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Abstract. Mixed multiple stochastic integrals for independent Brownian motions, can not be
explicitly approximated. However, integrating a time dependent process in the stochastic
sense, namely with respect to the associated Brownian motion, leads to interesting analytical
and numerical facts and studies. The main concern of this paper is to provide a recurrence
formula (theorem 3.5) for simulating a class of multiple 1t6 stochastic integrals, which possess
a behavior similar to the Gaussian colored noise. Moreover, it contains a numerical analysis,
in a review style, of the time-integral and time-differential, in the distributional sense, of the
non-differentiable time dependent Brownian motion. All Matlab codes used in the numerical
algorithms are also listed.
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1. Introduction

Early in 1944 and 1951, K. I1t6 published the first meaningful analysis for Wiener multiple
stochastic integrals [9, 10]. Later the works of Wong and Zakai [18, 22] gave a more explicit
analysis to these topics. These are necessary tools for solving either stochastic differential
equations (SDEs) (or systems of these equations) [5, 6, 19, 23] or evolutionary partial
differential equations with uncertainties [16, 15, 17, 20, 21], especially in Finance, Physics,
Biology, etc...[12, 14, 2,11, 1, 13].

The purpose of this work is to provide an introduction to computational stochastics for
numerical integration and simulation of a class of multiple Itd integrals. Instead of attempting
to describe the largest possible class of stochastic integrals, we shall only single out a class of
these processes. Namely, we shall illustrate some of their graphical similarities to the Gaussian
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colored noises. Moreover, because the aim is the application of such integrals, much more
emphasis is directed at analysis of the theoretical and computational properties of multiple
stochastic integrals with respect to a Brownian motion. In this respect, we present interesting
technics to be used and developed by graduate students and junior researchers. From a
pedagogical point of view, the purpose of these notes is to provide an intuitive understanding
of the nature of the multiple stochastic integral, and to clearly outline the difficulties in this
type of calculus. For a rigorous analytical theory, we would refer the reader to the books of
Karatzas and Shreve (1991), Kloeden and Platen (1992) [5] and @ksendal (1985, 2003) [8].
The present work in meant, however, to combine the interests of Finance and Mathematics
graduate students and to jointly introduce them to the subject of Computational Stochastics.

This paper is structured as follows. The second section consists of a numerical construction
of normally distributed random numbers using the famous method of Box Mauller. We also
state the computational aspect of the Brownian motion and some related processes. In the third
section, we will prove the main theorem (theorem 3.5 and corollary 3.1) for the construction
the colored-noise-like multiple stochastic integrals. With some critical remarks and open
questions, we end this paper. We note here that this work paves the way towards a future
similar work on SDEs and stochastic partial differential equations (SPDES).

2. Numerical Simulation of the Brownian Motion

Stochastic calculus is in general based on the Brownian motion process. This was first
discovered by the Scottish botanist Robert Brown in 1827. The notion that the increments of
the Brownian motion are normally distributed is the source of immense scientific results, either
in stochastic analysis or in the interpretation of physical, biological, econometric models. In
the following analysis, we will focus on the behavior of some derived processes, namely the
time-integral and time differential of the Brownian motion in the distributional sense. For more
properties of the Brownian motion, we refer the reader to [3].

2.1. The Brownian motion

Definition 3.1. A one-dimensional Brownian motion (also called standard Wiener process) is a
real-valued stochastic process {Wi}=o indexed by nonnegative real numbers t with the
following properties:

1) Wp = 0.

2) With probability 1, the function t — W is continuous in t.

3) The process {W:} o has stationary, independent increments.

4) The increment W; — W is normally distributed with mean zero and variance t — s i.e.

Wi —-Ws ~ Jt—sAN(0,1), forall t>s.

A Wiener process with initial value Wy = Xo is achieved by adding xo to a standard
Wiener process. The term independent increments means that for every choice of nonnegative
real numbers 0 <s; <t; <Sp <tp <---<sp<ty,<oo, the random variables (Wiener
increments)

Wi, — W, , Wy, = Ws,, ..., Wy, — Ws,
are pairwise independent. The stationarity of increments means that the distribution of the
increment Wy,s — W; has the same distribution as Wy — Wy = Wy, forany 0 < s,t < 1

In general, a stochastic process with stationary, independent increments is called a Levy
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process. Moreover, It should not be obvious that properties 1) - 4) in the definition of a
standard Brownian motion are mutually consistent, so it is not a priory clear that a standard
Brownian motion exists. That it does exist was first proved by N. Wiener in about 1920. His
proof was simplified by P. Levy. The compatibility of the properties 3. and 4. follows directly
from elementary properties of the normal distributions: If X and Y are independent, normally
distributed random variables with means ux ; uy and variances o% ; o4, then the random
variable X + Y is normally distributed with mean px + py and variance o% + 3.

