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Abstract. Mixed multiple stochastic integrals for independent Brownian motions, can not be
explicitly approximated. However, integrating a time dependent process in the stochastic
sense, namely with respect to the associated Brownian motion, leads to interesting analytical
and numerical facts and studies. The main concern of this paper is to provide a recurrence
formula (theorem 3.5) for simulating a class of multiple Itô stochastic integrals, which possess
a behavior similar to the Gaussian colored noise. Moreover, it contains a numerical analysis,
in a review style, of the time-integral and time-differential, in the distributional sense, of the
non-differentiable time dependent Brownian motion. All Matlab codes used in the numerical
algorithms are also listed.
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1. Introduction

Early in 1944 and 1951, K. Itô published the first meaningful analysis for Wiener multiple
stochastic integrals [9, 10]. Later the works of Wong and Zakai [18, 22] gave a more explicit
analysis to these topics. These are necessary tools for solving either stochastic differential
equations (SDEs) (or systems of these equations) [5, 6, 19, 23] or evolutionary partial
differential equations with uncertainties [16, 15, 17, 20, 21], especially in Finance, Physics,
Biology, etc...[12, 14, 2, 11, 1, 13].

The purpose of this work is to provide an introduction to computational stochastics for
numerical integration and simulation of a class of multiple Itô integrals. Instead of attempting
to describe the largest possible class of stochastic integrals, we shall only single out a class of
these processes. Namely, we shall illustrate some of their graphical similarities to the Gaussian
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colored noises. Moreover, because the aim is the application of such integrals, much more
emphasis is directed at analysis of the theoretical and computational properties of multiple
stochastic integrals with respect to a Brownian motion. In this respect, we present interesting
technics to be used and developed by graduate students and junior researchers. From a
pedagogical point of view, the purpose of these notes is to provide an intuitive understanding
of the nature of the multiple stochastic integral, and to clearly outline the difficulties in this
type of calculus. For a rigorous analytical theory, we would refer the reader to the books of
Karatzas and Shreve (1991), Kloeden and Platen (1992) [5] and Øksendal (1985, 2003) [8].
The present work in meant, however, to combine the interests of Finance and Mathematics
graduate students and to jointly introduce them to the subject of Computational Stochastics.

This paper is structured as follows. The second section consists of a numerical construction
of normally distributed random numbers using the famous method of Box Müller. We also
state the computational aspect of the Brownian motion and some related processes. In the third
section, we will prove the main theorem (theorem 3.5 and corollary 3.1) for the construction
the colored-noise-like multiple stochastic integrals. With some critical remarks and open
questions, we end this paper. We note here that this work paves the way towards a future
similar work on SDEs and stochastic partial differential equations (SPDEs).

2. Numerical Simulation of the Brownian Motion

Stochastic calculus is in general based on the Brownian motion process. This was first
discovered by the Scottish botanist Robert Brown in 1827. The notion that the increments of
the Brownian motion are normally distributed is the source of immense scientific results, either
in stochastic analysis or in the interpretation of physical, biological, econometric models. In
the following analysis, we will focus on the behavior of some derived processes, namely the
time-integral and time differential of the Brownian motion in the distributional sense. For more
properties of the Brownian motion, we refer the reader to [3].

2.1. The Brownian motion

Definition 3.1. A one-dimensional Brownian motion (also called standard Wiener process) is a
real-valued stochastic process Wtt≥0 indexed by nonnegative real numbers t with the
following properties:
1) W0  0.
2) With probability 1, the function t  Wt is continuous in t.
3) The process Wtt0 has stationary, independent increments.
4) The increment Wt − Ws is normally distributed with mean zero and variance t − s i.e.
Wt − Ws  t − sN0,1, for all t  s.

A Wiener process with initial value W0  x0 is achieved by adding x0 to a standard
Wiener process. The term independent increments means that for every choice of nonnegative
real numbers 0 ≤ s1  t1 ≤ s2  t2 ≤  ≤ sn  tn  , the random variables (Wiener
increments)
Wt1 − Ws1 ,Wt2 − Ws2 ,… ,Wtn − Wsn

are pairwise independent. The stationarity of increments means that the distribution of the
increment Wts − Ws has the same distribution as Wt − W0  Wt, for any 0  s, t  1

In general, a stochastic process with stationary, independent increments is called a Levy
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process. Moreover, It should not be obvious that properties 1) - 4) in the definition of a
standard Brownian motion are mutually consistent, so it is not a priory clear that a standard
Brownian motion exists. That it does exist was first proved by N. Wiener in about 1920. His
proof was simplified by P. Levy. The compatibility of the properties 3. and 4. follows directly
from elementary properties of the normal distributions: If X and Y are independent, normally
distributed random variables with means X ; Y and variances X

2 ; Y
2 , then the random

variable X  Y is normally distributed with mean X  Y and variance X
2  Y

2 .
The random function W : 0,1 → R is continuous but nowhere differentiable (almost

surely). Its proof was early given by Paley, Wiener and Zygmund in 1933. This is particularly
interesting, as it is not easy to construct a continuous, nowhere differentiable function without
the aid of randomness.

