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Abstract. The problem of blind source separation consists of estimating a set of source signals
when only instantaneous linear mixtures are observed. In many cases, the information
concerning the source signals and mixing matrix are not available. Through the strong
assumption that the sources are mutually independent and of linearity of mixtures, the mixing
matrix can be estimated to reveal the source signals. In this note, to minimize the associated
computational work, the authors propose a novel source separation technique, based on the
wavelet transform. To ensure the previously mentioned independence, the Spearman’s rho is
employed as a criterion to be minimized within a new " genetics" algorithm. Some simulations
are reported to illustrate the good performance of this algorithm.
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1. Introduction

Blind sources separation (BSS) has been among the essential topics in the development of
signal processing (see for example [2, 3, 6,8]). We consider in this note the simplest case of
BSS when N sequences X1(¢),...,Xn(¢) are observed. Each one of these sequences is a linear
combination of N independent unknown sequences Si(¢),...,Sy(z). Here we can write
X(t) = MS(¢) where X(¢) and S(z) denote the vectors of components X;(7),...,Xn(¢) and
S1(2),...,Sn(¢) respectively, while M is a square matrix that is called the mixing matrix.

The posing problem is to recover the unknown sources Si(?),...,Sn(¢) from the
observations, without any priori knowledge of their probabilistic structure. It is only assumed
that the sources are mutually independent. The first solution of this problem proposed in [9],
was based on cancellation of higher order moments. However, it has been proved [6, 7] that
such an algorithm can diverge if the sources do not have an even probability density function.
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To circumvent such a difficulty, other criteria have been used by several researchers, which
are based on minimization of various cost functions, such as the sum of squares of forth-order
cumulants [10, 4], or some contrast functions [1, 5] have been employed. Other authors related
this problem of BSS to independent component analysis (/CA) which was introduced by
Comon in [5], and later improved by Pham in [11].

Given a random vector X with a probability distribution P, , the /CA problem is to find a
transformation square matrix B such as the components of transformed vector BX are as
independent as possible, if X = A4S with S having independent components, then B = 41
(where 4 is the mixing matrix), then B is a solution to the ICA4 problem. In this paper we
propose a new genetics algorithm for blind source separation based on the discrete wavelet
transform (DWT). A method that exploits the fundamental characteristic of this transform,
which is namely the preservation of the signal shape in the approximation sub-band of the
wavelet domain, and employs the Spearman’s rho as a measure of dependence between the
random variables. In particular, the Spearman’s rho represents, when using the genetics
algorithm, the criterion to be minimized. Finally, in section 4, some simulations are performed
to illustrate the good performance of this method.

2. Spearman’s Rho

Spearman’s rho, being a measure of dependence between random variables, is an essential
parameter of this work. In particular, we shall use the estimator of multivariate Spearman’s rho
introduced by F. Schmid in [12]. As in his paper, we shall estimate the Spearman’s rho through
the copula function.

At this point, particularly for this estimation of Spearman’s rho, some essential notation

needs to be fixed. Let Xi,...,X; be the set of d random variables with joint distribution
function:
F(x) = P(X1 < x1,X2 <x2,...,Xa <x4), Where x=(x1,x2,...,x4) € R and marginal
function Fi(x) = P(X; <x) for x e R and i = 1,2,...,d. If not stated otherwise, we will
assume that the F; are continuous functions. Thus, Sklar’s theorem states that there exists a
unique copula C : [0,1]¢ - [0,1] such that F(x) = C(F1(x1),...,Fa(xs)) forall x € RY.

The copula C is the joint distribution function of the random variables
U; = FI(X,),Z = 1,2,...,dWhere U; ~ U[O,l]

Moreover
C(u) = F(F{*(u1), F3*(u2),...,Ft(uy)) forall u € [0,1]¢,
where F represents the generalized inverse of F such as
FY(u) = inf{x € RU {oo}/F(x) > u}, Vu € [0,1],
and
F1(0) = sup{x € RU {~0o}/F(x) = 0}.
According to the detailed treatment of copulas, we can state some important results

concerning them.