The random function W : [0,1] — R is continuous but nowhere differentiable (almost
surely). Its proof was early given by Paley, Wiener and Zygmund in 1933. This is particularly
interesting, as it is not easy to construct a continuous, nowhere differentiable function without
the aid of randomness.

One of the interesting interpretations of the Brownian motion is the relationship to the
random walk, namely W; could be interpreted as a limit of symmetric random walks. Let us
consider a subdivision of the interval [0,c0) into subintervals of length 6. Each subinterval
corresponds to a time slot of length 6. Thus, the intervals are (0,4], (5, 26], (26,36], .... where
the k' subinterval is ((k — 1)8,ks]. Furthermore, we define the symmetric random variables
Xi, fori € Nas
P(Xi=y5)=P(Xi=-J5) =1

It is easy to see that X;’s are independent and E[X;] = 0 ; Var(X;) = 6. We may define then
the process W; as follows: Set Wy = 0 and at time t = né to define the value of W; by
Wi = Wps = Zinzlxi- Since W; is the sum of n i.i.d. random variables, E[W:] = 0 and
Var(W¢) = t. Then, for any t € (0,%), by the passage to the limit for large n,  tends to zero
and by using the central limit theorem, W; will be a normally distributed random variable with
mean O and variance t. Moreover, Since X; are i.i.d, we conclude that W; has independent
stationary increments. And by this way, the above method leads to the construction of a
process with continuous sample paths, i.e. W; is a continuous function of t , nowhere
differentiable. These are called a standard Brownian motion or a standard Wiener process.
Moreover, even if the differentiability is not satisfied, one of the most interesting processes is
the Gaussian white noise &(t) = dWi/dt, defined as the time-derivative in the distributional
sense of the Brownian motion.

2.2. Construction of normally distributed numbers

One of the most useful methods for generating random numbers with a normal distribution
is the Box-Muller transform, which was suggested by George Edward Pelham Box and Mervin
Edgar Muller (1958). Altogether, the Box-Muller method takes independent standard uniform
random variables U; and U, and produces independent standard normals X; and X, using the
formulas:

0 =27U;, R=/-2In(Uz), X;=Rcos@), X, =Rsin(H). @h)

In other words, from two random numbers u; ,uz € (0,1] (generated by a uniform
distribution), we produce two independent standard normally distributed numbers ny and ny,
namely

ny = /—2In(u1) cos(2ruy), ny = J/-2In(uy) sin(2zuy). (2)

It has been proven that the random variables X; and X, are independent, given that they
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incorporate the same R and 6. Here the independence property is analytically and
computationally satisfied.

The Box-Miller Matlab code is given by:

function x=boxm(Q);

%return a uniform normally distributed number x
ul=rand;

u2=rand;

x=sqrt(-2*log(ul))*cos(2*pi*u2);

Code 1: boxm.m

To generate the histograms above, use the following code:

function H=NormalDist(n);

% return a histogram of a uniform normal distribution
% n is the number of ND random numbers

X=zeros(1,n);

for i=1:n

ul=rand;

u2=rand;

X(1)=sqrt(-2*log(ul))*cos(2*pi*u2);

end

hist(X,50);

Code 2: NormalDist.m
2.3. Simulation of the Brownian motion
Consider the upper time bound T € R* and let 0 = to < t1 <...< ty = T be an equidistant

discretization of the time Interval [to,T], i.e. tx = KA with A = % Per definition of the
Brownian motion, the increments are i.i.d. and normally distributed. Moreover, it yields

N=100
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Figure 1: Histogram of the random numbers generated by the Box-Muller method.

(Wtk+l_Wtk> -
AT MO, 1).

To simulate the paths of Brownian motion, the values W;, Vk =0,1,...,N are per
recursion obtained, and by using linear interpolation one can compute the value of W; for all
t e (tk, tksn).