One of the interesting interpretations of the Brownian motion is the relationship to the
random walk, namely Wt could be interpreted as a limit of symmetric random walks. Let us
consider a subdivision of the interval 0, into subintervals of length . Each subinterval
corresponds to a time slot of length . Thus, the intervals are 0,, , 2, 2, 3,… . where
the kth subinterval is k − 1,k. Furthermore, we define the symmetric random variables
Xi, for i ∈ N as
P Xi    P Xi  −   1

2 .
It is easy to see that Xi’s are independent and EXi  0 ; VarXi  . We may define then

the process Wt as follows: Set W0  0 and at time t  n to define the value of Wt by
Wt  Wn  ∑ i1

n Xi. Since Wt is the sum of n i. i.d. random variables, EWt  0 and
VarWt  t. Then, for any t ∈ 0,, by the passage to the limit for large n,  tends to zero
and by using the central limit theorem, Wt will be a normally distributed random variable with
mean 0 and variance t. Moreover, Since Xi are i. i.d, we conclude that Wt has independent
stationary increments. And by this way, the above method leads to the construction of a
process with continuous sample paths, i.e. Wt is a continuous function of t , nowhere
differentiable. These are called a standard Brownian motion or a standard Wiener process.
Moreover, even if the differentiability is not satisfied, one of the most interesting processes is
the Gaussian white noise t  dWt/dt, defined as the time-derivative in the distributional
sense of the Brownian motion.

2.2. Construction of normally distributed numbers

One of the most useful methods for generating random numbers with a normal distribution
is the Box-Müller transform, which was suggested by George Edward Pelham Box and Mervin
Edgar Müller (1958). Altogether, the Box-Müller method takes independent standard uniform
random variables U1 and U2 and produces independent standard normals X1 and X2 using the
formulas:
  2U1, R  −2 lnU2 , X1  Rcos, X2  R sin. 1

In other words, from two random numbers u1 ,u2 ∈ 0,1 (generated by a uniform
distribution), we produce two independent standard normally distributed numbers n1 and n2,
namely
n1  −2 lnu1 cos2u2, n2  −2 lnu1 sin2u2. 2

It has been proven that the random variables X1 and X2 are independent, given that they
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incorporate the same R and . Here the independence property is analytically and
computationally satisfied.

The Box-Müller Matlab code is given by:
————————————————–
function xboxm();
%return a uniform normally distributed number x
u1rand;
u2rand;
xsqrt(-2*log(u1))*cos(2*pi*u2);
————————————————–
Code 1: boxm.m

To generate the histograms above, use the following code:
————————————————–
function HNormalDist(n);
% return a histogram of a uniform normal distribution
% n is the number of ND random numbers
Xzeros(1,n);
for i1:n
u1rand;
u2rand;
X(i)sqrt(-2*log(u1))*cos(2*pi*u2);
end
hist(X,50);
————————————————–
Code 2: NormalDist.m

2.3. Simulation of the Brownian motion

Consider the upper time bound T ∈ R and let 0  t0  t1 … tN  T be an equidistant
discretization of the time Interval t0,T, i.e. tk  kΔ with Δ  T

N . Per definition of the
Brownian motion, the increments are i. i.d. and normally distributed. Moreover, it yields
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Figure 1: Histogram of the random numbers generated by the Box-Muller method.

Wtk1
−Wtk

Δt
 N0,1.

To simulate the paths of Brownian motion, the values Wtk ∀k  0,1,… ,N are per
recursion obtained, and by using linear interpolation one can compute the value of Wt for all
t ∈ tk, tk1.
The Matlab code for generating the path of a Brownian motion is:
————————————————–
function WBrownianMotion(dt);
% this code generates a Brownian motion path
% dt time step size
% the path of the BM will be showed in the time interval [0,1]
Nround(1/dt);
W  zeros(1,N);
T  zeros(1,N);
W(1)0;
T(1)0;
for j1:N
T(j1)j*dt;
W(j1)W(j)sqrt(dt)*boxm();

end
plot(T,W);
————————————————–
Code 3: BrownianMotion.m
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Figure 2: Brownian motion for different time-steps on the time inerval[0,1].

Figure 3: Planar Brownian motion for different time-steps on the time interval[0,1].

3. Simulation of a Class of Multiple Stochastic Integrals

The main concern in this section is to define and simulate a class of multiple stochastic
integrals in the sense of Itô. In this way, we deal with a continuous (time-parameter) stochastic
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process Zt adapted to a filtration F t progressively measurable, i.e. Ztw is Bt  F t
measurable for all Borel -field Bt on 0, t. For instance, all processes with continuous sample
paths are progressively measurable.

