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1. Introduction

Stochastic partial differential equations (SPDEs) have been studied by many authors ( see,
for example, [7]) where the random disturbances are described by stochastic integrals with
respect to semimartingales, especially by Wiener processes. The Wiener process is however
not suitable to represent a noise process if long-range dependence is modelled (see [17]). It is
then desirable to replace the Wiener process by fractional Brownian motions (fbm). Over the
last years some new techniques have been developed in order to define stochastic integrals
with respect to fBm. The study of solutions of stochastic equations in infinite-dimensional
space with a (cylindrical) fractional Brownian motion ( for example, stochastic partial
differential equations) has relatively been limited. Linear and semilinear equations with
additive fractional noise (the formal derivative of a fbm) are considered in [10] , [6] and the
same type of equation has been studied recently in [5].
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Let us now say a few words on stochastic functional differential equations (SFDEs) driven
by a fBm which arise in many areas of applied mathematics. For this reason, the study of this
type of equations has been receiving increased attention in the last few years. In [8], the
authors studied the existence and regularity of the density by using the Skorokhod integral
based on the Malliavin calculus. The authors of [14] studied this problem by using rough path
analysis, while [9] reports on the existence and convergence when the delay goes to zero by
using the Riemann-Stieltjes integral. Using also the Riemann-Stieltjes integral, the authors of
[3] proved the existence and uniqueness of a mild solution and studied the dependence of the
solution on the initial condition in finite and infinite dimensional space.

However, in some cases, many stochastic dynamical systems depend not only on present
and past states, but also contain the derivatives with delays (see, e.g., [11] and [12]). Neutral
stochastic differential equations with delays are often used to describe such systems. To the
best of our knowledge, there is only a little systematic investigation of mild solutions to neutral
SPDEs with delays ( see, e.g., [4] and references therein).

In this paper, motivated by the previous references, we are concerned with the existence
and uniqueness of mild solutions for a class of neutral functional stochastic differential
equations (FSDEs) given in the form
dxt  gt,xt  A xt  ft,xtdt  tdBQ

Ht, 0 ≤ t ≤ T,

xt  t, − r ≤ t ≤ 0, 1
where A is the infinitesimal generator of an analytic semigroup, Ttt≥0, of bounded linear
operators in a separable Hilbert space X ; BQ

H is a fractional Brownian motion on a Hilbert
space Y (see section 2 below) ; f , g and  are given functions to be specified later,
 : 0,  −r, is a suitable delay function,  : −r, 0    X is the initial value.
The gaol of this work is to establish an existence and uniqueness result for a mild solution of
equation (1). The results are obtained by imposing a condition on the non linearities, which is
weaker than the classical Lipschitz condition and generalize the results that were reported in
[4]. Our approach is similar to the one in [13] and [1] in the case of Wiener process. The rest of
this paper is organized as follows. In Section 2 we give a brief review and preliminaries
needed to establish our results. Section 3 is devoted to the study of existence and uniqueness of
a mild solution of (1) by using a Picard type iteration.

2. Preliminaries

In this section, we introduce notations, definitions and preliminary results which we require
to establish the existence and uniqueness of a solution to equation (1).
Let ,F,P be a complete probability space. Consider a time interval 0,T with arbitrary
fixed horizon T and let Ht, t ∈ 0,T the one-dimensional fractional Brownian motion
with Hurst parameter H ∈ 1/2, 1. This means by definition that H is a centered Gaussian
process with covariance function:
RHs, t  1

2 t
2H  s2H − |t − s|2H.

Moreover H has the following Wiener integral representation:



Existence and Uniqueness of Mild Solutions to NSFDEs With Non-Lipschitz Coefficients 16

Ht  
0

t
KHt, sds, 2

where   t : t ∈ 0,T is a Wiener process, and KHt; s is the kernel given by

KHt, s  cHs 1
2 −H 

s

t
u − sH− 3

2 uH− 1
2 du,

for t  s, where cH  H2H−1
2−2H,H− 1

2 
and ,  denotes the Beta function. We put KHt, s  0 if

t ≤ s.
We will denote by H the reproducing kernel Hilbert space of the fBm. In fact H is the closure
of set of indicator functions 10;t, t ∈ 0,T with respect to the scalar product
〈10,t, 10,sH  RHt, s.