The Matlab code for generating the path of a Brownian motion is:

function W=BrownianMotion(dt);
% this code generates a Brownian motion path
% dt time step size
% the path of the BM will be showed in the time interval [0,1]
N=round(1/dt);
W = zeros(1,N);
T = zeros(1,N);
W(1)=0;
T(1)=0;
for j=1:N
TA+1)=j*dt;
W @+1)=Wg)+sgre(dt)*boxm();
end
plot(T,W);

Code 3: BrownianMotion.m

dt=0.1 dt=0.01
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dt=0.001 dt=0.0001
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Figure 2: Brownian motion for different time-steps on the time inerval[0,1].
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Figure 3: Planar Brownian motion for different time-steps on the time interval[0,1].
3. Simulation of a Class of Multiple Stochastic Integrals

The main concern in this section is to define and simulate a class of multiple stochastic
integrals in the sense of It6. In this way, we deal with a continuous (time-parameter) stochastic
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process Z:(-) adapted to a filtration §: progressively measurable, i.e. Zi(w) is B¢ x i
measurable for all Borel o-field B; on [0,t]. For instance, all processes with continuous sample
paths are progressively measurable.

3.1. 110 integral

Let us consider T € T and (€2,2,P) a probability space with a Filtration § = (§t)o1-

Define then the set At of square-integrable §i-adapted process (SIASP). Throughout this
paper, the filtration §o contains the sets with measure zero and 3§ is right continuous in time.
In this case, §t will be called a right continuous augmented filtration. In the following, we will

use the norm || Z¢|| a; = (EUZ ngsD%

Definition 3.1. For Z € Ar, the the 1t0 integral with respect to the Brownian motion is defined
as

1[Z]oy :—j ZsdWs =lim 1M[Z]o, ©)
N—-oo
where
N
4 Z ot Wt = W), 4)

and 7} = {tk k=0,...,Nand | € N} is a sequence of discretizations of the time interval
[0,t]. The I|m|t( ) is a mean square limit of random variables, i.e., it should satisfy
lim B(1[Z]ox — 1™ [Z]or)? = 0. )

N—o0

Theorem [8] 3.1. The limit (5) exists in L2(P) and is unique for all t € [0, T].
The It0 integral satisfies the properties that follow.

Lemma 3.1. (Llnearlty) Consider (Zt ))tET, (Zt ))te']f e At and K1,K; € R. For
[ZD]oy = j ZPdWs and 1[Z@]p; = j 7Pdws,

the relation

I[K1Z® + K,Z @1, j (KiZ& + KoZ@)dWs = Ki[ZD]op + Ko [ZP]o (6)
must hold.

Proof. The proof of (6) follows directly from the definition 3.1. H

Remark 3.1. It is important to note that, the linearity discussed in lemma 3.1, require the
integration Wlth respect to the same Brownlan motion W;. Therefore, for

[ZD]o; j ZPdwe and  1[Z@]o; j 7Pdwz, )
the linearity property of the It integral is not true.

Theorem [8] 3.2. For (Zi)ter € A1, 0 < s < t the following properties all hold.
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i) (Martingale)

E(I[Z]o:lFs) = 1[Z]os. ®)
ii) (Itd Isometry) :
B[((Z)00)?) = E [ _Zidu. ©

iii) (Continuity of 1)
There exists a continuous process h; such that
Ptht = 1[Z]oy) =1, VL,0<t<T. (10)

3.2. Higher order 116 formula

One of the main concerns of Stochastic Calculus is the new concept of differentiability. For
instance, we know that the path of a Brownian motion is continuous but nowhere differentiable
and in order to define a stochastic differential equation and integrals, we have to introduce the
notion of stochastic differentiability. The central result is the Itd-Formula, which leads to a
new definition of differential equations and to a new concept of Taylor expansion. A process
satisfying a stochastic differential equation (SDE) in the sense of Itd, will be called an It0
process.

Definition 3.2. Let (W)t be an m-dimensional Brownian motion, defined on a (Q,20)™, with
right continuous augmented filtration § = (Ft)wr. The process (X{...,X{) is called an Itd

Processes, if and only if it has the following form

) ) t m ot .. .
Xi = Xi, + agds+2j biddwd:  i=1,...d j=1,...m, (11)
Lo

to

where for all i,j; (ai)iwer, (b)) are : adapted, jtT alds < oo and jtT (beh2ds < o as.