3.1. Itô integral

Let us consider T ∈ T and ,A,P a probability space with a Filtration F  F tt∈0,T.
Define then the set T of square-integrable F t-adapted process (SIASP). Throughout this
paper, the filtration F0 contains the sets with measure zero and F t is right continuous in time.
In this case, F t will be called a right continuous augmented filtration. In the following, we will
use the norm ‖Zt‖T  E 

0

T Zs
2ds

1
2 .

Definition 3.1. For Z ∈ T, the the Itô integral with respect to the Brownian motion is defined
as
IZ0,t : 

0

t
ZsdWs 

N→
lim INZ0,t , 3

where

INZ0,t ∑
k1

N

Ztk−1
N,l Wtk

N,l − Wtk−1
N,l , 4

and N
l  tk

N,l : k  0,…,N and l ∈ N is a sequence of discretizations of the time interval
0, t. The limit (3) is a mean square limit of random variables, i.e., it should satisfy

N→
lim EIZ0,t − INZ0,t2  0. 5

Theorem [8] 3.1. The limit (5) exists in L2P and is unique for all t ∈ 0,T.

The Itô integral satisfies the properties that follow.

Lemma 3.1. (Linearity) Consider Zt
1t∈T, Zt

2t∈T ∈ T and K1,K2 ∈ R. For
IZ10,t  

0

t
Zs
1dWs and IZ20,t  

0

t
Zs
2dWs,

the relation
IK1Z1  K2Z20,t  

0

t
K1Zs

1  K2Zs
2dWs  K1IZ10,t  K2IZ20,t , 6

must hold.

Proof. The proof of (6) follows directly from the definition 3.1. 

Remark 3.1. It is important to note that, the linearity discussed in lemma 3.1, require the
integration with respect to the same Brownian motion Wt. Therefore, for
IZ10,t  

0

t
Zs
1dWs

1 and IZ20,t  
0

t
Zs
2dWs

2, 7
the linearity property of the Itô integral is not true.

Theorem [8] 3.2. For Ztt∈T ∈ T, 0  s  t the following properties all hold.
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i) (Martingale)
EIZ0,t|Fs  IZ0,s. 8
ii) (Itô Isometry)
EIZ0,t2  E 

0

t
Zu

2du. 9
iii) (Continuity of It)

There exists a continuous process ht such that
Pht  IZ0,t  1, ∀t, 0 ≤ t ≤ T. 10

3.2. Higher order Itô formula

One of the main concerns of Stochastic Calculus is the new concept of differentiability. For
instance, we know that the path of a Brownian motion is continuous but nowhere differentiable
and in order to define a stochastic differential equation and integrals, we have to introduce the
notion of stochastic differentiability. The central result is the Itô-Formula, which leads to a
new definition of differential equations and to a new concept of Taylor expansion. A process
satisfying a stochastic differential equation (SDE) in the sense of Itô, will be called an Itô
process.

Definition 3.2. Let Wtt∈T be an m-dimensional Brownian motion, defined on a ,Am, with
right continuous augmented filtration F  Ftt∈T. The process Xt

1…,Xt
d is called an Itô

Processes, if and only if it has the following form

Xt
i  Xt0

i  
t0

t
as

i ds ∑
j1

m


t0

t
bs

i,jdWs
j ; i  1,…,d; j  1,…,m, 11

where for all i, j; at
it∈T, bt

i,jt∈T are F t adapted, 
t0

T as
i ds   and 

t0

T
bs

i,j2ds   a.s.

Lemma 3.2. Consider a one dimensional Brownian motion and a non-necessary uniform time
discretization tk  k T−t0

2n of the interval t0,T. Then we have,

i)
n→
lim∑

k0

2n−1

Δtk2 
n→
lim∑

k0

2n−1

ΔtkΔWtk 
n→
lim∑

k0

2n−1

ΔWtkΔtk  0.

ii)
n→
lim∑

k0

2n−1

ΔWtk2  
t0

T
ds  T − t0, Convergence in L2.

where Δtk  tk1 − tk and ΔWtk  Wtk1 − Wtk.

Proof. i) follows from the construction

n→
lim∑

k0

2n−1

Δtk2 ≤
n→
lim

k

max Δtk∑
k0

2n−1

Δtk 
n→
lim

k

max Δtk 
t0

T
dt  0.

For part ii), with the Brownian motion, we have

0 
n→
lim

k

min Δtk 
t0

T
dWs ≤

n→
lim∑

k0

2n−1

ΔtkΔWtk ≤
n→
lim

k

max Δtk 
t0

T
dWs  0.

Since ΔWtk are i.i.d. and normally distributed with mean zero and variance Δtk , and by using
the strong law of large numbers the following convergence in L2 is true.
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n→
lim∑

k0

2n−1

ΔWtk2 
n→
lim∑

k0

2n−1

Δtk  
t0

T
ds  T − t0. 

