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Abstract. This paper is divided in two parts. In the first part, we describe a new representation
(employing Fourier analysis) for the fractional derivatives of local time of fractional Brownian
motion (fBm for brevity). Using this representation we study some regularities of these additive
functionals. In the second part we study the bounded p-variation and the bounded
p,q-variation in the sense of Young [26], of local time of fBm and also for its fractional
derivatives. In the last case, we actually have extended the results of this new representation to

a large family of additive functionals of fractional Brownian motion as a doubly indexed
process.
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1. Introduction

In this paper we employ the standard Fourier analysis approach, used by Berman, for the
calculation of the moments of local time to give some regularity properties and the
p.q-variations of local time of fractional Brownian motion (fBm) and of its fractional
derivatives.

A centered Gaussian process B = {B/,t > 0} is called fBm with Hurst parameter
H € (0,1) if it has the covariance function:

E(BI'BY) = 5 (s + 21 — |t - s2). )

This process was first introduced by Kolmogorov [17] and studied by Mandelbrot and Van
Ness [18], where a stochastic integral representation in terms of a standard Brownian motion
was established. The fBm has the following self-similarity property: For each constant ¢ > 0,
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both processes {c*B,t > 0} and {B/,t > 0} have the same distribution. This property is an
immediate consequence of the fact that the covariance function (1) is homogeneous of order
2H. This process also has stationary increments, and long-range dependence property. These
properties make the fBm a suitable driving noise in various areas including mathematical
finance, network traffic analysis, turbulence and image processing.

This paper is partially motivated by the following results of the local time of some Markov
process. The p-variation of the Brownian local time was first obtained separately by Bouleau
and Yor [10] and Perkins [21]. Actually, for a sequence of partitions {D,} of an interval [a, b],
with the mesh |D,|- 0 when n - oo,

b
lim Z(Lle —LiH? = 4_[ L% dx
in probablllty. This result allowed to construct various stochastic integrals of the Brownian
local time in the spatial variable (See Rogers and Walsh [22]). Marcus and Rosen [19] also
extended the results of [10, 21] to the local time of a symmetric stable process with index
1 < p < 2. More precisely if (7,).en IS any sequence of partitions of [a,b] < R, such that |r,,|
converges to 0 as » tends to oo, then forany 0 < ¢ < T,

Lr b
ZlLf,ﬂ — LI S c(p)J' (LHVBDdyx, forall » >0,

Xi€ETp

where L7 is a symmetric stable local time and ¢(p) is a constant that depends only on g. On
another note, Eisenbaum [11] studied this process as a doubly indexed process. For [a,b] a
subinterval of R and [s, 7] a subinterval of [0,+c0) denote a sequence of grids of [a, b] x [s,{] by

Ar = {(xi,s;)),1<i<nl<j<my,  forall keN,
Then the following limit holds.

Ll
E +1 +1 1
|L[/I L[/I [j+1 | ﬂ - O
(xi,t))EAL s

where |A4 and sup % both converge to 0 as k tends to oo,
& l) ( j+l 1)

By the same assumptions as of Eisenbaum [11], recently Ait Ouahra et al [2] studied the
p,g-variation of fractional derivatives D (see the definition below) of a symmetric stable local
time with index 1 < g < 2, more precisely

> IDL;,, (xis1) — DL; (xis1)

(xi,t))EAL

2 Ll
DL;, . (x;) + DL; (x;)| A=t — 0.

k—o0

Another motivation comes from the desire to connect Eisenbaum’s [11] results with those of
Feng and Zhao [13]. In fact, Feng and Zhao [13] proved that for a continuous semi-martingale,
its local time L7 is of finite p-variation in the classical sense in x forany ¢ > 0, a.s.

sup D |Li — LjlP <o forany p > 2,

where the supremum IS taken over all finite partition
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D(—oo 400) = {—0 < xp < X1 < X2 < +-+ < Xx, < +oop. This allowed to define the path integral
j(x)d L7 as a Young integral, for any f being of a finite g-variation for a number g € [1,2).

They also have shown that for a continuous bounded semi-martingale, its local time L7 has a
bounded variation uniformly in x, and bounded 2 + g-variation uniformly in ¢, for all € > 0,

thenro 'r fx)d, L7 is well defined ( in the sense of Theorem 3.1 [13]), for any f of bounded
-0 Y0

p.qg-variation in (¢,x) wherep > 1,¢ > 1and 2¢ + 1 > 2pq.

The main objective of this work is to give analogous results for the local time of fBm and
of its fractional derivative. It should be noted here that the proofs in Eisenbaum [11] and in Ait
Ouabhra et al [2] depend on the Markov property for a symmetric stable process, then one asks
immediately if it can be generalized to a non-Markovian process like fBm. The answer is
affirmative. Indeed, the method applied in this work, which is based on the works of Berman
([4, 5, 6]), invokes a Fourier transform representation of fractional derivative of fBm local time

The paper is organized as follows. In the next section, we present a very brief over view of
local time. In section 3, we give a Fourier transform representation of fractional derivatives of
fBm local time. We use this representation to give some regularities of this additive
functionals. Section 4, is devoted to the study of certain results of bounded p-variation and
bounded p, g-variation of local time of fBm and for its fractional derivatives in the sense of

Young [26], which allowed to define pathwise stochastic integrals of the forms J. t fx)d,AY and
0

b
jlj g(s,x)ds A%, for fis a-HOlder, g is (a1,a2)-Holder, and 45 € {L§,D7L;(x)}, where the
0va

definition of the operator D” is given bellow. Subsequently, we give also in this section the
p,g-variation of local time of fBm and for its fractional derivatives with Hurst parameter
% < H < 1. Finally, in the last section we extend our results to a large family of additive
functionals of fractional Brownian motion, more precisely generalized fractional derivative by
introducing slowly varying function.