Lemma 3.2. Consider a one dimensional Brownian motion and a non-necessary uniform time
discretization ty = k T;O of the interval [to, T]. Then we have,
2n-1 2n-1 2n-1

i) lim D (A2 = lim D AAW,, = lim ) AW, At = 0.
k=0 k=0 k=0

n—oo _ N—o0 N—oo
2n-1 T

i) lim Z:(Awtk)2 = I ds = (T —to), (Convergence in L?).
k=0 to

n—oo

where Aty = ti1 — te and AWy, = Wy,,, — Wy,.

Proof. i) follows from the construction
2"-1 2n-1

.
lim Z (Aty)? < lim max (Aty) ZAtk =lim max (Atk)j dt = 0.
e 10 ey k=0 AR fo

For part ii), with the Brownian motion, we have

T 21 T
0 = lim min (Atk)j dWs <lim >~ AtAW, < lim max (Atk)j dWs = 0.
n—oo K to n—oo k=0 n—oo K to
Since AW, are i.i.d. and normally distributed with mean zero and variance Aty , and by using
the strong law of large numbers the following convergence in L? is true.
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2"-1
lim Z (AW, )? = (Ilm ZAtk> = _[tT ds = (T —to). |

nN—oo n—oo

Lemma 3.3. Let us consider the functional f: [to,T] x RY - R with continuous partial

of of o°f . . . .
derivatives o and EVEw for i =1,...,d and a one dimensional Itd Process (Xt)ter.
For any time discretization ty = k o —1o 4f the interval [to, T], then it follows that

t of
)] !‘er Z —Atk = Ito ads
ot oof ot oof toof
i) fim Z LAy, = jto —-dXs = jto —-asls + jto = bidWs.
t o%f

iii)lim At)?2 =0+| —ds=

>M282< ) o
iv) lim Z P axe)? = [ L bags

N-sc0 “ o OX2

where Atk = tk+1 —tyx and Ath = Xty — Xty-

Proof. The result i) is trivial, while the proof for ii) is
2"-1

. of tof tof toof toof
lim 3 =Xy, = | =-dX Xs = [ &(asds+bsdws)=_‘.to—asds + [ S-bdws,

n-eo 7 OX to to 0 to OX
As for iii), consider a uniform time discretization At of the interval [to, T], then we have

lim Z f(At)? = lim (A1) j

Nosoo 5t2 N>% ~—~—_0

t o%f
—-ds = 0.
to atZ

———bounded
Flnally to prove iv), we erte

2n—
lim AXt )2 =lim b? AWZ,
Moo kz: ( tk) Moo Z

2 l

2
+ lim Z TfatzkAtk
N—o0
v ’ 0 (lemma 3.2)
2"-1
2
+ lim 2 Z gxf ay bf Atk AWy, (applying Ito isometry in  L2)
N—o0 k:0
’ 0
t
—J gzbzds (|n L?). |
to

Lemma 3.4. Under the assumption of the lemmas above, the one dimensional cased =m =1
of the I1t6-Formula can be written as
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f(tX)—f(toXto)+I {af(sX)+as (s, Xs) + g—sxs)}ds
+ (s X<)dWs. (12)

Proof. For a given discretization of the time interval [to,T] by tk —k(T ) - define

Aty = tiea — te; AXy, = Xt — X, and AWy, = Wy, — Wy, By using the Taylor expansion of
order two, we have

2"-1

f(t, Xo) = f(to, Xty) + D Af(ti, Xy,) (13)

k=0

Y of

2"—
— f(to, Xy,) + Z —At LA, + Z g— (AXy,)?
k=0

1
+Z o O Ateax, + Z 8t2 Fat )2+ZRK, (14)

where Ry consists of sums of hlgher order partial derlvatlves of f, as a factor of (At)?,
AWy, (At)?, A(Wy )2At and AWy At. Using the results of lemma 3.2, we conclude that
Rk = O((At)?) and therefore the remainder term vanish in L2. Also using the results of lemma
3.2, all terms with (At)2 vanish (at least in L? if the increment of the Brownian motion
appears.) Similar construction could be done for the mixed partial derivatives, which are in
general factors either of (At)2 or AWtkAt Thusnall terms in (14) vanish in L?,

2n-1 af 2n-1
lim [ Stox —— At AXy, + Z 6t2 (At )2 +ZRKJ =

nN—oo

The passage to the limit in (13) leads to
2

2n-1
0
f(t,Xt)—f(to,Xt0)+LLrpo|:k Atk+2 = AXy, + kza—Axtk)ZJ

Since dX; = a:dt + b,dW; , and using the results of lemma 3.3, the one dimensional 1t6 formula
is proved. |