Lemma 3.3. Let us consider the functional f : t0,T  Rd → R with continuous partial
derivatives ∂f

∂t , ∂f
∂xi and ∂2f

∂xi∂xj for i  1,…,d and a one dimensional Itô Process Xtt∈T.

For any time discretization tk  k T − t0
2n of the interval t0,T , then it follows that

i
n→
lim∑

k0

2n−1
∂f
∂t Δtk  

t0

t ∂f
∂t ds.

ii)
n→
lim∑

k0

2n−1
∂f
∂x ΔXtk  

t0

t ∂f
∂x dXs  

t0

t ∂f
∂x asds  

t0

t ∂f
∂x bsdWs.

iii)
n→
lim∑

k0

2n−1
∂2f
∂t2 Δtk2  0  

t0

t ∂2f
∂t2 ds  0.

iv)
n→
lim∑

k0

2n−1
∂2f
∂x2 ΔXtk2  

t0

t ∂2f
∂x2 bs

2ds.

where Δtk  tk1 − tk and ΔXtk  Xtk1 − Xtk .

Proof. The result i) is trivial, while the proof for ii) is

n→
lim∑

k0

2n−1
∂f
∂x ΔXtk  

t0

t ∂f
∂x dXs  

t0

t ∂f
∂x asds  bsdWs  

t0

t ∂f
∂x asds  

t0

t ∂f
∂x bsdWs.

As for iii), consider a uniform time discretization Δt of the interval t0,T, then we have

n→
lim∑

k0

2n−1
∂2f
∂t2 Δtk2 

n→
lim


Δt

→0
 

t0

t ∂2f
∂t2 ds

bounded

 0.

Finally to prove iv), we write

n→
lim∑

k0

2n−1
∂2f
∂x2 ΔXtk2 

n→
lim∑

k0

2n−1
∂2f
∂x2 btk

2 ΔWtk
2


n→
lim∑

k0

2n−1
∂2f
∂x2 atk

2 Δtk
2

0 lemma 3.2


n→
lim 2∑

k0

2n−1
∂2f
∂x2 atkbtk

2 ΔtkΔWtk

0

applying Itô isometry in L2

 
t0

t ∂2f
∂x2 bs

2ds. in L2. 

Lemma 3.4. Under the assumption of the lemmas above, the one dimensional case d  m  1
of the Itô-Formula can be written as
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ft,Xt  ft0,Xt0  
t0

t ∂f
∂s s,Xs  as

∂f
∂x s,Xs  1

2 bs
2 ∂2f
∂x2 s,Xs ds

 
t0

t
bs
∂f
∂x s,XsdWs. 12

Proof. For a given discretization of the time interval t0,T by tk  k T−t0
2n , define

Δtk  tk1 − tk; ΔXtk  Xtk1 − Xtk and ΔWtk  Wtk1 − Wtk . By using the Taylor expansion of
order two, we have

ft,Xt  ft0,Xt0 ∑
k0

2n−1

Δftk,Xtk 13

 ft0,Xt0 ∑
k0

2n−1
∂f
∂t Δtk ∑

k0

2n−1
∂f
∂x ΔXtk 

1
2 ∑

k0

2n−1
∂2f
∂x2 ΔXtk2

∑
k0

2n−1
∂2f
∂t∂x ΔtkΔXtk 

1
2 ∑

k0

2n−1
∂2f
∂t2 Δtk2 ∑

k0

2n−1

Rk, 14

where Rk consists of sums of higher order partial derivatives of f , as a factor of Δt2,
ΔWtkΔt2, ΔWtk2Δt and ΔWtkΔt. Using the results of lemma 3.2, we conclude that
Rk  OΔt2 and therefore the remainder term vanish in L2. Also using the results of lemma
3.2, all terms with Δt2 vanish (at least in L2 if the increment of the Brownian motion
appears.) Similar construction could be done for the mixed partial derivatives, which are in
general factors either of Δt2 or ΔWtkΔt. Thus, all terms in (14) vanish in L2,

n→
lim ∑

k0

2n−1
∂2f
∂t∂x ΔtkΔXtk 

1
2 ∑

k0

2n−1
∂2f
∂t2 Δtk2 ∑

k0

2n−1

Rk  0.

The passage to the limit in (13), leads to

ft,Xt  ft0,Xt0 
n→
lim ∑

k0

2n−1
∂f
∂t Δtk ∑

k0

2n−1
∂f
∂x ΔXtk 

1
2 ∑

k0

2n−1
∂2f
∂x2 ΔXtk2 .

Since dXt  atdt  btdWt , and using the results of lemma 3.3, the one dimensional Itô formula
is proved. 