The mapping 10,t → Ht can be extended to an isometry between H and the first Wiener
chaos and we will denote by H the image of  by the previous isometry.
We recall that for , ∈ H their scalar product inH is given by

〈,H  H2H − 1 
0

T 
0

T
st|t − s|2H−2dsdt.

Let us consider the operator KH
∗ fromH to L20,T defined by

KH
∗s  

s

T
r ∂K

∂r r, sdr.

We refer to [15] for the proof of the fact that KH
∗ is an isometry between H and L20,T.

Moreover for any  ∈ H, we have

H  
0

T
KH
∗tdt.

It follows from [15] that the elements of H may be not functions but distributions of negative
order. In order to obtain a space of functions contained in H, we consider the linear space |H|
generated by the measurable functions  such that

‖‖ |H|
2 : H 

0

T 
0

T
|s||t||s − t|2H−2dsdt  ,

where H  H2H − 1. The space |H| is a Banach space with the norm ‖‖ |H| and we have
the inclusion that follows.

Lemma [15] 2.1.
L20,T ⊆ L1/H0,T ⊆ |H|⊆ H,

and for any  ∈ L20,T, we have

‖‖ |H|
2 ≤ 2HT2H−1 

0

T
|s|2ds.

Let X and Y be two real, separable Hilbert spaces and let LY,X be the space of bounded
linear operator from Y to X. For the sake of convenience, we shall use the same notation to
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denote the norms in X,Y and LY,X. Let Q ∈ LY,Y be an operator defined by Qen  nen
with finite trace trQ  ∑n1

 n  , where n ≥ 0 n  1,2. . .  are non-negative real
numbers and en n  1,2. . .  is a complete orthonormal basis in Y. Let BH  BHt be Y −
valued fbm on ,F,P with covariance Q as

BHt  BQ
Ht ∑

n 1



n enn
Ht,

where n
H are real, independent fBm’s. This process is Gaussian, it starts from 0, has zero mean

and covariance:
E〈BHt,x〈BHs,y  Rs, t〈Qx,y ∀ x,y ∈ Y and t, s ∈ 0,T.

In order to define Wiener integrals with respect to the Q-fBm, we introduce the space
L2

0 : L2
0Y,X of all Q-Hilbert-Schmidt operators  : Y → X. We recall that  ∈ LY,X is

called a Q-Hilbert-Schmidt operator, if

‖‖L2
0

2 :∑
n 1



‖ n en‖2   ,

and that the space L2
0 equipped with the inner product 〈,L2

0  ∑n1
 〈en,en is a

separable Hilbert space.
Now, let s; s ∈ 0,T be a function with values in L2

0Y,X. The Wiener integral of 
with respect to BH is defined by


0

t
sdBHs ∑

n 1




0

t
n sen dn

Hs ∑
n 1




0

t
n KH

∗ ens dns, 3

where n is the standard Brownian motion used to present n
H as in 2.

Now, we end this subsection by stating the following lemma which is fundamental for
proving our result.

Lemma 2.2. If  : 0,T → L2
0Y,X satisfies 

0

T
‖s‖L2

0
2 ds  . Then the above sum in 3 is

well defined as a X-valued random variable and we have

E‖
0

t
sdBHs‖2 ≤ 2Ht2H−1 

0

t
‖s‖L2

0
2 ds.

This lemma can be proved by similar arguments to those used to prove Lemma 2 in [5].
Let A : DA → X be the infinitesimal generator of an analytic semigroup, Ttt≥0, of

bounded linear operators on X. For the theory of strongly continuous semigroup, we refer to
[16]. We will point out here some notations and properties that will be used in this work.
Hence, for convenience, we suppose that ‖Tt‖≤ M for t ≥ 0, and 0 ∈ A, where A is
the resolvent set of A, then it is possible to define the fractional power −A for 0   ≤ 1, as
a closed linear operator on its domain D−A. Furthermore, the subspace D−A is dense in
X, and the expression
‖h‖  ‖−Ah‖,
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defines a norm in D−A. If H represents the space D−A endowed with the norm ‖.‖,
then the following well known properties should hold.

