*).
The Taylor series expansion of F(y,) about x* is
F(y) = FX*) + F'(x*)(yi = x*) + O([ly, = x*[|?).
Since F(x*) = 0, then we have
F(y,) = F'(X) (= Xx*) + O(lly, — x*[1?).
It follows from (18) that
F(y,) = F'(X*)(y —X*).
Then substitute (13) in (19) to get
F(y) = F'(x*)[E =Dy F'(x*) J(xk = x*).
From equation (4), we have
_ IRyl
IF(wi)
Substitute (16) and (20) in (21) to obtain
|E ~DF'(x)]
IE+BF (X"
Subtract x* from both sides of the second step of (9) to get
Z = X* =Y, — X" —n Dy "Ry
Then substitution of (13) and (20) in (23) leads to
Z—x* = [E - Dy TF/(x*) J(xk = x*)
—n Dy, 'F'(x*)[E-D, "F'(x*) J(xk —x*),
which is the same as
z¢—x* = [E-n Dy F'(x*)][E- D, "F'(x*) J(xx = x*).
Consider now the Taylor series expansion of F(zx) about x*
F(zi) = F(x*) + F'(x*)(zk = x*) + O([|zk — x*[|?).
Since F(x*) = 0, then we have
F(za) = F'(x*)(2k = x*) + O(llzi = x* %),
and it follows from (27) that
F(zi) = F'(X*)(Zk —X*).
Substitute further (25) in (28)to arrive at

n=1 where F(wy) #+ 0 and k € N.

n<1-

(13)

(14)

(15)

(16)

(17)

(18)

(19)

(20)

(21)

(22)

(23)

(24)

(25)

(26)

(27)

(28)

Three-Step Derivative-Free Diagonal Method for Systems of Nonlinear Equations 78

F(zo) = F'(x")[E-n D, F'(x") J[E - D, "F'(x*) Jox — x*). (29)
Now,
IF @) I[E =1 Dy, F'(x")][E — D F'(x)]|
l1-—— <1- k K : 30
IRl [E+sF 0O (30)
IF 112 IFG)1I (IF)IDZIE + BF' (x) 112 (lxic = x*1D3, (31)
2IF(y 113 < 2(IF x)IN°|IE - Dy, TF OX)IP(lIxe —x* |), (32)
20Fgl* _, 2IE-DLFeOI)
IFwOI*IFoll — IE+pF ()
where F(xx) # 0, F(wg) = 0and k € N. But,
3
‘- (1_ IF@l) (20 Fywl > 3
IF(wi) | IFWIO T ITFa |l
(1 IfE —=n Dy F'(x*)][E -D, F(x")]| 2||E - D;fk':/(x*)ll3
= IE+5F (x*)]| IE+sF 92)
Subtract next x* from both sides of third step of (9) to obtain
X1 = X* =z = X* = (D, "F(z)). (35)
Reconsideration of (25) and (29) in (35) yields
Xie1 — X* = K1 (Xk — X*), (36)

where ki = [E—¢D, *F'(x")][E - nD,, *F'(x")][E - D, *F'(x")]. The norms of both
sides of (36) are

[Xke1 = X* 1< [IKa]l Ixk — %], (37)
[Xke1 — X*[|< K[Xk = x*]), (38)

where k = ||ky||. From lemma 3.1 and boundedness of the Jacobian,there exist constants
1 <71, such that 7i]c||? <c"F'(X)c <z2c||? for all x,ceR" We then Ilet
| Dk|I< max[y/n, Bo, B1, ..., Bn] = a and § = max[r1,72], to write

[/ — a8 —atd]) 2 M —at6]°)
1- , 40
- (M58 ([+ 0
and
k= [kell< [J0 = Ca][N —nat6][yn —a 18], (41)

which means that the sequence {X:1}k=0 generated by (9) converges linearly to x*. Here the

79 L.Y.UBA, and M. Y. WAZIRI

proof ends. |

4. Numerical Results

Definition [3] 4.1. Let P and S be the set of problems and the set of solvers respectively. If ng
is the number of solvers and n, is the number of problems, then for each problem p € P and
for each solver s € S, we define the performance profile P : R — [0, 1] by

P(r) = nlpsize{rp,s <7:peP, (42)
where

Fps = fp.s
P57 mingt, sis€S)

(43)

and tps=(computing time (or number of iterations, e.t.c) required to solve problem p by solver
s). Then, P(z) is the probability for solver s e S that a performance ratio rps is within a factor
7 € R of the best possible ratio.

We shall apply here our proposed method for solving systems of nonlinear equations and
explore its performance on some benchmark problems, with distinct test functions . We shall
also compare our method with the following three well known methods, which are namely,
1. Newton’s method (NM).