Example 3.1. For ft,x  1
2 x2 with Xt  Wt and at  0,bt  1. By applying Itô’s formula,

we have:
df  ∂f

∂t dt  at
∂f
∂x dt  bt

∂f
∂x dW  1

2 bt
2 ∂2f
∂x2 dt

 ∂f
∂t dt  1 ∂f

∂x dW  1
2 1

2 ∂2f
∂x2 dt

 ∂f
∂t dt  ∂f

∂x dW  1
2
∂2f
∂x2 dt

 ∂f
∂x dW  1

2
∂2f
∂x2 dt.

Hence,
1
2 dWt

2  WtdWt  1
2 dt,

and
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1
2  dWs

2  WsdWs  1
2  dt .

Thus,
It  

0

t
WsdWs  1

2 Wt
2 − t. 15

Note that Wt
2, represents the square of the end value of the Brownian motion. Thus It will

be considered as a time process if we change the upper bound of the integration interval.

Example 3.2. Consider n  1 in ft,x  xn1. Then apply Itô’s formula for Xt  Wt, to obtain
dWt

n1  n  1Wt
ndWt 

nn1
2 Wt

n−1dt.
Hence,


0

t
dWs

n  1
n1 Wt

n1 − n
2 0

t
Ws

n−1ds.

Simulation of the sample path of the Itô integral (15).

Figure 4: Simulation sample path of the Itô integral with the same number of steps N500.

It is important to note that the integral of a Brownian motion path with respect to time,
represented by IWt  0

t Ws ds is not a stochastic integral. It represents the area under

Brownian motion path, IWt is a normal random variable with mean 0 and variance t3

3 ; i.e.
IWt  N0, t3

3 . The proof is similar to the constructions done in lemma 3.2.
The function codes used for generating the process It are
————————————————–
%intWdW Approximate stochastic integrals
function itoIntWdW(t);
N  500; dt  t/N;
Rzeros(1,N);
for j1:N
R(j)boxm();
end
dW  sqrt(dt)*R; % increments
W  cumsum(dW); % cumulative sum
ito 0.5*(W(end)^2-t);
————————————————–
Code 4: IntWdW.m
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The function ’IntWdWprocess’ recall the previous one .
————————————————–
function WpIntWdWprocess(T,N);

return the process int WdW on [0,T]
N is the number of subdivisions
the process will be ploted

dtT/N;
Wp  zeros(1,N);
T  zeros(1,N);
for j1:N
T(j)j*dt;
Wp(j)IntWdW(T(j));

end
plot(T,Wp);
————————————————–
Code 5: IntWdWprocess.m

Theorem 3.3. Consider the functional f : t0,T  Rd → R with continuous partial derivatives
∂f
∂t , ∂f
∂xi and ∂2f

∂xi∂xj for i  1,…,d. Moreover, consider a d-dimensional Itô-Process Xtt∈T ,
then the following must be satisfied.
ft,Xt

1,…,Xt
d  ft0,Xt0

1 ,…,Xt0
d   

t0

t ∂f
∂s s,Xs

1,…,Xs
dds

∑
i1

d


t0

t ∂f
∂xi s,Xs

1,…,Xs
ddXs

i

 1
2 ∑

i,j1

d


t0

t ∂2f
∂xi∂xj s,Xs

1,…,Xs
dd  Xi,Xj s , 16

where

dXt
i ais,Xsds ∑

j1

m

bi,js,XsdWs
j ,

and

d  Xi,Xjs ∑
k1

m

bi,ks,Xsb
j,ks,Xsds,

with dWidWj   ijdt,dWidt  dtdWi  dtdt  0.

Proof. Similar to the one-dimensional case, only with some more complexity. 

Theorem [7] 3.4. ( Partial integration) For the following two one-dimensional Itô processes
Xtt∈T and Ytt∈T, defined on the same probability space,
Xt  X0  

0

t
as

1ds  
0

t
bs

1dWs, Yt  Y0  
0

t
as

2ds  
0

t
bs

2dWs,
the stochastic partial integration formula is given by
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XtYt  X0Y0  
0

t
XsdYs  

0

t
YsdXs  

0

t
bs

1bs
2ds. 17

Example 3.3. For Xt  Yt  Wt and at  0,bt  1. By applying the stochastic partial
integration, we get
dWtWt  WsdWs  WsdWs  11ds,
dWt

2  2WsdWs  ds,
Wt

2  2 
0

t
WsdWs  

0

t
1ds.

Thus,


0

t
WsdWs  1

2 Wt
2 − t.

Remark 3.2. Regarding the behavior of time-integral and time-differential of a Brownian
motion, since this is nowhere differentiable, we use it for the time derivative, in the
distributional sense, of their paths. Thus, we get in both cases a Gaussian stochastic processes.
Explicitly, we may consider a finite difference approximation of  t using a time interval of
width t,
Δtt : WtΔt −Wt

Δt ,
then the time integral
Zt : 

0

t
Wsds,

represents the area under the path of the Brownian motion Ws0≤s≤t.