To lighten notations, in the rest of the paper we shall use
AgL = Lit —Li — LY, + L,

ti+1

and
AUDL = DL;‘/.+l (X,'+1) — DL;].(XH_;[) — DL;J.+1 (X,') + DL,](X,)

It should be noted here that the paper contains a number of unspecified free positive constants,
denoted by C, which may not be the same in each occurrence.

2. Prerequisites

In this section we recall the definition of local time in general at first and we state some
regularities of fBm local time that are used all along the paper.
Let (X(¢),t € R.) be a separable random process with Borel sample function, the occupation
measure of X is defined as follows:
w(4,B) = A({s € 4,X(s) € B}), VA4 € B(R;) and VB € B(R),

where 4 is the Lebesgue measure on R.. If u(4,.) is absolutely continuous with respect to the
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Lebesgue measure on R, we say that X has local time on 4 and define the local time L(4,.) as
the Radon Nikodym derivative of u(4,.).
Clearly, the local time L7 satisfies the following occupation density formula

j AXy)ds = j O0)L(B,x)dx,
B R
for every Borel set B < R, and for all measurable functions f: R - R.,. Consequently
x - LY € LY(R).
The well-Known Fourier analysis approach for local time of some Gaussian process X

introduced by Berman (see [4, 6]), states that for a fixed sample function at fixed t, the Fourier
transform on x of L¥ is the function :

F(u) = IR e™ L¥dx.

Using the occupation density formula and the inverse Fourier transform of this function, we
have the following representation for local time:

1 (™ ([
Ly = 57 B (-[0 e (S)‘x)ds)du. (2)

Xiao [25] proved that the associate family {L}, t > 0, x € R} of fBm with the Hurst
parameter H € (0, 1), has the following regularities

ILY = Ll 2m < Clt =8|, 3)
and

IL7 = LY = L7 + LY || 2m < Clt = s 3D ]x — 4, (4)
where 0 < & < min (1,55 — %) and ||. [|2n = [E|.|2]% stands for the norm in L2"(Q).

Remark 2.1. The self-similarity property of the fBm immediately implies the scaling property
of the local time process:

(L&*, t>0,xeR,) 2 (e*MLr, t>0,x € R), forany ¢ > 0. (5)

3. Fractional Derivatives of Local Time of fBm and its Regularities
3.1. Fractional derivative of fBm local time

The fractional derivatives and integrals have many uses such as fractional
integro-differentiation which has now become a significant topic in mathematical analysis.
Fractional derivatives of local time have been discussed for physical purposes in the paper by
Ezawa et al [12]. For a complete survey on the fractional integrals and derivatives we refer the
reader to Hardy and Littlewood [16] and the book by Samko et al [23].

Let us recall the definition of the fractional derivatives of a real function.

Definition 3.1. Let0 <6 < 1landf: R —» R be a function that belongs to C? N L1(R), where
CY is the space of locally  —Holder continuous functions on R. For 0 < y < 0, we define DLf

by:
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vay oV [* STy
DIfw) = 1 | Ry
The operators DY and D are called, respectively, right-handed and left-handed Marchaud
fractional derivatives of order y.
We put D? := D} - Dr.

In what follows, we give a new representation of fractional derivative of fBm local time,
based on Fourier analysis approach which is the main tool in this paper. The regularity (4) of
local time of fBm, allows us to define its fractional derivative of order y:

/}/ 0 L)tc+a_L;c—a
’y M =
DILi(x) Ca-y) Jo altr
By using (2), we have then the new representation of fractional derivative of fBm local time:

da, forall 0 <y <eé.

. ¥ 0 t eiu(X(s)—x+a) _ piu(X(s)—x—a)
14 - ¢
DYLi(x) o Io JR Io P dsduda
_ Y * ! wX($) [ p—iu(x—a) _ ,—iu(x+a) 1
wTay) -[o IR -[o e [e e ] i dsduda. (6)
Remark 3.1.

(1) The fractional derivatives of the local time is a particular continuous additive functionals of
zero energy, in the sense of Fukushima [15].

(2) Like in Fitzsimmons and Getoor [14] for symmetric stable process we have the following
scaling property,

(D"L;,(Ax), t > 0, x € R) = AYEHEDYLi(x), t > 0, x € R), (7)
forall A > 0.

3.2. The regularities of the fractional derivative of fBm local time

The new representation (6), allows to give the following regularities of fractional
derivative of fBm local time. Throughout this section {B”(¢),t > 0} is a fBm with the Hurst
parameter H € (0,1).