Lemma [16] 2. 3. Suppose that the preceding conditions are satisfied.
(1) Let 0   ≤ 1. Then H is a Banach space.
(2) If 0   ≤  then the injection H  H is continuous.
(3) For every 0   ≤ 1 there exists C  0 such that

‖−ATt‖≤ C
t , 0  t ≤ T.

Finally, we remark that for the proof of our result we need the following Bihari’s
inequality.

Lemma [2] 2.4. Let  : R → R be a continuous and non-decreasing function and let g,h,
be non-negative functions on R such that

gt ≤ ht  
0

t
sgsds, t ≥ 0,

then

gt ≤ G−1 Gh∗t  
0

t
sds ,

where Gx : 
x0

x 1
y dy is well defined for some x0  0, G−1 is the inverse function of G

and h∗t :
s ≤ t
sup hs.

In particular, we have the Gronwall-Bellman lemma:
If

gt ≤ ht  
0

t
sgsds,

then

gt ≤ h∗texp 
0

t
sds .

3. Main Result

In this section we study the existence and uniqueness of mild solution of equation (1).
Henceforth we will assume that A is the infinitesimal generator of an analytic semigroup,
Ttt≥0, of bounded linear operators on X. Further, to avoid unnecessary notations, we
suppose that 0 ∈ A and that (see lemma 2.3),

‖Tt‖≤ M and ‖−A1−Tt‖≤
C1−

t1−
,
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for some constants M, M1− and every t ∈ 0,T.
Similar to the deterministic situation, we give the following definition of mild solutions for
equation (1).

Definition 3.1. An X-valued process xt, t ∈ −r,T, is called a mild solution of equation
(1) if
i) x.  ∈ C−r,T,L2,X,
ii) xt  t, − r ≤ t ≤ 0.
iii) For arbitrary t ∈ 0,T,we have
xt  Tt0  g0,0 − gt,xt

− 
0

t
ATt − sgs,xsds  

0

t
Tt − sfs,xsds

 
0

t
Tt − ssdBHs , P − a. s.

In order to demonstrate the existence and the uniqueness of a mild solution to equation (1),
the following weaker conditions (instead of the global Lipschitz condition and linear growth)
are listed.

H. 1 f : 0,T  X → X and  : 0,T  L2
0Y,X satisfying the following conditions: there

exists a function K : 0,  0, → 0, such that
1a ∀t Kt, .  is continuous non-decreasing, concave, and for each fixed x ∈ R,


0

T Ks,xds  .
1b For any fixed t ∈ 0,T and x ∈ X

‖ft,x‖2 ≤ Kt,‖x‖2 and 
0

T
‖t‖L2

0
2 dt  .

1c For any constant   0,u0 ≥ 0, the integral equation

ut  u0   
0

t
Ks,usds, 4

has a global solution on 0,T.
H. 2 There exists a function G : 0,  0, → 0, :

2a ∀t ∈ 0,T, Gt, .  is continuous non-decreasing and concave with Gt, 0  0, and for
each fixed x ∈ R, 0

T Gs,xds  
2b For any t ∈ 0,T and x,y ∈ X

‖ft,x − ft,y‖2 ≤ Gt,‖x − y‖2,

2c For any constant D  0; if a non negative function zt, t ∈ 0,T satisfies z0  0 and
zt ≤ D 

0

t Gs, zsds, then zt  0 for all t ∈ 0,T.
H. 3 There exist constants 1

2    1, l, Mg such that the function g is H-valued,
−Ag : 0,T  X → X is continuous and satisfies
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3a For all t ∈ 0,T and x ∈ X,

‖−Agt,x‖2 ≤ l‖x‖2  1.

3b For all t ∈ 0,T and x,y ∈ X

‖−Agt,x − −Agt,y‖≤ Mg‖x − y‖.

3c The constants Mg, l and  satisfy the following inequalities

3‖−A−‖2Mg
2  1, 5‖−A−‖2l  1.

H. 4  : 0, → R is a continuous function satisfying the condition that

− r ≤ t ≤ t, ∀t ∈ 0,T.