We may summarize the previous relationships in the diagram that follows.

1
2 Wt

2 − t  
0

t
WsdWs

d
dt Wt   t Gaussian (White Noise)

↖ ↗  t  1
Δt
N0⇔∞

Wt

↙ ↘

BM increment ΔWti  Wti1 − Wti 
0

t
Wsds  Zt Gaussian (Random Variable)

ΔWti  N0⇔ Δti  Zt  t3

3 N0⇔∞
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Figure 5: Example of white noise.

Figure 6: Example of colored noise.

The white noise as a stationary process has the following properties:
EΔt  0; VarΔt  1

Δt ; CovΔtt,Δss  0; if t ≠ s,
where Δtt ) is an approximation of the following  −function. This noise is called white
whenever one talks about uncorrelated (or independent) noise at each pixel. White noise is the
noise signal whose power spectrum is flat (the Fourier transform of its covariance). Otherwise
the noise is called colored noise.

3.3. Multi-indices

In order to be able to define the multiple stochastic integrals, we introduce the following
set of multi-indices. Let us consider m ∈ N and F  0,1,… ,m. A multi-index  refers to a
row vector with components in F such as   j1,…, jl where ji ∈ F, for 1 ≤ i ≤ l.
We denotes the size of  by l : l and by n the number of zero components of . The set
of all multi-indices with respect to F is represented by

M  l1
 Fl  v, 18

where v refers to the empty multi-index with size zero. The following example gives more
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sense for the definition above.

Example 3.4. For   1,0,2 , l  3 and n  1.While for
  1,0,0,2,3,1,0,0, l  8 and n  4.

Next for l,k ∈ N, we define the following operations on the multi-index set.

Definition 3.3. ("−" operator). For  ∈ M with   j1, j2,…, jl. For l ≥ 1, we define  −
and − as follow:
 −: j1, j2,…, jl−1 and −  : j2,…, jl.
If l  l  1 then, it implies that l−  l −  l − 1.
If l  l  1 then, it implies that −   − v and l−  l −  0.

Definition 3.4.( operator). Let us consider   j1, j2,…, jl,  i1, i2,…, ik ∈ M.
The operator  is defined via
 ∗  : j1, j2,…, jl, i1, i2,…, ik and  ∗  : i1, i2,…, ik, j1, j2,…, jl.

Definition 3.5. ("-[i]" operator). For   j1, j2,…, jl and i ∈ N, the Operation "−i"
represents the " i" -times application of "−" , where the last i components should be deleted.

 − i :
j1, j2,…, jl−i, if i  l,
v, if i ≥ l.

This yields  − i − j   − i  j for i, j ∈ N.

Example 3.5. If   1,0,2,   0,3,1, then we have
1) −  0,2 and  − 1,0,
2)     1,0,2,0,3,1 and     0,3,1,1,0,2,
3)  − 1  1,0,  − 1 − 1   − 2  1 and 1,0,2 − i  v,∀i ≥ 3.

3.4. Multiple Itô-integrals

Throughout the following section, all stochastic processes are defined on a probability
space ,A,P with right continuous augmented filtration F  Ftt∈T.

Definition 3.6. Define the set H of stochastic processes ftt≥0, which are progressively adapted
to the associated filtration F tt≥0, right continuous with a left limit. Conceptively we may
define the sets Hv,H0,H1 as follow
1) Hv : f ∈ H : ∀ t ≥ t0 |ft,w|  a. s. ,

2) H0 : f ∈ H : ∀ t ≥ t0 
t0

t
|fs,w|ds   a. s. ,

3) H1 : f ∈ H : ∀ t ≥ t0 
t0

t
|fs,w|2ds   a. s. .

For j ∈ F\0 one can set Hj  H1.

Definition 3.7. Let us consider   j1, j2,…, jl, a multi-index and Wtt≥0 an m-dimensional
Brownian motion. For f ∈ H, multiple Itô-Integrals are defined per recursion as follows:
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If. t0,t :

ft, if l  0


t0

t
I−f. t0,sds, if l ≥ 1 and jl  0


t0

t
I−f. t0,sdWs

jl , if l ≥ 1 and jl ≥ 1.

Here H is defined per recursion as
H : f ∈ H : I−f. t0,. ∈ Hjl, 19
for jl  0,1, . . . ,m and l ≥ 2.

Example 3.6. Clearly
I1,2f. t0,t  

t0

t 
t0

s
fzdWz

1dWs
2,

I1,2,0f. t0,t  
t0

t
I1,2f. 0,sds  

t0

t 
t0

s 
t0

s1
fs2dWs2

1 dWs1
2 ds.