Theorem 3.1. Let0 <y < &and D = {D?,DL}. For all m > 1 there exists a constant C > 0,
such that for every 0 < t < T and (x,y) € R? we have

IDLi(x) — DLi()|lam < CEHED|x — 3|57 (8)

Proof. The proof can be given by a slight modifications of the proof in Ait Ouahra et al [2] in
the case of a symmetric stable process; and we omit it here. |

Theorem 3.2. Under the assumptions of theorem 3.1, there exists a positive constant C such
that:

IDL;(x) = DLi(y) = DL;(x) + DL;(»)l|2m
< Clt— s -y Y, 9)
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Proof. In the following we give a proof of the space-time regularity. To prove this regularity
we use our new representation of fractional derivative of fBm local time.
First, consider the following notations:

2m 2m 2m

di = | |dw, dh=1]]dn, da=1]]da:
J=1 J=1 J=1
From (6), for any integer m > 1, we have:

ID7L;(x) = D"Li(y) = D7Li(x) + D"Li(») [|*"

— C‘ J. J. J. e[uBH(h) [e—iu(x—a) _ e—iu(x+a) _ e—iu(y—a) + e—[u(y+a)] 1 dhduda
[0+ & R ¥ [s,1] attr om
< C(]l + ]2),
where
11 = Hj J. j eiuBH(h) [e—iu(x—a) _ e—iu(x+a) _ e—iu(y—a) + e—iu(y+a):| ]:-l. dhduda ’
[0,6] YR Y [s5,1] av 2m
and
L = Hj I j eiuBH(h) [e—iu(x—a) — e iulx+a) _ p-iu(y-a) 4 e—iu(y+a)]_1 dhduda ,
(bl SR 9 [5,7] alty om
forall b > 0and C = _r
2l (1-y)
First let us invoke /3":
I%m = Hj I j eiuBH(h) [e—iu(x—a) — e iulx+a) _ p-iu(y-a) 4 e—iu(y+a)] 1 dhduda
05 IR I [5.] alt’ om

2m
J‘[O b]Zm J‘RZM j[ Z]Zm | |[e_iu_l'(x—aj) — e—iuj(x+aj) _ e—iuj(y_al.) + e_iui(y"'aj)]
N
) , i1

. 2m . 2m _
.E(ézﬂ o’ “’-”) [ 1 dhdada
Jj=1 a;
Using the elementary inequality | 1 —¢® |<2%% | 9 |¢ forall 0 < ¢ < land any O €R,we
have

2m 2m
H[efiuj(xfaj) _ e*iuj(x+aj) _ e*iuj(yfq,‘) + e*iu,‘(eraj)] < CHluJ|§|aJ|§
-1 -1

Hence,
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2m

[2m = CI [0,5]2" IRZm j 2 Hl J|§ H |afJ|ry ( ‘. u,B (h)>d}_ldﬁdd
1y - PSP )\ -
<C j - 1:1[%«: 17 g4 I . I . 1;[|uj|5E<e D wBy ) T

2m RH(T. _
< Ch2m&- y)J' 2 J. . H|uj|§E< Z 0 (h’)>dhdﬁ, because y < ¢,
R m m

< CH2ED)|g — 5| 2mA-H+D),

where the last inequality follows from the proof of Lemma 3.3 in Boufoussi et al [8]. Now, we
are going to invoke 73"

[%m == HJ. J. J. e[uBH(h) [e—iu(x—a) _ e—iu(x+a) _ e—iu(y—a) + e—[u(y+a)] 11 dhduda
b,) 5.t a +Y

2m

2m

= J. i j , I ) H e jx=a)) _ p-iujxtay) _ o=iuj(y=a;) 4 p-iuj(y+a;)
[b,o[™M & REM ¥ [g,£]5M
j=1

. 2m nH(p 2m _
.E(JZH “e “’”)H L_dhdida.
14

=1 4

Moreover, applying again the elementary inequality |1 — e®| < 2¢|0] for all 0 < £ < 1 and
any 6 € R, we have:

2m 2m
H e—iu,-(x—a_,-) _ e—iu_,-(x+aj) _ e—iuj(y—aj) + e—iuj(y+a,-) < C |x _y|2m§ Hluj|§
J=1 J=1

Then, we obtain

2m 2 . _
Igm < CJ o J'Rzm J.[ o |x y|2m§ Hlu |f§ H 7 ( (=1 uiB (M))dhdﬁdd
s, a;

[b,+0

2m
< Clx —y|2me j [Zml_[a‘1 Y da Iw fmz,,, Hlu,IfE< PISEL (h)>dhd‘

< Clx _y|2m§b—2m7/|t _ SlZm(l—H(l+§)),

where we have used again in the last inequality the arguments used in the proof of Lemma 3.3
in Boufoussi et al [8]. Furthermore, by choosing » = |x — y|, we deduce that
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I D7Li(x) = DYLi(y) = DYLi(x) + D'L;(y) llow < C = |0k — y|=7,
which completes the proof of this theorem. H

Incidentally, by applying Kolmogorov’s criterion we have the following mixed Holder
regularity.

Lemma 3.1. Let T >0, then the following condition is true almost surely. For all
0<pBy<1-HA+¢) and 0 < B, < £—, there is a constant C > 0 for any (t,s) € [0, T]?
and (x,y) € R? such that:

| DL;(x) — DL;(y) = DL;(x) + DL;(y) |< Clt - s|Pt[x — y|P2.