Moreover, we assume that  ∈ C−r, 0,L2,X.

The main result of this paper is given in the next theorem.

Theorem 3.1. Suppose that H. 1-H. 4 hold. Then, for all T  0, equation (1) has a unique
mild solution on −r,T.

For the proof of this theorem, we will need the following lemmas.

Lemma 3.1. Let f̃ ∈ L20,T,X, ̃ ∈ L20,T,L2
0, and consider the equation

dxt  gt,xt  A xt  f̃tdt  ̃tdBH
t, 0 ≤ t ≤ T,

xt  t, − r ≤ t ≤ 0. 5
Under the conditions H. 3 and H. 4, equation (5) has a unique mild solution on −r,T.

Proof. Fix T  0 and let BT : C−r,T,L2,X be the Banach space of all continuous
functions from −r,T into L2,X, equipped with the supremum norm
‖x‖BT

2 
−r≤ t ≤T
sup E‖xt,‖2.

Let us consider the set
ST  x ∈ BT : xs  s, for s ∈ −r, 0.

Clearly ST is a closed subset of BT provided with the norm ‖.‖BT .
Let  be the function defined on ST by xt  t for t ∈ −r, 0 and for t ∈ 0,T let
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xt  Tt0  g0,0 − gt,xt − 
0

t
ATt − sgs,xsds

 
0

t
Tt − s


f sds  

0

t
Tt − ssdBHs ∑

i 1

5

Iit.

We are going to show that each function t → Iit is continuous on 0,T in the
L2,X-sense.
The continuity of I1 follows directly from the continuity of t → Tth. By H. 3, the function
−Ag is continuous and since the operator −A− is bounded then t → gt,xt is
continuous on 0,T.

For the third term I3t  0
t ATt − sgs,xsds, we have

‖I3t  h − I3t‖≤ 
0

t
Th − I−A1−Tt − s−Ags,xsds

 
t

th
−A1−Tt  h − s−Ags,xsds ≤ I31h  I32h.

By the strong continuity of Tt, we have for each s ∈ 0,T,

h→0

lim Th − I−A1−Tt − s−Ags,xs  0 ,

and since

‖Th − I−A1−Tt − s−Ags,xs‖≤ M  1
C1−

t−s1−
‖−Ags,xs‖,

we conclude by the Lebesgue dominated theorem that

h→0

lim E‖I31h‖2  0.

On another hand,

‖I32h‖2 ≤ C. |h| 
0

T
l‖xs‖2  lds .

Then

h→0

lim E‖I3t  h − I3t‖2  0.

Standard computations can be used to show the continuity of I4. As for the term I5h, we
have

I5h ≤ ‖
0

t
Th − ITt − ssdBHs‖

 ‖
t

th
Tt  h − ssdBHs‖ ≤ I51h  I52h.

By lemma 2.2, it follows that
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E‖I51h‖2 ≤ 2Ht2H−1 
0

t
‖Th − ITt − ss‖L2

0
2 ds

≤ 2HT2H−1M2 
0

T
‖Th − Is‖L2

0
2 ds.

Since
h→0

lim ‖Th − Is‖L2
0

2  0 and

‖Th − Is‖L2
0

2 ≤ M  12‖s‖L2
0

2 ∈ L10,T,ds,

it follows, by the dominated convergence theorem, that

h→0

lim E‖I51h‖2  0.

Again lemma 2.2 leads to

E‖I52h‖2 ≤ 2Hh2H−1M2 
t

th
‖s‖L2

0
2 ds → 0.

The above arguments show that
h→0

lim E‖xt  h − xt‖2  0. Hence, we conclude that

the function t → xt is continuous on 0,T in the L2-sense.
Next, to see that ST ⊂ ST, let x ∈ ST and t ∈ 0,T, we consider

‖xt‖2 ≤ 5 ‖Tt0  g0,0‖2  5 ‖gt,xt‖2

 5 ‖
0

t
A Tt − sgs,xsds‖2  5 ‖

0

t
Tt − s


f sds‖2

 5 ‖
0

t
Tt − ssdBHs‖2  5∑

i 1

5

Jit.