2. Classical Broyden’s method (CB).
3. Newton’s Method with Diagonal Jacobian Approximation (NDJA).

Problem 1: Spare function of Byeong (Beyong et. al, 2010)
Fi(x) = (1 = %)% + Xi(1 + XiXn_2Xn_1Xn) — 2;
i=12...,nand Xo = (0.5,0.5,...,0.5)7

Problem 2: System of n nonlinear equations
Fi(x) = (x? = 1)2-2;
i=12...,nandxo = (1.2,1.2,...,1.2)7

Problem 3: Extended system of Byeong, 2010
Fi(x) = cos(x? —1) —1;
i=12...,nand Xo = (0.5,0.5,...,0.5)7

Problem 4: System of n nonlinear equations
Fi(x) = Zle(XjZSin(Xj) —x{ +sin(x?));
i=12...,nand xo = (0.2,0.2,...,0.2)7

Problem 5: Extended system of Byeong, 2010
Fi(x) = x?;
i=12...,nandxo = (2,2,...,2)T

Three-Step Derivative-Free Diagonal Method for Systems of Nonlinear Equations

Table 1. Dimension of problem 1 (n), Number of iterations (NI), Out of memory (-) and

CPU Time (in seconds) and initial guess xo = (0.5,0.5,0.5,.....,0.5) T and g = 0.05.

Problem | n NM NDJA CB TSDU
NI | CPU Time | NI | CPU Time | NI | CPU Time | NI | CPU Time
50 11 | 0.040085 |8 |0.003209 |10 | 0.007449 |4 | 0.002590
200 11 1 0.229625 |8 | 0.003903 |10 |0.128108 |4 | 0.003184
1 500 11 1 4.031931 |8 | 0.006046 |10 | 0.268096 |4 | 0.004857
1000 11 | 32.071952 | 8 | 0.008633 |10 | 1.305538 |4 | 0.004767
250000 | - |- 9 /0803323 |- |- 4 10.646243

Table 2. Dimension of problem 2 (n), Number of iterations (NI), Out of memory (-) and
CPU Time (in seconds) and initial guess xo = (1.2,1.2,1.2,.....,1.2)T and g = 0.0005.

Problem | n NM NDJA CB TSDU
NI | CPU Time | NI | CPU Time | NI | CPU Time | NI | CPU Time
50 6 |0.012765 |9 |0.001811 |11 |0.007295 |2 |0.001769
200 6 |0.131159 |9 |0.003145 |11 | 0.065743 |2 | 0.001964
2 500 6 | 2212296 |10 | 0.005431 |11 | 0.256695 |2 | 0.001999
1000 |6 |16.411831 | 10 | 0.006914 |11 | 1.606041 |2 |0.002130
250000 | - | - 10 1 0.490253 | - | - 2 |0.204103

Table 3. Dimension of problem 3 (n), Number of iterations (NI), Out of memory (-) and
CPU Time (in seconds) and initial guess xo = (0.5,0.5,0.5,.....,0.5)" and g = 0.5.

Problem | n NM NDJA CB TSDU
NI | CPU Time | NI | CPU Time | NI | CPU Time | NI | CPU Time
50 37 | 0.082947 | 20 | 0.004176 |20 | 0.012065 |5 | 0.001284
200 59 | 1.079917 | 20 | 0.006523 | 20 | 0.096731 |6 | 0.002992
3 500 90 | 35.062470 | 21 | 0.009232 |21 | 0.552159 |6 |0.005726
1000 |- |- 21{0.018446 |21 |3.094933 |6 |0.009375
250000 | - | - 24 | 1558995 |- |- 7 |0.903323

81 L.Y.UBA, and M. Y. WAZIRI

Table 4. Dimension of problem 4 (n), Number of iterations (NI), Out of memory (-) and
CPU Time (in seconds) and initial guess xo = (0.2,0.2,0.2,.....,0.2) T and 8 = 0.0005.

Problem | n NM NDJA CB TSDU
NI | CPU Time | NI | CPU Time | NI | CPU Time | NI | CPU Time
50 30 | 0.137274 16 | 0.007096 |17 | 0.012739 |6 | 0.004310
200 33 | 1.144202 - |- 27 1 0.108190 |7 | 0.006489
4 500 34 | 16.148742 | - | - 30 | 0.874449 | 7 | 0.024518
1000 35 | 119.612709 | - | - 31 | 4744052 |8 | 0.038428
250000 | - |- - |- - |- 11 | 6.029565

Table 5. Dimension of problem 5 (n), Number of iterations (NI), Out of memory (-) and

CPU Time (in seconds) and initial guess xo = (2,2,...,2)T and g = 0.000001.

Problem | n NM NDJA CB TSDU
NI | CPU Time | NI | CPU Time | NI | CPU Time | NI | CPU Time
50 51 | 0.149090 | 35| 0.007965 |29 | 0.020773 |7 | 0.001829
200 52 | 1.433389 | 36 | 0.018387 |30 | 0.092941 |8 | 0.005140
5 500 54 | 24.569028 |36 | 0.019504 | 30 | 0.795550 |8 | 0.009990
1000 | 55 | 149.558292 | 36 | 0.039307 | 31 | 4757919 |8 |0.016604
250000 | - | - 40 | 9.707047 |- |- 9 | 3.760534

Problem 6:(Generalized function of Rosenbrock)

n o 03 n .
Fi(x) = Xi — Zj;l n_Jz + Zj:l(xj) -n
i=12...,nand Xo = (0.2,0.2,...,0.2)7

Table 6. Dimension of problem 6 (n), Number of iterations (NI), Out of memory (-) and
CPU Time (in seconds) and initial guess xo = (0.2,0.2,...,0.2)T and 8 = 0.00005.