Remark 3.2.

a) Similar regularity of (8) is given in Marcus and Rosen [19] for the local time of a symmetric
stable process with index 1 < 8 < 2. Using this regularity and the Markov property, Ait
Ouahra and Eddahbi [1] have demonstrated its mixed Holder regularity. Notice that a similar
result for mixed regularity of local time can be found in Boufoussi and Kamont [9] for the
Brownian motion case, and in Xiao [25] for the local time of fractional Brownian motion; and
for the local time of the multifractional Brownian motion in Boufoussi et al[8].

b) Recently the mixed Holder regularity of the fractional derivative of local time of a
symmetric stable process is proved in Ait Ouahra et al [2].

4. p,g-variation

In this section, we deal with some results about p, g-variations of local time of fBm and of
its fractional derivative with a Hurst parameter 1/2 < H < 1.

4.1. p,g-Variation of local time

First, let us recall that a real function (x,y) - F(x,y), defined on the rectangle
E = [a,b] x [c,d] is said to be of bounded p-variation in x uniformly in y, if

supsup Z |F(xi,y) = F(xi1,p)P < o0,
Y oma

where 7, = {a = xo < x1 <..... < x, = b} Is an arbitrary partition of [, b], and furthermore,
it’s of bounded p, g-variation in (x, ), if

m n q
supsup ) (Z |A,,~F(xl-,yj)|l’> < o, (10)

Ton T j=1 i=1
for all partitions £,y ==y x 7 = {a=x0 <x1 <...< Xy, =b, c=y0 <y1 <...<ym =d}
of [a,b] x [c,d].
The local time L possesses the following properties.
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Theorem 4.1.

i) Foralle > 0,x — L7 is of bounded ¢ + %—variation uniformly in t.
min(1

ii) L} is of bounded variation in t uniformly in x.
iii) For any p,q > 0, such that ﬁ < &and % <1-H(1+¢), Lisof bounded p,q-variation in

(t,x).

Proof. 1) Is the immediate consequence of the fact that every p-Hoélder function is of finite
%-variation on every compact interval and the following regularity: almost surely, there exist

a constant C > 0 such that

ILy - Lil< Clx — %, forany 0 <¢<min(l, 5 — 1)

i) Is trivial because r — L7 is an increasing process.
iii) By applying Kolomogrov’s criterion to (4), it follows that for every 0 < g, <1 - H(1 +¢)
and 0 < B, < &there exist a constant C > 0 such that

LY = L = L7 + L3| < C e = s|Prx )12,
whenever s, ¢ € [0, 1].
Hence (10) in the case of local time of fBm is finite, only when -~ < ¢ and + < 1-H(1+¢).
This completes the proof of this theorem. |

2H 2

Remark 4.1. The integral f: F(x)d.L} is well defined as a pathwise Riemann-Stieltjes integral

mln(l -

Te(e— 1)m|n(1 ﬁf%)

for any function F of g-variationwith1 < ¢ < 1+ , forevery ¢ > 0.

In the rest of the paper, let us consider that
Epm=myxmy ={0=xo<x1<....<xp=10 ¢c=y0 <y1 <....<ym =d} 0f [0,7] x [¢,d].
And the following theorem gives the class of functions for which the two parameter p, ¢-
variation path integration w.r.t. local time will be defined.

Theorem 4.2. Let E = [0,£] x [c,d] and 0 < & < min(1, = 57~ —) Then almost surely the two
parameter integral of local time of fBm,

J j fGs,x)dLY = lim i i:f(fi,xj)Asz,

En m|~0 .
| =0 Jj=0

is well defined, for any function f € Cg"**(the space of mixed Hélder function on E), with
1>a1>HA+&)and 1 > ar > 1 —¢&. Moreover, there exist a constant C(a1,a2,,,8,) > 0
such that the following inequality

t od

I J. fUs,x)dL¥
09Yc¢

withQ < B, <1-H(1+¢)and0 < B, < &, is satisfied.

< C(a1,az, By, B)tP(d - c)Pz,

Proof. Applying the two parameter Kolmogorov’s criterion of (4), we obtain
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LT = Ly = Lt + Ls| < Clt = P2 x )12,

with0 < g, <1-H(l+¢&and0 < B, < &
Using now Theorem 3.2 in C. Tudor and M. Tudor [24], we arrive at the required result. W

Remark 4.2.
1) Since the local time has a compact support, for any function fe Cz*?, with

1>a1>HA+¢) and 1> a > 1-&, we can define the integral 7, .=_[ I fs,x)dL?,
0*R

precisely
n-1 m-1

I; = lim tiyxj)AiL,

Ty 2 2 M)A
2) In the case of Brownian motion, the pathwise integral I, is defined for any function
fe Cg* such that 1 > a; > % and 1> a2 > +. In the symmetric stable process of index
1 <a <2 this integral is defined for any function fe C;*** with 1>a; > 2L and
1>ar > =a (X

Now, in the following theorem we give the p,g-variation of local time of fBm with the
Hurst parameter % < H < 1, similar to the Eisenbaum’s [11] result in the case of a symmetric

stable process.

Theorem 4.3. Let 1/12 < H < 1, (Ar)ken be a sequence of grids of [a, b] x [s,t], where for each
k, Ar = {(xi,s5;),1 <i<nl<j<m}y And suppose that |Ar| and sup Pea™Xid o

ispeny Tl "

converge to 0 as k tends to o,then

Lt
Z|AUL|5 — 0,
(i) oo
1 1
where 0 < & < 57 — 5.