Standard computation yields

0≤ t ≤T
sup EJ1t ≤ M2 E‖0  g0,0‖2.

And by using condition 3a and Hölder’s inequality, we have
EJ2t ≤ ‖−A−‖2 l E‖xt‖2  l ,

and hence,

0≤ t ≤T
sup EJ2t ≤ ‖−A−‖2 l

0≤ t ≤T
sup E‖xt‖2  l .

Using again condition 3a and Hölder’s inequality, we have
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EJ3t ≤ 
0

t
‖−A1−Tt − s‖2ds 

0

t
E‖−Ags,xs‖2ds

≤ 
0

t C1−
2

t−s21− 0

t
l E‖xs‖2  lds.

≤ C1−
2 T2−1

2−1 
0

T
l E‖xs‖2  lds.

Also a standard computation yields

0≤ t ≤T
sup EJ4t ≤ M2T 

0

T
E‖

f s‖2ds.

Then by using lemma 2.2 we arrive at

0≤ t ≤T
sup EJ5t ≤ 2HT2H−1 

0

T
‖s‖L2

0
2 ds.

Since xt  t on −r, 0, the inequalities together imply that

−r≤ t ≤T
sup E‖xt‖2  .

Hence, we conclude that  is well defined.
Now, we are going to show that  is a contraction mapping in ST1 with some T1 ≤ T to be

specified later. Let x,y ∈ ST and t ∈ 0,T, to write
‖xt − yt‖2 ≤ 2 ‖gt,xt − gt,yt‖2

 2 ‖
0

t
A Tt − sgs,xs − gs,ysds‖2

≤ 2 ‖−A−‖2‖−Agt,xt − −Agt,yt‖2

 2 ‖
0

t
−A1−Tt − s−Ags,xs − gs,ysds‖2.

By condition 3b, lemma 2.3 and Hölder’s inequality, we have
‖xt − yt‖2 ≤ 2 ‖−A−‖2Mg

2‖xt − yt‖2

 2 Mg
2C1−

2 T2−1

2−1 
0

t
‖xs − ys‖2ds.

Hence

s∈−r,t
sup E‖xs − ys‖2 ≤ t

s∈−r,t
sup E‖xs − ys‖2,

where

t  2Mg
2 ‖−A−‖2  C1−

2 T2−1

2−1 t .

By condition 3c, we have 0  2‖−A−‖2Mg
2  1. Then there exists 0  T1 ≤ T such

that 0  T1  1 and  is a contraction mapping on ST1 , and therefore has a unique fixed
point, which is a mild solution to equation (5) on 0,T1. This procedure can be repeated in
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order to extend the solution to the entire interval −r,T in finitely many steps. 

We now construct a successive approximation sequence, using a Picard type iteration, with
the help of lemma 3.1. Let x0 be a solution of equation (5) with f̃  0, ̃  0 . For n ≥ 0, let
xn1 be the solution of equation (5) on −r,T with f̃t  ft,xnt, and ̃t  t, i.e.
xn1t  t, if t ∈ −r, 0

xn1t  Tt0  g0,0 − gt,xn1t − 
0

t
ATt − sgs,xn1sds

 
0

t
Tt − sfs,xnsds  

0

t
Tt − ssdBHs, if t ∈ 0,T. 6

Now, we prove the existence of a solution to problem (1). The proof starts by stating the
following lemmas.

Lemma 3.2. Under conditions H. 1 − H. 4, the sequence xn,n ≥ 0 is well defined and
there exist positive constants M1, M2, D0 such that for all m,n ∈ N and t ∈ 0,T,
(1)

−r≤ s ≤t
sup E‖xm1s − xn1s‖2 ≤ M1 

0

t
Gs,

−r≤  ≤s
sup E‖xm − xn‖2ds, 7

(2)

−r≤ s ≤t
sup E‖xn1s‖2 ≤ D0  M2 

0

t
Ks,

−r≤  ≤s
sup E‖xn‖2ds. 8

Proof. ∙ 1: For m,n ∈ N and t ∈ 0,T we have
‖xm1t − xn1t‖2 ≤ 3I1t  I2t  I3t,

where
I1t : ‖gt,xm1t − gt,xn1t‖2,

I2t : ‖
0

t
ATt − sgs,xm1s − gs,xn1sds‖2,

I3t : ‖
0

t
Tt − sfs,xms − fs,xnsds‖2.