Example 3.1. For f(t,x) = %xz with X; = W; and a; = 0,b; = 1. By applying It6’s formula,
we have:

2
df = a—fdt+ata—fdt+bta—de+ 2602t
af o
= = 1)—dW + L1 (1 2 0T
& L (a? 5 +5221E 5t
= St 5 dw+ %Wdt
% o
- Zow+ + Lt
Hence

%thZ = Wtth + %dt,
and
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1 [awz = [waw, + £ [ dt.
Thus, t
Iy = IOWSdWs — L(WE-t). (15)

Note that W7, represents the square of the end value of the Brownian motion. Thus I; will
be considered as a time process if we change the upper bound of the integration interval.

Example 3.2. Consider n > 1 in f(t,x) = x™. Then apply 1t6’s formula for X; = W, to obtain
d(WP) = (n + HWPAW, + “E2wi-tdt.
Hence,
t t
[ awg = owpt - 2 [ witds,
0 0

n+1

Simulation of the sample path of the It6 integral (15).

3

dt=2- 10~ de=4- 107°

|
- T S R R S - T - B -1
T T T T T T T T
|
B T T R S - TR R S

Figure 4: Simulation sample path of the Itd integral with the same number of steps N=500.

It is important to notte that the integral of a Brownian motion path with respect to time,
represented by (W) = jo Ws ds is not a stochastic integral. It represents the area under

3
Brownian motion path, I(W;) is a normal random variable with mean 0 and variance %; i.e.
I(Wi) ~ N(O, %). The proof is similar to the constructions done in lemma 3.2.

The function codes used for generating the process I; are

%intWdW Approximate stochastic integrals
function ito=IntWdW(t);

N = 500; dt = t/N;

R=zeros(1,N);

for j=1:N

R()=boxm();

end

dW = sqrt(dt)*R; % increments

W = cumsum(dw) ; % cumulative sum

ito =0.5*(W(end)"2-t);

Code 4: IntWdwW.m
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The function IntWdWprocess’ recall the previous one .

function Wp=IntWdWprocess(T,N);
return the process int WdW on [0,T]
N is the number of subdivisions
the process will be ploted

dt=T/N;

Wp = zeros(1,N);

T = zeros(1,N);

for j=1:N

TA)=j*dt;

WpD=IntWdW(T())

end

plot(T,Wp);

Code 5: IntWdWprocess.m

Theorem 3.3. Consider the functional f : [to, T] x RY - R with continuous partial derivatives

of of o°f . : : . .
o and EVEN fori =1,...,d. Moreover, consider a d-dimensional It6-Process (Xt)cr ,
then the following must be satisfied. t
ft, X, XY = f(tg, XE, .., Xd) +j —(s XL, ... X9)ds
tho XL X9dX,
d

L1 d i Xi

L tho ax'a (s XL XD < XX > (16)
where

. R m .. .
dX{= al(s, X,)ds + D _ bH(s, X )dwi,
j=1

and
d < X', XI>g =" bt (s, X )b’ (s, X,)ds,

kel
with dWide = 5ijdt, dw,dt = dtdW; = dtdt = 0.

Proof. Similar to the one-dimensional case, only with some more complexity. H

Theorem [7] 3.4. ( Partial integration) For the following two one-dimensional 1td processes
(Xt)ter and (Yt)teqr, deflned on the same probablllty space,

Xt = Xo +I agds+J. bldWws, Yi = Yo +J. a§ds+_[ b2dWs,
the stochastlc partial integration formula is given by
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t t t
X.Ys = XoYo + j XedlYs + IO Y dX + j O blb2ds. (17)

Example 3.3. For X;=Y;=W; and a; = 0,b; = 1. By applying the stochastic partial
integration, we get

d(WiW;) = WsdWs + WsdWs + (1)(1)ds,

d(W?) = 2WsdW; + ds,

t t
W2 = 2[ WdW +f 1ds.
0 0
Tthus,
j WdWs = L(W? - t).
0

Remark 3.2. Regarding the behavior of time-integral and time-differential of a Brownian
motion, since this is nowhere differentiable, we use it for the time derivative, in the
distributional sense, of their paths. Thus, we get in both cases a Gaussian stochastic processes.
Explicitly, we may consider a finite difference approximation of &; using a time interval of

width t, W W
" t+At — YVt
éAt (t) L At y

then thet time integral
Zt = j‘ Wst,
0
represents the area under the path of the Brownian motion {Ws} g<s<t.