To prove this result we need the following lemma.

Lemmad4.l. LetH € [i 1). Then for any t € R, we have
ZP max B> n] < C < +w,

<5<,
neN 1<s<t+1

where the constant C doesn’t depend on t.
Proof. We have by Lemma 2.3 in Matsui and Shieh [20], for any H € [%, 1)and A > 0,
P[max BH > 1] < / I ezdx

1<s<t+1
Making the change of variable x = 4 + u, we obtain for any 4 > 0

400 _ﬁ ,—__
J e2dx<—e )

A
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Finally
ZIPmaxBH>n <Ze7 0. [
neN 1<s=t+l neN

4.2. Proof of theorem 4.3

For a fixed j, we define
Cll = —L— di=dij) = —2—
J ) ! (l ]) ta—t)H

and by applying the scaling property, we have
£ - C Xi+l C Xi C Xitl CHX[
AL S Cl 1[LCW B A e e by J
_ CH—ZLJ. J eiuBH(erCjtj)[efiqu[le _ zuC Xi ]dsdu
7 JIrJo
Let’s denote,
])[C = J. J.t eiuBH(HC,‘tj)efiudedu

the local time (modulo a constant - ) of the Gaussian process X (s) = B (s + C;t;) (see (2)).
Then

Myl = [ -7 ] = e -]

= (tpr — ) AP =1,
Therefore we have,

i 1-H
E[Z |A;L| S ] =Y (ta-t) ¢ [Z (e ’I‘?J
iy J
1-H . . L
- Z(tj” —-14) ¢ E|:Z |lf”1 _ li]ll & :|
J

d;i>0
1H Pt
+Z(t]+]_ t é ]E Z |l i+l 1 4’:
d;i<0
= d,+d_
Let’s put
S; =max XZ and I; =min X%,
0<s<1 0<s<1

and estimate d.. and d_ separately. Then consider (p,q) as a pair of positive real numbers such
that % + % = 1, to apply successively Holder’s inequality and (4), to write



81 M. AIT OUAHRA, and H. OUAHHABI

_H
m—Z(rﬁl () BLY 1~ 11T 51> d)

di>0

<Z<tj+1—z,> LS @ s, > d

d;i>0
< C(H) Z(rﬁl T D (di1 - d)P[S1 > d]
d;i=0
— C(H) Z(w T > (dis — d)PLmax(B™(s + Ct;) = 417
d;i>0
< C(H)sup(t1 — 1)) 7 Z(tﬁl — ) Z > din-d)
J

n<d;<n+1
1
- P[ max B"(u) >d;]4
Citj<usi+Cit;

1H1

< CDSUPiya 1) T Z(r,ﬂ—z,)ZP max_ BH(u) > n]4.

C it<usl+Cit;

Since%§H<1 Wehave%—1>0,then

1-H 4
sup (11 —1;) ¢ -0 as k — +o,
J

Now using lemma 4.1, we deduce that

1
P[ max BYu) >n]9 —9).
Z(fj+1 t) Z Ct,<u<al+Cz (u) >n]q9 < C(t—ys)

Hence
d, -0 as k — +oo.

Now, for d_. We do the same estimations as above by using /iinstead of Si;and by symmetry,
to arrive at

d- -0 as k- +o.
Consequently, we have

1
]E|:Z |A,~J-L|§:|—>O as k — +oo. o
iy

4.3. p,g-Variation of fractional derivative of local time

As earlier we give in this subsection some results about integration w.r.t. fractional
derivative of local time. The fractional derivative of fBm local time has the following
properties.
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Theorem 4.4.

i) Foranye >0, DL;(x) is of bounded ¢ + - variation in x uniformly in t.
m'n(l 3 3) Y
ii) Forany ¢ > 0, DL;(x) is of bounded € + THGS -variation in t uniformly in x.

iii)For any p,q >0, such that % <é—-vy and % <1-H1+¢&), DL is of bounded
p,q-variations in (t,x).

Proof . i) By applying Kolomogrov's criterion to (8), we guarantee almost surely, for every
0 < 6 < &—7, the existence of a constant C > 0 such that

IDL;(x) = DL;(»)| < C |x — y°.

And by the fact that every p-Holder function is of finite 1/p-variation on every compact

interval, we deduce that DL;(x)is of p-variation in xuniformly in ¢, for any p > ély

i) Is trivial by Theorem 5.1. of Ait Ouahra and Ouali [3]. Indeed, for every
0<a<1l-H(l+¢),wehave

|IDL;(x) — D"L;(x)| < C |t — s|*.
Consequently, the result follows.

iii) In view of lemma 3.1, we deduce that the fractional derivative is of bounded p, g-variation
if - <¢&—yand 4 < 1-H(1+¢). This completes the proof . |

Remark 4.3. The integral jZF(x)dDVL;(x)is well defined as a pathwise Riemann-Stieltjes
'

integral for any function Fof ¢ —variationsuchthat1 < ¢ < 1+ TEDET)

forany & > 0.