In what follows, and for the sake of simplicity of notation, we shall use
I,t  I10,t and Wt

0  t,
and recall the Kronecker symbol  for ji1 , ji2  0,1, . . . , l, satisfying

 ji1 ,ji2


1 , if ji1  ji2 ,
0 , otherwise.

Theorem 3.5. For l ∈ N,   j1, . . . , jl ∈ M, and t ≥ 0, there holds

Ij,tI,t ∑
i0

l

I−l−i∗j,ji1,…,jl,t ∑
i1

l

Bjji I−l−i1∗0,ji1,…,jl,t , 20

where Bjji   j,ji1 − 0,j.

Proof. By using partial integration, we get
dIj,tI,t  Ij,tdI,t  I,tdIj,t  1 − 0,jI−dWt

jdWt
jl

 Ij,tdI,t  I,tdIj,t  1 − 0,j jjl I−,tdt
 Ij,tdI,t  I,tdIj,t  1 − 0,j jjl I−,tdt
 Ij,tI−,tdWt

jl  I,tdIj,t  Bjjl I−,tdt.
For the sake of simplicity, let us define the terms A,t

j  Ij,tI,t for  ∈ M, to obtain
A,t

j  
0

t
I,sdIj,s  

0

t
Ij,sI−,sdWs

jl  Bjjl 
0

t
I−,sds

 
0

t
I,sdWs

j  
0

t
A−1,s

j dWs
j  Bjjl I−1∗0,t

 I∗j,t  
0

t
A−1,s

j dWs
j  Bjjl I−1∗0,t.

By induction over l in  inside A−1,t
j ,we may write

A,t
j  I∗j,t  

0

t
I−1∗j,sldWsl

jl  
0

t 
0

sl
A−2,sl−1

j dWsl−1
jl−1 dWsl

jl

 Bjjl−1 
0

t
I−2∗0,tdWsl

jl  Bjjl I−1∗0,t

 I∗j,t  I−1∗j,jl,t  
0

t 
0

sl
A−2,sl−1

j dWsl−1
jl−1 dWsl

jl
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 Bjjl−1I−2∗0,jl,t  Bjjl I−1∗0,t .
Apply then the same procedure with A−2,sl−1

j , to obtain

A,t
j ∑

i1

l

I−l−i∗j,ji1,,jl,t  
0

t 
0

sl
 

0

s2
A−l,s1

j dWs1
j1dWsl

jl

∑
i1

l

Bjjl I−l−i1∗0,ji1,,jl,t.

Note that
A−l,s1

j  Ij,s1I−l,jl  Ij,s1Iv,s1  Ij,sl  
0

s1
dWs

j . 21
Hence, we have

I−l∗j,j1,,jl,t  
0

t 
0

sl
 

0

s2
A−l,s1

j dWs1
j1dWl

jl

 
0

t 
0

sl
 

0

s2 
0

s1
dWs

j dWs1
j1dWl

jl . 22
By replacing (21) and (22) in (21), we obtain (20). Here the proof completes. 

The following corollary gives a clear idea about an interesting class of multiple stochastic
integrals

Corollary 3.1. If l, j ∈ N and   j, j,… , j with l  l, then

I,t
tl
l! , for j  0,
1
l Wt

jI−,t − tI−2,t, for j ≥ 1.

Proof. From theorem 3.5 B0,0  0 it follows that

tI,t  I0,tI,t ∑
i0

l

I−l−i∗j,ji1,,jl 23

∑
i0

l

I0,0,…,0
l1−times

 l  1 tl1

l1! .

The length of the multi-index  − l − i ∗ j, ji1,, jl is determined by:
l − l − i ∗ j, ji1,, jl  l − l − i  lj, ji1,, jl

 l − l − i  lj  lji1,, jl
 l − l − i  1  l − i
 l  1.

From (23), we get I,t  tl
l! and for j ≥ 1 it yields Bjj  1. Moreover,

Ij,tI−,t ∑
i0

l−1

Ij,…,j
l−times

∑
i1

l−1

I−1−l−i1∗0,ji1,,jl

 lIj,…,j
l−times

∑
i1

l−1

I−1−l−i1∗0,j,,j
sizel−1

 lIj,…,j
l−times

∑
i1

l−1

I−2−l−i∗0,j,,j
sizel−1

. 24
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Then invoke theorem 3.5, for j  0, to write
I0,tI−2,t  tI−2,t

∑
i1

l−1

I−2−l−i∗0,j,,j
sizel−1

. 25

From (24) and (25) it follows that
Ij,tI−,t  lIj,…,j

l−times
 tI−2,t.

Thus
Ij,…,j

l−times
 1

l Ij,tI−,t − tI−2,t,

which ends the proof. 

