
Journal of Numerical Mathematics and Stochastics, 8 (1) : 09-16, 2016 © JNM@S
http://www.jnmas.org/jnmas8-2.pdf Euclidean Press, LLC

Online: ISSN 2151-2302

A Newton-Type Method With Ninth-Order Convergence
for Solving Nonlinear Equations

R.THUKRAL

Padé Research Center, 39 Deanswood Hill, Leeds, West Yorkshire, LS175JS, England,
E-mail: rthukral@hotmail.co.uk

Abstract. In this paper we define a new two-point Newton-type method for finding a simple
root of nonlinear equations. It is proved that the new method has the convergence order of
nine requiring only four function evaluations per full iteration. The Kung and Traub
conjecture states that multipoint iteration methods, without memory based on n function
evaluations, could achieve maximum convergence order 2n −1. The new method produces
however a convergence order of nine, which is better than the expected maximum convergence
order of eight. Therefore, we show that this conjecture can fail for a particular set of nonlinear
equations. The drawback of this new method is its restricted utilization to a zero simple root. It
is demonstrated though that this method is very competitive with eighth-order methods.
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1. Introduction

It is well known that one of the most important problem in science and engineering [4,6,9]
is to find solutions of a nonlinear equation. In this paper, we propose a new two-point
ninth-order iterative method to find a simple root  of the nonlinear equation fx  0,where
f : D ⊂ R → R, for an open interval D, is a scalar function. Many higher order variants of the
Newton-type method have been developed based on the famous Kung and Traub conjecture
[3]. For the purpose of this paper, we improve the one-point Newton-type method and
construct a new two-point ninth-order iterative method for finding simple roots of nonlinear
equations. This new iterative method has a better efficiency index than the eighth-order
methods described in [1,6,7,8,11]. Hence, the proposed ninth-order method should be
significantly better in comparison with the previously established methods. The ninth-order
method presented in this paper uses only four evaluations of the function per iteration. Kung
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and Traub conjectured that the multipoint iteration methods, without memory based on n
evaluations, could possibly achieve maximum convergence order 2n −1. In fact, we have
obtained a higher order of convergence than the maximum order of convergence suggested by
the Kung and Traub conjecture [3]. We demonstrate that the Kung and Traub conjecture fails
for the particular case when the simple root of a nonlinear equation is equal to zero. Actually it
is a weakness of this new, two-point Newton-type, method that it is only usable when the
simple root of the nonlinear equation is zero.

The structure of this paper is as follows: Some basic definitions relevant to the present
work are stated in the section 2. In section 3 the new two-point ninth-order iterative method is
constructed and proved. In section 4, four well established three-point eighth-order methods
are revisited to exhibit the comparative effectiveness of the new two-point ninth-order iterative
method. Finally, in section 5, numerical comparisons are reported to demonstrate the good
performance of the new iterative method.

2. Preliminaries

In order to discuss the order of convergence of iterative methods, some definitions need to
be stated.

Definition [5] 2. 1. Let fx be a real function with a simple root  and let xn be a sequence
of real numbers that converge towards . The order of convergence p is given by

n →
lim xn1 −

xn − p   ≠ 0, 1

where p ∈ R and  is the asymptotic error constant. Moreover, if en  xn −  is the error in
the n th iteration, then the relation
en1  en

p  O ek
p1 , 2

is the error equation. If the error equation holds then p is the order of convergence of the
iterative method, [2,4,5,10].

Definition [5] 2. 2. Let r be the number of function evaluations of the iterative method. The
efficiency of the iterative method is measured via the concept of efficiency index

r p , 3
where p is the order of the method.

Definition [3] 2. 3. (Kung and Traub conjecture) Let xn1  gxn define an iterative function
without memory with k-evaluations. Then
pg ≤ popt  2k−1, 4

where popt is the maximum order of convergence.

Definition [8] 2. 4. Suppose that xn−1, xn and xn1 are three successive iterations close to the
root  of (1). Then the computational order of convergence may be approximated by
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COC ≈
ln n  n−1

ln n−1  n−2
, 5

where  i  fxi  f ′xi.

3. Convergence Analysis

As mentioned in the introduction, in this section we define a new two-point ninth-order
method for finding simple roots of a nonlinear equation. In fact, the new iterative method is an
improvement of the one-point third-order Newton-type method, introduced in [9]. The
one-point third-order method is used as our first step, and by simply repeating the iterative
process, we achieve a ninth-order convergence. Accordingly, the two-point ninth-order
Newton-type method is expressed by

yn  xn −
fxn 

f ′xn 
− 2xn−1 xn

2 − fxn 

f ′xn 

2

, 6

xn1  yn −
f yn

f ′ yn

− 2yn−1 yn
2 −

f yn

f ′ yn

2

, 7

where x0 is the initial guess. Obviously, it is assumed that the denominators of (6)-(7) are not
equal to zero, and the first-step (6) is one-point third-order method [9] mentioned earlier. Then
by repeating the process at an improved point, the second step is the ninth-order method.