Theorem 4.5. Let E = [0,£] x [c,d] and 0 < & < min(1, = 57— —) Then almost surely the two

parameter integral of fractional derivative of local time of fBm

J; J‘jﬂs,x)dDyL;(x) = lim Z Zﬂzl,x A, DL,

|En,m|>0 “

is well defined, for any function f € Cfi}l “2(the space of mixed Holder function on E), with
1>a01>HA+¢) and 1>a3>1-&+y.  Moreover, there exists a constant
C(ay,a2,B1,B5) > 0 such that the following inequality

t od

[ | fsmdprr;e
09Y¢

withQ < By <1-H(1+¢)and0 < B, < &—v, is satisfied.

< C(a1,a2, By, Bp)tP(d — )P,

Proof- For0 < g, <1-H(1+¢)and 0 < B, < & —ywe have D7L € CPrPz, Indeed by lemma
3.1 we have almost surely forall 0 < g, < 1-H(1 +&and0 < g, < é—,

ID7L;(x) = D"Li(x) = D"L;(y) + D7L;(n)|< Clt = 5P} — y|P2.
Consequently, using Theorem 2.3 in C.Tudor and M.Tudor [24], we deduce our theorem. W

Remark 4.4. For any function f € Cz“?,with compact support, where 1 > a1 > H(1 + ¢)and



83 M. AIT OUAHRA, and H. OUAHHABI

1> ap > 1— ¢+ y,we can define the integral J, := j; ij(s,x)dDVL;(x), precisely
n—-1 m-1
J: = lim ti,xi)A;;D"L.
t Enn|o0 Z Zﬂ )CJ) J
i=0 =0
By the same technique as in theorem 4.3, we prove in the next theorem the p, g-variation of the
fractional derivative of fBm local time with a Hurst parameter % <H<L

Theorem 4.6. Let 1/2 < H < land (Ar)kenbe a sequence of grids of [a,b] x [s,t], where for
each k, Ay = {(xi,5;),1 <i < n,1<j<m}. We suppose that |Ai| and sup DXl g

(t'+l_t')H
(xisj)er, Y Y
converge to 0 as k tends to o. Then for D = {D?,D%, D" }»we have
111
D ADLIFT = 0, (11)
(i) koo
where 0 < y < &

Proof. The proof of this theorem is done in several steps, in which we adhere to the same
notation as in theorem 4.3.

Step /o
Firstly we prove (11)for D = D’.By applying the scaling properties (7) and (6) and using
the same steps as in the proof of theorem 4.3 we may write

L 1-(1+Y)H
]E|:Z |Ai,-D1L|W:| =>¢ 7 E[Z
iy i

J

1
o UX(s+Cjty) (e*iu(cf’xwfl)

_e—iu(C]HxH1+a) m(C X;) +e tu(C x+a)> dsduda| 5 y :|
Next define
DY (x) J‘ J J‘ luBH(s+C it) (6 iu(x—a) _ e

Clearly the fractional derivative of local time of the Gaussian process X7(s) = Bf(s + C;t;)
must satisfy

N 1- (1+}/)H
E[Z IA,-,'DZLIWJ Z(bu —1) 7 ZEDDyll(dHl) D+11(d)|‘f 4 J
iy

1-(1+y)H
Xm0 > 5| ID21i(d) - DU }
d>0
1-(1+y)H
+Xom =)+ > 5| D23 - D%(d)W}
di<0

= d@ +d..
We need to represent &', and 4’ separately. However, as in the case of local time, we will
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deal only with d..

[Z \DX1i(div1) - D+ll(d)|§ Y J

di>0

di>0

1
= E|:Z |DII(dia) — DXL (d))| 577 ;81 > di:|

1
+ E[Z |DX1i(di1) — DYL(d)| 677 581 < d,].
di>0
Since the local time has a compact support,

F=0ifx ¢ |: inf X%, sup X?}
0<s<t 0<s<t

it follows that

E[Z DU (diss) — DU ()] 7 J

di>0
1
,}/ 0 ldi+1+a_ldi+a_ldi+l+ldi -y
5l

di>0

1
00 l l+1+a Ild +a l 1+1+11 _y .
+ZEU a7 I P da S1,<d; .

di>0
It is clear that the second term on the right hand side equal to zero. Accordingly,

_1 _1
E[Z |DY15(div1) — DY (d))| &7 J = E[Z |Di1i(div1) — DY ()| 677 5 81 > d,].

di>0 di>0

Furthermore, let (p,q) be a pair of positive real numbers such that % + % = 1. Then by
applying successively Holder’s inequality and (9), we get

1-(1+Y)H

d, < C(H) Z(t,+l —) 57 Y (s~ d)P(SL > d) T
di>0
1- (1+7/)H

< C(H) Z(t,+1—z,) YY) - d)P(S 2 d) T

n n<di<n+l

1-(1+Y)H

< CH)SUP(a— 1) &7 It —1) D B(S1 = m)¥ .

Since 3 < H < 1, we have L;{# > 3H > 1, and
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l—(l+7/)H_
sup (tisn —t;) < -0 as k- oo,
J

then by employing lemma 4.1, we deduce that

d. -0 as k- +o.
Also using the same arguments as in d',, and by symmetry, we obtain

d -0 as k- +o.
Consequently,

1
]E|:Z |A;DLL|EY ] — 0. (12)
ij

k—o0

Step2/o
Now we turn to the case of D = D?.