We may summarize the previous relationships in the diagram that follows.

t
%(Wt2 —1) = IoWSdWS %Wt = &4 Gaussian (White Noise)
NS & ~ N o0)
Wi

/ N\

t
BM increment AWy, = Wy, — Wy, I Wsds = Z; Gaussian (Random Variable)

0

AWy ~ N1 [ALLy) Zi ~ EN(/@ o0)
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White Noise time Series

White Noise

Figure 5: Example of white noise.

Colored Noise time series Colored Noise Distribution
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Figure 6: Example of colored noise.

The white noise as a stationary process has the following properties:
E(a) = 0; Var(éa) = ﬁ; Cov(&at(t),Eas(s)) = 0; ift s,
where d:(t) ) is an approximation of the following 6 —function. This noise is called white
whenever one talks about uncorrelated (or independent) noise at each pixel. White noise is the
noise signal whose power spectrum is flat (the Fourier transform of its covariance). Otherwise
the noise is called colored noise.

3.3. Multi-indices

In order to be able to define the multiple stochastic integrals, we introduce the following
set of multi-indices. Let us consider m € Nand F = {0,1,...,m}. A multi-index a refers to a
row vector with components in F such as o = (j1,...,J1) Where j; € F,for1 <i <.
We denotes the size of a by I(a) = | and by n(e) the number of zero components of a. The set
of all multi-indices with respect to F is represented by
M=, Fludv, (18)
where v refers to the empty multi-index with size zero. The following example gives more
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sense for the definition above.

Example 3.4. Fora = (1,0,2) ,l(a) =3 and n(a) = 1.While for
a =(1,0,0,2,3,1,0,0),I(a) =8 and n(a) = 4.

Next for I,k € N, we define the following operations on the multi-index set.

Definition 3.3. ("—" operator). For a € M with a = (j1,]2,...,J1). For I > 1, we define a —
and —a as follow:

a—=(i,j2,..Ji-1) and —a = (2,...,J1).

If I(a) = | > 1then, itimpliesthatI(—a) = (e —) =1-1.

If I(e) =1 = 1then, itimpliesthat—a = o« —= vand I(—a) = l(a =) = 0.

Definition 3.4.(x operator). Let us consider a = (j1,j2,...,J1), 8 = (i1,12,...,1k) € M.
The operator * is defined via
o *xp = (jl,jz,...,j|,i1,i2,...,ik) and pxa = (il,iz,...,ik,jl,jz,...,j|).

Definition 3.5. ("-[i]" operator). For a = (j1,j2,...,j1) and i € N, the Operation "—[i]"

represents the "i" -times application of "—", where the last i components should be deleted.
o—[i] = U J2s i), |f| <1,
v, ifi>l

Thisyieldsa —[i] - [j] = a—[i+]] fori,j € N.

Example 3.5. Ifa = (1,0,2), g = (0,3,1), then we have

1) —a = (0,2) and o —= (1,0),

2)axp=1(1,0,2,0,3,1)and g xa = (0,3,1,1,0,2),
a-[1]1=1Q,0,a-[1]-[1] =a-[2] = (1) and (1,0,2) - [i] = v,Vi > 3.

3.4. Multiple Itd-integrals

Throughout the following section, all stochastic processes are defined on a probability
space (€2, %A, P) with right continuous augmented filtration § = (Ft)ter.

Definition 3.6. Define the set H of stochastic processes (i) w0, Which are progressively adapted
to the associated filtration {Fi}w0), right continuous with a left limit. Conceptively we may
define the sets Hy, H (), H(1) as follow
DHy={{feH:Vt>ty [ftw)<o as. },

t

2)Hp =<feH:Vt>t j f(s,w)|ds < a.s.},
to
t
3 Huy =<feH:Vt>t j [f(s,w)|2ds < oo a.s.}.
to
Forj € F\{0} one can setHg = Hq.

Definition 3.7. Let us consider o = (j1,]j2,...,j1), @ multi-index and (W;)=o an m-dimensional
Brownian motion. For f € H,), multiple 1t6-Integrals are defined per recursion as follows:
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(1), ifl =0
L[]t == < J o e lfOJsds, i1 =1 andji =0

Jt Lo [f()]tsdWY, ifI > 1andj > 1.

to

Here Hy, is defined per recursion as

Ho ={feH: lu)[f()l. €Hgy (19)
forjy =0,1,....mand | > 2.