Problem | n NM NDJA CB TSDU
NI | CPU Time | NI | CPU Time | NI | CPU Time | NI | CPU Time
50 4 |0.018255 |16 |0.003565 |9 |0.003218 |2 |0.000725
200 4 |0.103352 |12 |0.002480 |8 |0.046891 |1 |0.000824
6 500 4 |1.649348 |10 | 0.002435 |8 |0.189331 |1 |0.001838
1000 |4 |12.297475 |10 |0.005326 |7 |0.949198 |1 |0.001936

250000 | - | - 772 | 62.543454 | - | - - |-

Three-Step Derivative-Free Diagonal Method for Systems of Nonlinear Equations 82

The numerical results of the comparison between the methods is shown in Tables 1 to 6.
Each problem is tested with five different dimensions, namely, n =50, 200, 500, 1000 and
250000. All functions are tested using a specified starting point. In all the tables NI stand for
number of

1
. .t
: i
W D.EE' $ s
"_' i ;% NM
w 04r i »— NDJA
n : it
’_ﬂ. | .‘h—j:_-)-' £ CE
P L i Gt
o 02 TSDU
ot S -
0 1 2 3 4

Figure 1. Comparison of the performance profile of NM, NDJA, CB and TSDU methods as the
dimension increases (in terms of number of iterations)

iterations and CPU time is in seconds. In this paper TSDU stands for the method proposed.
Comparing the performance of the methods in all the Tables shows that TSDU is better than all
the methods compared, in terms of number of iterations and CPU time, and for all the tested 6
problems.The computational experiments were done using MATLAB 7.5 with double
precision arithmetic, and the comparison was done based on performance profile of the
methods in terms of the number of iterations. The stopping criterion used is:

[F(xk)||< 1078,

4. Conclusion

In this work, we proposed a linear convergence iterative derivative-free diagonal updating
method for solving large-scale systems of nonlinear equations. The proposed method uses
Newton’s method in all the three steps with approximate Jacobian matrix as a diagonal matrix.
The proposed method is attractive as it converges with less iterations than the Classical
Newton’s, Broyden’s and Newton’s method with diagonal Jacobian approximation. Finally, we
may conclude that the proposed method can be a good alternative to Classical Newton’s and

83 L.Y.UBA, and M. Y. WAZIRI

Broyden’s methods, especially for large scale nonlinear systems of equations.

Acknowledgements
The authors would like to thank the referee for some comments which have led to an
improvement of the paper.

References

[1] C. G. Broyden, A class of methods for solving nonlinear simultaneous equations,
Mathematics of Computation 19 (92), (1965), 577-593.

[2] J. E. Dennis, and J. J. Jr. More, A characterization of superlinear convergence and its
application to quasi-Newton methods, Mathematics of Computation 28, (1974), 199-208.

[3] E. D. Dolan, and J. J. More, Benchmarking optimization software with performance
profiles, Mathematical Programing 91, (1964), 201-213.

[4] C. T. Kelly, Iterative Methods for Linear and Nonlinear Equations, SIAM, Philadelphia,
PA, 1995.

[5] C. T. Kelly, Solving Nonlinear Systems With Newton Method, SIAM, Philadelphia, PA,
2003.

[6] K. Natasa, and L. Zorana, Newton-like methods with modification of the right hand side
vector, Mathematics of Computation 71, (2002), 237-250.

[7] J.F. Steffenses, Remarks on iteration, Skand Aktuar Tidsr 16, (1933), 64-72.

[8] R. Thukral, A family of three-point derivative-free methods of eighth-order for solving
nonlinear equations, Journal of Modern Methods in Numerical Mathematics 3(2), (2012), p.11.

[9] M. Y. Waziri, W. J. Leong, M. A. Hassan, and M. Monsi, Jacobian computation-free
Newton’s method for systems of nonlinear equations, Journal of Numerical Mathematics and
Stochastics 2(1), (2010), 54-63.

[10] M. Y. Waziri, W. J. Leong, M. A. Hassan , and A. U. Moyi, Two-step derivative-free
diagonally Newton’s method for large-scale nonlinear equations, World Applied Sciences
Journal 21 (Special issue of Applied Mathematics), (2013), 86-94.

[11] M. Y. Waziri, W. J. Leong, M. A. Hassan, and M. Monsi, A Newton’s method with

diagonal Jacobian approximation for systems of nonlinear equations, Journal of Mathematics
and Statistics 6(3), (2010), 246-252.

Article history: Submitted November, 17, 2014; Accepted March, 21, 2015