1-(A+y)H
E[Z IAinyLIﬁJ Z(t]+1—t,) &y ZEDDNl(dHl) DrI5(dy)| ¢ y}
ij

1-(1+y)H
- Xy > 6| ID115(d) - D113 5 ]
di>0
1-(L+y)H
Yo -) 7 8| D21 (di) - D@ |
d;<0

= d’+’ +d".

Proceeding exactly as above, we need to prove that 4", — Oand d"_ — Owhen k£ - o,
Let's prove the limit for " _. By symmetry we may obtain directly the limit for & .. Note that,

E[Z |D711(di1) — DZl‘l(di)|§+V ]
§_ 11 < d; J

di<0

o lx+1_a 1+1 l?’l
_ZEUM 8 [

di<0
2P tam b T e )

1
= E|:Z \Dr1i(di1) — DXIi(d)| &7, I1 < di:|,

d,SO
where, for the last equality, we have used the fact that, if ;1 > d;we have I; > d;1 —a,
I1 > d;and Iy > d; — aforany a > 0.
Then by using same arguments as in the proof of Stepl, we get
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Z(z,ﬂ—t,) R D i - 1"|é I < dj]

d;i<0

IS B 15 PR < 4t

d;i<0

< C(H) Z(rﬁl 1) E i - )Pl < di]

d;i<0

< C(H) sup (ha-t) F Z(rﬁl—rj)z D dim—d)

—n—1<d;<—n

P[ min  BAw) < d]7

Cj tj<u<l+lej

= C(H) sup (tia —17) - Z(tm —1) D Pl C,/m'n BY(u) < —n] .

<us1+Cjt;

In the above inequality we have used the same arguments as in ([11], page 874).
So, we have

1-H

sup (tra—t) 5 -0 as k- o,
J

and by lemma 4.1 we can write

. 1
Pl min  BA(u) < -n]4 < +oo,
lejSMS].Jertj

Hence,
d'-->0 as k- +o.
Consequently, by symmetry we obtain

1
E[Z |A;DYL| &7 ] — 0.

Step3/o
Finally we look at the case of D = D”.Here by the definition, we have

D” = DY - D,
then
|D7| < |DL+|D|.

86

(13)

This, jointly considered with (12) and (13), proves the result for D = D”.Here the entire proof

completes.

Remark 4.5. It is well-known that the Fourier transform F, of fractional derivative of a

functionf e LY, is

F(D"fx)) = (iw)? Ffw).
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Now, by (2) and the inverse of Fourier transform, we obtain that
t .
D7L;(x) = %J. (iu)7|:j e’“(x‘Xs)ds:|du,
R 0
which neither gives a useful estimation nor the required regularities of fractional derivative of
fBm local time, that we need in this paper.

5. Extension to Other Additive Functionals

In this section, we are interested in more general additive functionals ( generalized
fractional derivative). Let us replace the kernel —of DXby a suitable regularly varying

function, more precisely, for 0 < y < ¢,

KI'Li(x) = j k[ LS Ly Jdy, 0<y <&, (14)

1"( 7)
where k,; : R » [0,+o0) is a regularly varying function of the form
I()x¥7 if x>0
k'}/’] =
0 if x <0,

and [/ is slowly varying function. (see Fitzsimmons and Getoor [14] and Bingham et al [7]).
Then analogous to a fractional derivative by (2), we obtain

KV'Li(x) =
(15)

+0 t
wX(s) [ ,—iu(x—a) _ ,—iu(x+a) ( )
) _[ I J.o e [e e 1—= pREL ——dsduda,

for0O <y <

Remark 5.1. K7/ has the foIIowing scaling property
(K7L3, (M%), £ > 0, x € R) £ (AHAKY! [:(x), ¢ > 0, x € R),
where I'(.) = I(A*1.) a slowly varying function.

In what follows we will give similar results to those of the fractional derivative of fBm
local time. For this purpose let’s first recall Potter’s Theorem, which will play a central role in
the proof of our results.

Theorem 5.1. (Potter’s Theorem)
i) If | is slowly varying function, then for any chosen constants A > 1 and ¢ > 0, there exists
X = X4, &) such that

583 <amax{(£)".(§)"} @zx yzn

ii) If further, | is bounded away from 0 and o« on every compact subset of [0,+x), then for
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every & > 0, there exists A' = A'(¢) > 1 such that

[
léy;_Amax{O/) (y 5} x>0, y>0).

Now, in the following two theorems we deal with the regularities of K”L.

Theorem 5.2. Let T> 0,0 <y < ¢ and let K = {K”’I,Kl’l}. Then for all m > 1 there exists a
constant C > 0, such that for every 0 < t < T and (x,y) € R?, the inequality

IKL;(x) = KL;(y)|| 2 < Ct-H1+0)|x — y|&7 (16)
holds.

Proof. We prove (16) only for the case of K = K7/, since the other cases follow by similar
arguments. Let m > 1, then by (14) and (4), with s = 0 and the fact that L§ = 0, we have

IK7L; () = K7L () | 2m

< CI(b)( j ﬁgz) Y gy + j lE”i Dy — ylruT Y du).

for every b > 0.
Moreover, by Potter’s Theorem, for all 0 < 6 < max(& — vy, 2y), there exists a positive and
finite constant 4, such that,

i <41 V)
It follows then that

IK7L; () = KT Li(0) || 2m < CEAHED (BT + v = ylob7T).
Therefore, it suffices now to choose b = |x — y|, which gives the desired result. |

Theorem 5.3. Under the same assumption of the previous theorem, for all m > 1 there exists a
constant C > 0, such that for every 0 < t < T and (x,y) € R?, the inequality

|KL;(x) — KL;(y) = KL;(x) + KL;(y) || 2
< Clt — 5| HWD|x — y|57, (17
holds.