Example 3.6. Clearly
la2)[f( )]s = j j f(z2)dWidw?,

la20[f( )it = I o [V oscs - [T I ttsopaws.aws, s

In what follows, and for the sake of simplicity of notation, we shall use
Ia,t = |a[l:|0,t and W? =1,
and recall the Kronecker symbol 6 for ji,,ji, = 0,1,...,1, satisfying

s -J1 JF Jiy = Jiss
ool 0 ,otherwise.

Theorem 3.5. Forle N, a = (jl,...,j|) e M, and t > 0, there holds

|(J)t|(a)t - Z'(a =D jisty J|)t+ZBJJ| (@=[1-i+1])%(0,jis1,....j1).t * (20)
i=1
where Bjj; = 511.(1 00j)-

Proof. By using partial integration, we get
d(Igtlat) = TG ed(lar) + laed(lg) + (1= o)l dWidW!
= 1gd(lan) + lad( ) + (1 = S0,)0jj 1ot
= L ed(lat) + latd(l o) + (1 = 80j)0jj, 1ot
I(J)t)la tth + |atd(|(J)t)+B”| a— tdt
For the sake of S|mpI|C|ty, let us define the terms Al = l)tlat fOr @ € M, to obtain

Al _j lasdl s + j 1yl s AW +BJ,,j lo_sds
j 1.5 dW j Al 15 OWE + Bij |10y
= laxpt + ft Al dWA + Biil -1+t
By induction over | in a inside A 1t ,We may write
AJ a*(j)t“l‘j (op )*(J)S|dWS| j j A(a [2])s|ldW!s'|11des'|
+Bmlj -2+ WA + Bl 1ot
= Lot + 1o m)*umtﬂ. I A 2ol AWAL AW
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+ Biis L @—2«0nt + Biii L @101t -

Apply then the same procedure with A, to obtain

)SJ '

at _Zl(a (FD* G, Jl)t+j .[5| .[SZA(a |])51dW 'dWJ;,Il

+Z Biji | (a-0-i+1) 0oz, -t
i=1

Note that .
i ! j
A-ps: = losilemi = losilvs: = los = IO dWs.
Hence, we have

S| Sz .
I(a LIDEIC B ERERRM DA _j j )sldW 'dwjll

jjs' jjdwldw AW

By replacing (21) and (22) in (21), we obtain (20). Here the proof completes.

64

(21)

(22)
|

The following corollary gives a clear idea about an interesting class of multiple stochastic

integrals

Corollary 3.1.Ifl,j e Nand a = (},],...,]) with I(a) = I, then

| .
f—!, forj =0,

%(W{Ia—,t —tly 20, for j>1.

Ia,t:

Proof. From theorem 3.5 (Boo = 0) it follows that
|

tlat = Toptlat = D Ve fiiDeGiin o
i=0

|
=2 loo.., = 1+ DL

i—0 %#(Hl) —times
The length of the multi-index ((¢ — [I = 1]) * (J,]it1, -+, J1)) IS determined by:
1@ = [=1]) * iz, -00) = Wa=[=0) +1(G jien, - 00)
= (e - [1=i]) +1(G) +1Giz, -+ J0)

=l--D+1+U-1)
. I+ 1.
From (23), We getlyr = 'f—!and forj > 1ityields B; = 1. Moreover,

-1

L tlat = Z L..... + D (@[ 1+ O i)

H~I —times

i=1
-1
=11, + | ((@)~[11-i+1])%(0,j, -
Good) g (@D i)
-1
=gy D @@ 0D04 i)

——|-times i1 size=(1-1)

(23)

(24)
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Then invoke theorem 3.5, for j = 0, to write
I(O)tl —21t = ot
= l((a « : 25
Z (@2 Qo) (25)
From (24) and (25) it follows that

Lipila—t = Uy, +tlo—p2
@, (7 ,J)(I) fimes

Thus

LG....0) = T alat = thapzpp),

%ﬁl —times

which ends the proof. |
Lemma 3.5. The multiple stochastic integrals for the special case a = (j,},...,]) € M are
liine = 5[z UG =0 =t ] = 37 [ —3tan ], (26)
lGiipt = 4|[|U)t 6t|(])t+3t2:|’ (27)
IG,J,J,J,J)t =3 [I(j)t 10t|(])t + 15t IU)t] , (28)
lGidiiint = o | 0 15t|0)t+45tzl 21— 15t%], (29)
lGiiiiiit = o7 [ I(J),t 21t1° Wt T 105t2I(J)t - 105t3lﬂ),t:|. (30)