1. Every copula C is bounded in the following sense

W) < C(u) < M(u),

such as

W(u) = max{uys +uz +...+ug — (d—1),0},

and
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M(u) = min{ur,uz, ..., uq} , for all u € [0,1]¢,
where M and I are called the upper and lower frechet-hoeffding bounds, respectively.
2. An important copula is the independence copula [ J(x) = Hil(u[),u e RY, describing the
dependence structure of stochastically independent random variables X1, X>,...,X4.
Authors of [8] give for the Spearman’s rho in the case of d-dimensional random vector X with
copula C the expression

- J.o ]dC( u)du _j dl_[(u)du _ d+1 (ZdJ. Clu)du — 1)
I[O,l]d M(u)du _.“[Oyl]d [1@du 29— (d+1) [0,13¢ '

Here p can be interpreted as the normalized average distance between the copula C and the
independent copula [ (). In the case of d = 2, with a simple calculation, we can obtain the
remarkable results
M(ui,uz2)durdus; = L,
[011]2 3
and
Uy, u2)durdus = 1
I[O,l]z [ T(u1, u2)durdus 7]
Then the formula for p can be rewritten as

11
p = 12‘[ J‘ C(u1,u2)durdus — 3.
0v0

2.1. Non parametric estimation

The aim of this activity is to estimate Spearman’s rho via the copula. Let (X;)s1, be a
random sample from a d-dimensional random vector X with joint distribution function F and
copula C, which are completely unknown.The non parametric estimator of the marginal
distribution functions is

f’,-,n(x) = % leik <x, Vx € R.

And
Uin = Fin(Xir), i=1,....d k=1,...,n
Note that

Ui = L (Rank of (Xu) in (X, ..., Xin)),
and the copula C can be estimated by the empirical copula, which is defined as
n d

Cow) = + D [ [ Loy, <uy - Vu = (uar... uq) € [0,1)%

k=1 i=1
Finally the estimator of p becomes
p=h@@ |  Calwdu=1) (1)
— h(d) (% ZH(l Uik) — @)
k=1 i=1
with
h(d) = d+1

29— (d+1)
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3. Proposed Algorithm

In this section, we explain our algorithm to achieve a fast separation of several unknown
source signals. As stated earlier, the algorithm is based on the discrete wavelet transform DWT.
The role of this transform is to estimate the inverse of the mixing matrix from the
approximation sub-band of the wavelet domain. As for the specific criterion to be minimized,
it is the absolute value of the Spearman’s rho (|p[). The proposed genetics algorithm is
essentially our tool for the minimization of this criterion, and can be analyzed according to the
following steps:

o Step 1
I
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Figure 1: Decomposition of observed signals.
where
DWTX; = [CA?,CD3,CD?,CD}],  for i=1,...,n,
with

C4’ : the approximation coefficient at level j,
CD); : the detail coefficient at level ;.

In this step we decompose each observed signal by the pyramidal digital wavelet
transform, using the bi-orthogonal wavelet Bior(4.4) up to the level 3.

o Step 2
From the previous step we can formulate our objective function in the following way. Let
IM be the inverse mixing matrix

mi ... My

muy1 ... Myy
where IM is an unknown square matrix and, C4 = [CA3,CA3,...,CAZ] is the vector of the
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approximation coefficients of wavelet level decompositions. The computational formula for
the objective function is

flm) = |Rho(IM.CD))|,

in which Rho is the Spearman’s rho, IM. CD is the simple product between the matrix IM and
the vector CD and m is a vector of the variables with dimension n x n.

N

3
CA]—D [T

A > Inverse mixing matrix

Figure 2: Formulation of the objective function.
o Step 3

In this part of the algorithm, we estimate the inverse mixing matrix by the optimum m* of
the objective function which is computed by the "genetics™ algorithm.

Genetics Algorithm —E

f(m)

o Stepd
In this step we estimate the source signals S1,S>,...,S, with the simple product between

the observed signals X1, X2, ..., X, and the previous estimated mixing matrix ™

4. Computational Results

We present here some computational examples of signals, that were processed by the
genetics algorithm, for the case of two and three source signals. In particular, we present some
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obtained graphical results, which demonstrate the effectiveness of the proposed method in the
recovery of the source signals shape. Apparently, the source signals are recovered within
expectations, and using some processing techniques after the separation operation, we have
obtained the source signals almost exactly, as illustrated in the following Figures 3-5.

Source signals
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Figure 3: A sinusoidal signal with Gaussian noise.
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Figure 4: A two sources signal.
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Soumce signals
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Figure 5: A three sources signal.

5. Conclusion

In this paper we have presented a new algorithm for blind source separation based on
discrete wavelet transform with the aim to minimize the computational work. Particularly, we
estimate the mixing matrix through the sub-band approximation coefficients in the wavelet
domain. Minimization of the Spearman’s rho serves in this algorithm as a measure of
dependence between sources. The reported computational results demonstrate the effectiveness
of this new algorithm for BSS.
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