By using condition 3b for the terms I1 and I2, we obtain
I1t ≤ ‖−A−‖2Mg

2‖xm1t − xn1t‖2,

I2t ≤
C1−

2

2−1 T2−1 
0

t
Mg

2‖xm1s − xn1s‖2ds.

Then the condition 2b for the term I3 leads to

0≤ s ≤t
sup EI3s ≤ C 

0

t
Gs,

−r≤  ≤s
sup E‖xm − xn‖2ds.



25 E. LAKHEL, and S. HAJJI

Consideration of the fact that 3‖−A−‖2Mg
2  1 and the above inequalities result with

−r≤ s ≤t
sup E‖xm1s − xn1s‖2 ≤ C 

0

t

−r≤  ≤s
sup E‖xm1 − xn1‖2ds

 C 
0

t
Gs,

−r≤  ≤s
sup E‖xm − xn‖2ds.

Finally by lemma 2.4 we obtain

−r≤ s ≤t
sup E‖xm1s − xn1s‖2 ≤ C 

0

t
Gs,

−r≤  ≤s
sup E‖xm − xn‖2ds.

∙ 2: Following the same method as in the proof of assertion (1)leads to

−r≤ s ≤t
sup E‖xm1s‖2 ≤ C  C 

0

t

−r≤  ≤s
sup E‖xm1‖2ds  C 

0

t
Ks,

−r≤  ≤s
sup E‖xm‖2ds.

Also by lemma 2.4 we obtain

−r≤ s ≤t
sup E‖xm1s‖2 ≤ C  C 

0

t
Ks,

−r≤  ≤s
sup E‖xm‖2ds.

Here the proof ends. 

Lemma 3.3. Under conditions H. 1 − H. 4, there exists a ut satisfying

ut  u0  D 
0

t
Kusds,

for some u0 ≥ 0, D  0, and the sequence xn,n ≥ 0 , for all n ∈ N and t ∈ 0,T, satisfies

−r≤ s ≤t
sup E‖xns‖2 ≤ ut. 9

Proof. Let u : 0,T → R be a global solution of the integral equation (4) with an initial
condition u0  D0 ∨ sup−r≤t≤TE‖x0t‖2 and with   M2, where D0, M2 are the same
constants as in lemma 3.2. We prove inequality (9) by mathematical induction. For n  0, the
inequality (9) holds by the definition of u0.
Furthermore, let us assume that sup−r≤s≤tE‖xnt‖2 ≤ ut. Then by (8), we obtain

−r≤ s ≤t
sup E‖xn1s‖2 ≤ D0  M2 

0

t
Ks,

−r≤  ≤s
sup E‖xn‖2ds

≤ u0  M2 
0

t
Ks,usds  ut.

This completes the proof. 

3.1. Proof of theorem 3.1

The proof shall address the issues of existence and uniqueness of a mild solution to (1).

∙ Existence : For t ∈ 0,T, by lemma 3.2 we note that
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−r≤ s ≤t
sup E‖xm1s − xn1s‖2 ≤ M1 

0

t
Gs,

−r≤  ≤s
sup E‖xm − xn‖2ds. 10

Moreover, by lemma 3.3 and the Fatou Lemma it follows that

m,n→
lim sup 

−r≤ s ≤t
sup E‖xms − xns‖2 ≤ M1 

0

t
Gs,

m,n→
lim sup

−r≤  ≤s
sup E‖xm − xn‖2ds.

Also by condition (2c), we have

m,n→
lim

−r≤ s ≤T
sup E‖xms − xns‖2  0.

This implies that xn, n ≥ 1 is a Cauchy sequence in BT. Therefore, the completeness of BT
guarantees the existence of a process x ∈ BT such that

m,n→
lim

−r≤ s ≤T
sup E‖xns − xs‖2  0.

By letting n →  in (6), it is seen that x is a mild solution to equation (1) on −r,T.