Now, we shall verify the convergence property of the new two-point ninth-order iterative
method (7).

Theorem 3. 1. Let  ∈ D be a simple zero of a sufficiently smooth function f : D ⊂ R → R for
an open interval D. If the initial guess x0 is sufficiently close to , then the convergence order
of the new two-point iterative method defined by (7) is nine.

Proof. Let  be a simple root of fx, i.e. f  0 with f ′ ≠ 0, and let the errors be
expressed as e  x −  and ê  y − .
Using the Taylor series expansion, we have
fxn  f  f ′en  2−1f ′′en

2  6−1f ′′′en
3  24−1f iven

4 . 8
Taking f  0 into account and by further simplification we obtain
fxn  f ′en  c2en

2  c3en
3  c4en

4 , 9

f ′xn  f ′1  2c2en  3c3en
2  4c4en

3 , 10
where

ck 
f k
k! f ′

k ≥ 2. 11

Division of (9) by (10) leads to
fxn 

f ′xn 
 en − c2en

2  2c2
2 − c3en

3  7c2c3 − 4c2
3 − 3c4en

4 , 12
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and

fxn 

f ′xn 

2

 en
2 − 2c2en

3  5c2
2 − 4c3en

4 . 13

Substitution of (12) and (13) in (6) results with

yn −   en −
fxn 

f ′xn 
− 2en−1 en

2 − fxn 

f ′xn 

2

. 14

This readily reduces to a third-order error equation
ên  yn −   2−1c2

2en
3 − 2c2c2

2 − c3en
4 . 15

Now, Expansion of fyn about  yields
fyn  f ′ên  c2ên

2  c3ên
3 , 16

which in view of (15) is the same as
fyn  f ′2−1c2

2en
3 − 2c2c2

2 − c3en
4 . 17

Furthermore, by expanding f ′yn about  we obtain
f ′yn  f ′1  2c2ên  3c3ên

2 . 18
Similarly, we get
f ′yn  f ′1  2c2

3en
3 − 4c2

2c2
2 − c3en

4 . 19
Division of (17) by (19) yields

f yn

f ′ yn

 2−1c2
2en

3 − 2c2c2
2 − c3en

4 . 20

with

f yn

f ′ yn

2

 2−2c2
4en

6 − 2c2
3c2

2 − c3en
7 . 21

Substitution of (20) and (21) in (7) leads to

en1  en −
f yn

f ′ yn

− 2en−1 en
2 −

f yn

f ′ yn

2

, 22

which in view of (13) becomes
en1  2−4c2

8en
9  Oen

10, 23
indicating that the order of convergence of our Newton-type method defined by (7) is at least
nine. This completes the proof. 

4. Alternative Established Methods

For the purpose of comparison, a two-point fourth-order Newton method and four
three-point eighth-order methods presented in [2,5,7,10] are revisited. Since these methods are
well established, we state the essential formulas used in them to calculate the simple root of
nonlinear equations in order to compare their effectiveness with the effectiveness of the new
one-point ninth-order method.

The classical two-point fourth-order Newton method is given by
yn  xn −

fxn 

f ′
xn 

, 24
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xn1  yn −
f yn

f ′ yn

. 25

Dzunic et al. [1] developed the family of eighth-order Newton-type method, given by
yn  xn −

fxn 

f ′
xn 

, 26

zn  yn − 1 − 2t−1 f yn

f ′xn 
, 27

xn1  zn −
1v12w

1−2t−t2
fzn 

fxn 
, 28

where

t  f yn

fxn 
, v  fzn 

f yn
, w  tv  fzn 

fxn 
. 29

Sharma et al. [6] developed the family of eighth-order variants of the Ostrowski-type
methods. The particular form we however consider in this paper is given by
yn  xn −

fxn 

f ′
xn 

, 30

zn  yn − 1 − 2t−1 f yn

f ′xn 
, 31

xn1  zn − 1  w  w2 
f xn , yn fzn 

f yn , zn f xn , zn
, 32

f xn ,yn 
f xn − f yn

xn − yn
 f ′yn,

where  ∈ R, t, and w are given in (29). The computational results reported in the next section
are based on the particular value of   0.

Another variant of Ostrowski-type method was considered by Wang et al. [11] and is
represented by
yn  xn −

fxn 

f ′
xn 

, 33

zn  yn − 1 − 2t−1 f yn

f ′xn 
, 34

xn1  zn − 2fxn, zn   fyn, zn  − 2fxn,yn   yn − znfyn,xn,xn −1fzn. 35
where t is as in (29).

Finally Thukral has developed in [8] the eighth-order Newton-type iterative process
yn  xn −

fxn 

f ′
xn 

, 36

zn  yn − Kt f yn

f ′xn 
, 37

xn1  zn − 2−21  Kt2  v
1−bv  4 w

1−cw  pt4 fzn 

f ′
xn 

. 38

where
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Kt  1 at
1 a − 2 t , 39

a,b,c,p ∈ R while t,v, and w are as given by (29). The associated results reported in the next
section are based on a  b  c  0 and p  3.