Proof. Note that, since (j,j) — [2] = v, we have
Ljpe = (I(J)t = %[(W‘i)z ~t]. (31)
and the proof of the other multiple integrals may be achieved by invoking corollary3.1. |

Remark 3'3{ The following stochastic integral
LG1intot = _[t : “dwldwlz,

0
where W!* and W2 are two independent Brownian motions can not be evaluated exactly. So
approximations must be used for its estimation. Some proposed approximations may be found
in literature, for instance in [4]. Here use is made of a direct expansion for the variation of the
double integral. Whereas in [5], use is made of the periodicity concept of a Brownian Bridge;
and Fourier series gives another method of approximation. Another useful approximation is a
direct evaluation of the variation via

m-1
Tguitot = Z j” dwhdwh = 3wl - whwi, - wi), (32)
i=0

where t) is a tlme dlscretization of the time interval [to,t].

One of the interesting open questions to pose itself here is : Can we find a more accurate
formula for approximating I12): by using the class of multiple stochastic integrals I(11): and
l22)? More difficult types of multiple stochastic integrals are l,:, where at least tow
components of a, j1 and j, are disjunct. These integrals can not be analyzed in a similar way as
for o with the same components. However, it is more difficult and interesting to establish an
explicit formula for approximating their numerical behaviors.
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3.5. Simulation of a class of multiple It6-integrals

Let a be chosen according to corollary 3.1. Consider an equidistant discretization of the
interval [0,1]. The path of the stochastic integrals are generated on t,, and by using linear
interpolation, the generated trajectory is a continuous one. The stochastic paths (26)-(30) show

simulation of multiple Ito-Integrals, with step size A = 5—30 Obviously, the time series

behavior of the multiple stochastic integrals, with @ = (1,...,1) € M have the same behavior.
Furthermore, according to our simulations of these stochastic processes, they cannot have
similar behavior to the Gaussian. One of the reasons for this dilemma is that for larger size of
the multi-index, i.e. I(a1) > I(a2) , the amplitude of the corresponding time series has smaller
values. This is apparent in figure 7. In all figures bellow, we observe a colored-noise behavior
of the stochastic integrals I,. Note also here the increasing time dependent amplitude.

The following code generates one value of I 1,1y using 500 —time iterations

% Int3dW.m Approximate stochastic integrals

% return the value of the multiple stoch. int. for (1,1,1) on [O,t]
% enter the integral upper bound t

function X=Int3dW(t);

N = 500; dt = t/N;

R=zeros(1,N);

for j=1:N
R()=boxm();
end

dW = sqrt(dt)*R;

W = cumsum(dw) ;

% compute the valute of the integral

% based on the upper bound and the end value of the BM.
r=W(end);

X =(r"3-3*t*r)/6;

Code 6: Int3dW.m

I(‘l )t

L N N N N L L h ! N . L L
50 100 150 200 250 300 a50 400 450 500 o 0z 04 [+X:] 0.8 1

t t
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I(‘1 11,1t
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Figure7: Paths of multiple integral processes for different o € M.

The following code generates the process 1.1yt in N —time iterations

function Wp=Int3dWprocess(T,N);
dt=T/N;
Wp = zeros(1,N);
T = zeros(1,N);
for j=1:N
TA)=j>dt;
Wp)D=Int3dW(TU)):
end

plot(T,Wp);

Code 7: Int3dWprocess.m

4. Concluding Remarks

In this contribution to the subject of computational stochastics, we have proved the
recurrence relationship for the class of stochastic integrals, where the multi-index has the same
components. In several examples, we have shown the graphical behavior of such processes.
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Furthermore, we have introduced the reader to many techniques and open questions. The
numerical approach presented here, could be employed for the treatment of many processes
derived from the Brownian motion. In particular, we have simulated the time-integral and the
time-differential of the Brownian motion. Consequently, we have clearly illustrated the
difference between the time-behavior of the area under the path of Brownian motion and the
behavior of white noise.

This paper is a semi-review of the stochastic integration, which is intended to motivate
graduate students and also junior researchers in some topics of computational stochastics,
which includes interesting Matlab codes. It is our intention for the future to finish similar work
on SDEs and SPDEs.
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