∙ Uniqueness : Let x and y be two mild solutions of equation (1) on −r,T, then

−r≤ s ≤t
sup E‖xs − ys‖2 ≤ M1 

0

t
Gs,

−r≤  ≤s
sup E‖x − y‖2ds.

By condition (2c), it follows that sup−r≤s≤TE‖xs − ys‖2  0. Consequently x  y, which
implies uniqueness. Thus the proof of the theorem is complete.

Remark 3.1. If ∀t ∈ 0,T, we have Gt,u  Lu, u ≥ 0, L  0, the condition H2 implies a
global Lipschitz condition. Clearly, the Lipschitzcondition is a special case of the proposed
conditions.

Corollary 3.1. Suppose that H. 3 − H. 4 are satisfied. Further we suppose that for each
fixed t ∈ 0,T and x,y ∈ X, the following conditions are satisfied,
a.1 ‖ft,x − ft,y‖2 ≤ t‖x − y‖2.
a.2 ‖ft, 0‖, ‖t‖L2

0 ∈ L20,T;R for all t ∈ 0,T,
where t ≥ 0 is such that 

0

T
sds  , and  : R → R is a continuous concave

nondecreasing function such that 0  0, u  0 for u  0 and 
0

1
x   . Then

equation (1) has a unique solution.

Remark 3.2. As a concrete example of the function . . Let L  0 and  ∈ 0,1 be
sufficiently small. Define
1u  Lu, u ≥ 0 ,
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2u 
u lnu−1, 0 ≤ u ≤ ,

 ln−1  2
′
−u − , u  .

where 2
′ denotes the derivative of function 2. They are all concave nondecreasing functions

satisfying 
0

1
ix

  , i  1,2.

4. Illustrative Example

In this section, an example is provided to illustrate our result. Consider the following
neutral stochastic partial differential equation with finite delays driven by a fractional
Brownian motion of the form:

dxt,   1

M1/2‖−A
1
2 ‖

xt,   ∂2

∂2
xt,   2xt,  dt

 tdBHt, t ∈ 0,T,
xt, 0  xt,  0, t ∈ 0,T,  i  0, i  1,2,
xs,   s, , s, .  ∈ L20, ; −r ≤ s ≤ 0 a. s. , 11

where M1/2 is the corresponding constant in lemma 2.3, BHt is a standard one-dimensional
fractional Brownian motion with Hurst parameter H ∈  1

2 , 1, and  : 0, → R is a
continuous function satisfying the condition that
−r ≤ t ≤ t, ∀t ∈ 0,T.

For the sake of simplicity of notation in the following text, the variable  of xt,  shall be
omitted.

Let us conceive (11) in the abstract form of (1), with X  L20,. Define then the
operator A : DA ⊂ X  X, given by A  ∂2

∂2
with

DA  y ∈ X : y ′ is absolutely continuous, y ′′ ∈ X, y0  y  0,
to obtain

Ax ∑
n 1



n2  x,en X en, x ∈ DA,

where en : 2
 sinnx, n  1,2, . . . . is an orthogonal set of eigenvector of −A. The bounded

linear operator −A 1
2 is given by

−A 1
2 x ∑

n 1



n  x,en X en ,

with domain
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D−A 1
2   x ∈ X,∑

n 1



n  x,en X en ∈ X .

It is well known that A is the infinitesimal generator of an analytic semigroup {Stt≥0 in
X, and is given by (see [16])

Stx ∑
n 1



e−n2t  x,en  en ,

for x ∈ X and t ≥ 0, that satisfies ‖St‖≤ e−2t for every t ≥ 0.
We may respectively define
gt,xt  1

M1/2‖−A
1
2 ‖

xt ,

and
ft,xt  2 xt.

It is obvious that all the underlying assumptions are satisfied with   1
2 , M  1,

Mg 
1

M1/2
, l  1

2

M1/2
2 and ‖−A− 1

2 ‖ ≤ 1
Γ1/2 0


t −12 ‖St‖dt ≤ 1

 .

Thus, by theorem 3.1, there exists a unique mild solution to (11), provided that 5
1

2

M1/2
2 2

 1.
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