Lemma 3.5. The multiple stochastic integrals for the special case   j, j,… , j ∈ M are
Ij,j,j,t  1

3 Ij,t 1
2 Ij,t

2 − t − tIj,t  1
3! Ij,t3 − 3tIj,t , 26

Ij,j,j,j,t  1
4! Ij,t4 − 6tIj,t2  3t2 , 27

Ij,j,j,j,j,t  1
5! Ij,t5 − 10tIj,t3  15t2Ij,t , 28

Ij,j,j,j,j,j,t  1
6! j,t

6 − 15tIj,t4  45t2Ij,t2 − 15t3 , 29
Ij,j,j,j,j,j,j,t  1

7! Ij,t7 − 21tIj,t5  105t2Ij,t3 − 105t3Ij,t . 30

Proof. Note that, since j, j − 2  v, we have

Ij,j,t  1
2 Ij,t

2 − t  1
2 Wt

j2 − t . 31

and the proof of the other multiple integrals may be achieved by invoking corollary3.1. 

Remark 3.3. The following stochastic integral
Ij1,j2t0,t  

t0

t 
t0

s1
dWs

j1dWs1
j2 ,

where Wt
j1 and Wt

j2 are two independent Brownian motions can not be evaluated exactly. So
approximations must be used for its estimation. Some proposed approximations may be found
in literature, for instance in [4]. Here use is made of a direct expansion for the variation of the
double integral. Whereas in [5], use is made of the periodicity concept of a Brownian Bridge;
and Fourier series gives another method of approximation. Another useful approximation is a
direct evaluation of the variation via

Îj1,j2t0,t ∑
i0

m−1


t0

ti1 
t0

ti
dWs

j1dWs1
j2 ∑

i0

m−1

Wti
j1 − Wt0

j1Wti1
j2 − Wti

j2, 32

where ti
N is a time discretization of the time interval t0, t.

One of the interesting open questions to pose itself here is : Can we find a more accurate
formula for approximating I1,2,t by using the class of multiple stochastic integrals I1,1,t and
I2,2,t? More difficult types of multiple stochastic integrals are I,t, where at least tow
components of , j1 and j2 are disjunct. These integrals can not be analyzed in a similar way as
for  with the same components. However, it is more difficult and interesting to establish an
explicit formula for approximating their numerical behaviors.
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3.5. Simulation of a class of multiple Itô-integrals

Let  be chosen according to corollary 3.1. Consider an equidistant discretization of the
interval 0,1. The path of the stochastic integrals are generated on tn, and by using linear
interpolation, the generated trajectory is a continuous one. The stochastic paths (26)-(30) show
simulation of multiple Itô-Integrals, with step size Δ  1

500 . Obviously, the time series
behavior of the multiple stochastic integrals, with   1,… , 1 ∈ M have the same behavior.
Furthermore, according to our simulations of these stochastic processes, they cannot have
similar behavior to the Gaussian. One of the reasons for this dilemma is that for larger size of
the multi-index, i.e. l1  l2 , the amplitude of the corresponding time series has smaller
values. This is apparent in figure 7. In all figures bellow, we observe a colored-noise behavior
of the stochastic integrals I. Note also here the increasing time dependent amplitude.

The following code generates one value of I1,1,1,t using 500 −time iterations
————————————————–
% int3dW.m Approximate stochastic integrals
% return the value of the multiple stoch. int. for (1,1,1) on [0,t]
% enter the integral upper bound t
function xInt3dW(t);
N  500; dt  t/N;
Rzeros(1,N);
for j1:N
R(j)boxm();
end
dW  sqrt(dt)*R;
W  cumsum(dW);
% compute the valute of the integral
% based on the upper bound and the end value of the BM.
rW(end);
x (r^3-3*t*r)/6;
————————————————–
Code 6: Int3dW.m
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Figure7: Paths of multiple integral processes for different  ∈ M.

The following code generates the process I1,1,1,t in N −time iterations
————————————————–
function WpInt3dWprocess(T,N);
dtT/N;
Wp  zeros(1,N);
T  zeros(1,N);
for j1:N
T(j)j*dt;
Wp(j)Int3dW(T(j));

end
plot(T,Wp);
————————————————–
Code 7: Int3dWprocess.m

4. Concluding Remarks

In this contribution to the subject of computational stochastics, we have proved the
recurrence relationship for the class of stochastic integrals, where the multi-index has the same
components. In several examples, we have shown the graphical behavior of such processes.
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Furthermore, we have introduced the reader to many techniques and open questions. The
numerical approach presented here, could be employed for the treatment of many processes
derived from the Brownian motion. In particular, we have simulated the time-integral and the
time-differential of the Brownian motion. Consequently, we have clearly illustrated the
difference between the time-behavior of the area under the path of Brownian motion and the
behavior of white noise.

This paper is a semi-review of the stochastic integration, which is intended to motivate
graduate students and also junior researchers in some topics of computational stochastics,
which includes interesting Matlab codes. It is our intention for the future to finish similar work
on SDEs and SPDEs.
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