Proof. For all m > 1, using (15) we have,
IK7L;i(x) = K7Li(y) = K"L;(x) + K"L;() | *" < CU1 + ),
where
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I, = ”J‘ J J‘ eiuBH(h) [e—iu(x—a) — piulvta) _ p-iu(y-a) 4 e—iu(y+a)] lg-a) dhduda”z,n,
[0,6] YR ¥ [s,1] alY

and

I, = ”J‘ J J‘ eiuBH(h) [e—iu(x—a) — e iulvta) _ p-iu(y-a) 4 e—iu(y+a)] lg-a) dhduda”z,n,
[b+oo[ IR ¥ [s,] alY

forall » > 0.
By using the elementary inequality |1 — e®|< 21-<|9]c for all 0 < &£ <1 and any 0 € R, we
obtain

I(b)

2m 2m
iy wiB A (hy) =
I 2 J. 2 H|uf|5E[€lZf=luj ’ thdﬁ,
R&™ & [s,6]5m = ’
J=1

2m
_ laj) ey .
12m<2¢§lb 2m J S ?’d
(O . j|__1| a7 da

and

2m

l(a;) -1 ,_

R (O N | —l((lj)) a;" da
,+00 j:l

2m 2m
i ) wB(h)) =
J J on H|Mj|§E|:€lZJ_1ul ’thdﬁ.
R [s,4] -1

Moreover, by Potter’s Theorem, for all 0 < 6 < max(&¢ —y,2y), there exists a positive and
finite constant 4, such that,

I(u) u ) u -5
1(b) SAE{(/)) V(&)
It follows then that

[%m < Cme(ff']/)lt _ SlZm(l—H(l+§))’

and
]%m < C|x _y|2m§b—2m}/|t _ SlZm(lfH(lJrf))l
Finally, by choosing b = |x — y|, we can write
IK7Li(x) = K7L () = K7Ly () + K" L; ()|l ,, < CJt = 5] = |7
Here the proof completes. |

In what follows, we give some results about the integration w.r.t. K” of local time. Note
that by using the same technique for the fractional derivatives of local time of fBm, analogous
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results for the generalized fractional derivatives of fBm local time are obtained.

Theorem 5.4.

i) Foranye >0, K"Ly(x) is of bounded € + - variation in x uniformly in t
e )7

ii) Forany e > 0, K"L;(x) is of bounded € + m -variation in t uniformly in x.

iii) For any p,q > 0, such that % <é—-vy and % <1-H(+¢), K'L is of bounded

p,q-variations in (t,x).

Proof. The proof of this theorem is similar to the proof in the fractional derivative case. In
particular, we give here the proof of i) in theorem 5.4. So we apply Kolmogorov’s criterion to
(16), to have almost surely, for every 0 < 6 < ¢ — ¥, aconstant C > 0 such that

IKL;(x) = KLi()| < Clx = °

and by the fact that every g —Holder function is of finite % — variation on every compact

interval then we conclude that KZ;(x) is of p —variation in x uniformly in ¢, for any
P> 7y u

Remark 5.2. The integral _[:ﬂx)deL;(x) is well defined as a pathwise Riemann-Stieltjes

integral for any function fof ¢ variation suchthat1 < ¢ < 1+ 1+(gi—)y(5-y) forall ¢ > 0.
Theorem 5.5. Let E = [0,£] x [¢,d] and 0 < & < min(1, = -7 —) Then almost surely the two

parameter integral of generallzed fractlonal derivative of fBm local time

I ;j fls,x)dK7L; = lim Z Z ftix))ALKTL,

| nm_’o X

is well defined, for any functzon f e Cg""* (the space of mixed Holder function on E), with
1>a1>HA+¢) and 1>a3>1-&+y. Moreover, there exists a constant
C(a1,a2,B4,B5) > 0 such that the inequality

t od

I J. fUs,x)dK7 LY
0Yc¢

with0 < gy <1-H1+¢)and0 < B, < &—vy, is satisfied.

S C(al,az,ﬁl,ﬁz)tﬁl(d— c)ﬁzl

Remark 5.3. For any function /'€ Cz"“?, with compact support, where 1 > a1 > H(1 + &) and
1>a; >1-¢&+y, we can define the integral

J, = ItJ. f(s,x)dK” L;(x), precisely
0YR

n-1 m-1
Jo=lim D" D" fitix)AiKL.
|En,ml~0 o 0

Now following the same steps as for fractional derivative of local time, we are able to give
in the following theorem the p, g-variation for K7 L.
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Theorem 5.6. With the same assumptions as theorem 4.2, when K = {KW,KZ",KX”},the
following limit

11
D IAKLIET =0,
(i) oo

should hold.

Remark 5.4. These results remain true for the subfractional Brownian motion and bifractional
Brownian motion. In general they remain true for all selfsimilar processes which admit local
time satisfying the regularities (3) and (4).
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