5. Numerical Examples

The present two-point ninth-order method, represented by (7), is employed to solve
nonlinear equations with simple roots. To demonstrate the performance of this method, ten
distinct nonlinear equations are considered. These ten test functions are displayed in Table 1.
The difference between the simple root  and the approximation xn for test functions with
initial guess x0 are displayed in Table 2. In fact, xn is computed by using the same total number
of function evaluations for all methods. While the estimates of the solutions produced by all
the methods are given in Table 2, the corresponding errors are listed in Table 3. In fact, the
errors displayed are of absolute value, and insignificant figures in these results have been
omitted in these tables. The new two-point ninth-order method happens to require four
function evaluations and has an order of convergence nine. To determine the efficiency index
of the new method, definition 2.2 has been used. Hence, the efficiency index of the new
iterative method given by (7) is 4 9 ≈ 1.7132. The efficiency index of the three-point
eighth-order methods considered in this paper, described by (25), (28), (32), (35), is
4 8 ≈ 1.682 and the efficiency index of the two-point fourth-order Newton method, given by
(22), is 4 4 ≈ 1.4142.

Table 1 : Test functions with simple root   0 and x0 initial guess
fx x0

f1x  ex sinx  ln1  x2 1/2

f2x  cosx ln1  x3 − e−x sinx −1/3

f3x  expsinx2 − x/25 − 1 −1/10

f4x  1  x2 expcosx/2 − x  1expsinx/2 1/5

f5x  1 − cos3x  tan2x  sin4x 1/4

f6x  cosx2 − e−x −1/9

f7x  exp2x3 − 3x2 sinx  ln1  x3 −1/2

f8x  ln1  x2  sinxcosx 1/7

f9x  sinx − x3/2 1/3

f10x  x − 210 − 210 −1/8

It is clear that the efficiency index of the new two-point ninth-order method is much better
than that of other similar methods. Furthermore, we display the computational order of
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convergence approximations in table 3. From the tables we observe that the COC perfectly
coincides with the theoretical result.

Table 2 : Comparison of solutions by various iterative methods
fi (25) (38) (28) (32) (35) (7)
f1 0.394e-19 0.394e-111 0.137e-126 0.280e-131 0.623e-155 0.877e-349

f2 0.827e-44 0.417e-248 0.635e-263 0.504e-277 0.220e-304 0.520e-648

f3 0.201e-10 0.914e-51 0.101e-59 0.213e-62 0.112e-75 0.378e-223

f4 0.363e-27 0.336e-215 0.220e-249 0.163e-180 0.420e-224 0.143e-351

f5 0.112e-73 0.129e-343 0.234e-348 0.117e-400 0.134e-421 0.473e-1054

f6 0.887e-54 0.162e-368 0.864e-401 0.109e-403 0.990e-438 0.107e-734

f7 0.607e-71 0.399e-170 0.319e-190 0.130e-222 0.187e-181 0.854e-2481

f8 0.337e-47 0.199e-273 0.104e-313 0.148e-311 0.366e-361 0.114e-611

f9 0.125e-275 0.586e-315 0.246e-338 0.206e-546 0.818e-790 0.115e-6981

f10 0.114e-38 0.440e-297 0.140e-368 0.846e-335 0.170e-339 0942e-557

Table 3 : COC of various iterative methods
fi (25) (38) (28) (32) (35) (7)
f1 4.0007 7.9998 8.0005 8.0001 8.0001 9.0000

f2 3.9998 8.0000 8.0000 8.0000 8.0000 9.0000

f3 3.9304 7.9726 7.9964 7.9909 7.9980 8.9998

f4 4.0001 8.0000 8.0000 8.0000 8.0000 9.0000

f5 4.0000 8.0000 8.0000 8.0000 8.0000 9.0000

f6 4.0000 8.0000 8.0000 8.0000 8.0000 9.0000

f7 9.0067 8.9487 8.9586 9.9546 9.9305 25.000

f8 3.9999 8.0000 8.0000 8.0000 8.0000 9.0000

f9 9.0000 8.9847 8.9867 10.991 11.000 25.000

f10 4.0006 8.0000 8.0000 8.0000 8.0000 9.0000

6. Conclusion

The good performance of the new two-point ninth-order Newton-type method has been
demonstrated. The effectiveness of this method has been examined by displaying the accuracy
of the simple root of some test nonlinear equations. It has been verified numerically that the
new Newton-type method has a convergence order of nine. The major advantages of the new
method are: (i) it is not limited by the Kung and Traub conjecture, (ii) its very high



16 R. THUKRAL

computational efficiency, and (iii) better efficiency index. Indeed, the two-point iteration
produces a better approximation of the simple root than the three point method and is very
competitive with the three-point eighth-order methods. Finally, we note that the new two-point
ninth-order method is only effective when the simple root is zero. This is apparently a
limitation that calls for a further future special investigation.
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