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Abstract. Some new developments in computational discrete probability are carried out. The
obtained recursions exploit the one-to-one correspondence between the probability function
and the stop-loss transform of non-negative discrete arithmetic random variables. The
following applications are noticed. Beekman’s convolution formula for the two-stage nested
evaluation of probabilities of ultimate ruin from compound Poisson risk processes is
formulated as a one-stage recursion. Some general infinite series representations for the
probabilities and stop-loss transform in terms of factorial moments are obtained. Useful
examples include the mixed Poisson lognormal as well as Euler and generalized Euler
distributions. A convenient recursive formula to compute the stop-loss transform of a
compound distribution with arbitrary claim size but with Sundt type counting distribution is
also derived. As a consequence, a very simple second-order backward recursion to evaluate
the stop-loss transform of an arbitrary discrete random variable with non-negative support is
displayed.
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1. Introduction

The present study reports on some new developments about recursion formulas that found
their origin and main applications in computational risk theory. Some early and essential
papers in this area include Panjer [25], Beekman [1], De Pril [10] and Sundt [31]. A useful
introductory textbook is Panjer and Willmot [26] and a specialized monograph on this topic is
Sundt and Vernic [32].

The main recurring theme here is the one-to-one correspondence between the probability
function and the stop-loss transform of discrete arithmetic random variables, which is exploited
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to derive various recursive relationships that include first- and second-order backward
differences. A more detailed account of the content follows.

Section 2 introduces the fundamental relationships that are used throughout. They include
the equivalence of second-order backward stop-loss differences with probabilities (lemma 2.1
and equation (3)) as well as the equivalence of first-order backward stop-loss differences with
cumulative probabilities (4). As an important application, Beekman’s convolution formula to
compute the probabilities of ultimate ruin for compound Poisson risk processes is analyzed in
Section 3. Although quite simple, Beekman’s convolution formula has the disadvantage to be a
two-stage nested recursive algorithm. Indeed, besides the probabilities of ultimate ruin the
recursion depends upon the integrated tail distribution of a specific random variable, which
must itself be computed recursively. In theorem 3.1, this inconvenience is removed and
Beekman’s convolution is formulated as a one-stage recursion. Section 4 considers some
general infinite series representations for the probabilities and the stop-loss transform in terms
of factorial moments. These formulas are especially useful in case the latter have simple
expressions. Examples include the mixed Poisson lognormal as well as Euler and generalized
Euler distributions. One should note that variants of these formulas were already used by
Cramér et al. [8]. Finally, Section 5 contains recursive formulas for the stop-loss transform of
compound distributions. The claim sizes of these distributions are arbitrary but the counting
distribution is assumed to be of the type introduced by Sundt [32]. Theorem 5.1 is a
second-order backward difference formula to calculate the stop-loss transform of these
distributions. Example 5.1 demonstrates its application to arbitrary discrete arithmetic
distributions with non-negative support by making use of the pseudo compound Poisson
representation introduced by Hürlimann in [13,14] and recently revisited in [16]. Example 5.2
is an extension of Panjer’s recursion already noticed by Sundt [31].

2. Fundamental Relationships

Let X be a discrete arithmetic random variable defined on the natural numbers with
probabilities fn  PrX  n, n ≥ 0. The stop-loss transform is defined and denoted by
n  EX − n . In actuarial mathematics it represents excess-of-loss and net stop-loss
premiums, and in financial mathematics it is related to option prices. The probability

generating function (pgf) is denoted by Pz ∑
n0



fn zn and the stop-loss generating function

(slgf) by z ∑
n0



n zn. The two generating functions are linked by the following power

series identity.

Lemma 2.1. Let  be the mean of X. Then, the pgf and the slgf are linked by the identity
1 − z2z  1 − z − z1 − Pz. 1

Proof. In the space of discrete arithmetic functions, let e and id be defined by en  1,
idn  n, n ≥ 0. Then, one has the relation
n    en − idn  id ∗ n, n ≥ 0,
where ∗ denotes the convolution operator. By taking generating functions, one obtains (1). 
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A lot of results in the algebraic theory of recursions depend upon the first and second-order
backward difference operators defined by
∇xn  xn − xn−1, ∇2xn  xn − 2xn−1  xn−2, n ≥ 0,
for any sequence of real numbers xnn ≥0, with the convention that x−2  x−1  0. Using the
operator ∇2, the power series development of the identity (1) reads

∑
n0



∇2nzn   − 1  z ∑
n1



fn−1zn, 2

and yields the recursive relationship
∇2n  fn−1,n ≥ 2, 1   − 1  f0, 0  . 3

The relation (3) provides a one-to-one correspondence between the probabilities and the
stop-loss transform. Given the probabilities, (3) is a second-order linear recurrence to evaluate
the stop-loss transform. In this respect, one has also the first-order linear recurrence
∇n  −Fn−1, n ≥ 1, 0  , 4

where Fn ∑
j0



fj is the cumulative probability, and Fn  1 − Fn is the tail or survival

probability. Let us mention here that (3) and (4) are discrete analogues of the Breeden and
Litzenberger [6] relation in financial economics, which relate stock price density, distribution
function and call price (see also Talponen and Viitasaari [33]). Note that (4) can be obtained

from (3) using the addition formula ∑
j0

n

∇xj  xn by setting xj  ∇j. Closely related to the

stop-loss transform is the integrated tail distribution defined by

Tn ∑
j0

n

Fj ∑
j0



Fj , n ≥ 0. 5

Lemma 2.2. The integrated tail distribution is given by
Tn  1 − n1

 , n ≥ 0. 6

Proof. Use (4) and the addition formula ∑
j0

n

∇xj  xn to get the formula

∑
k0

n

Fk  −∑
k1

n1

−Fk−1  − ∑
k0

n1

∇k − ∇0   − n1, n ≥ 0.

In particular, since
n→
lim n  0 one has ∑

k0

n

Fk  . Insertion of this into (5) leads to (6). 

Although the above material is part of folklore in the field, and the elementary proofs are
straightforward, no precise reference for this could be located by the author. Several
applications of these basic facts and/or its variants, in particular a wide variety of recursive
formulas derived from them, are presented in the subsequent analysis. Some of them are of
general interest, but their main importance lies within risk theory.
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3. One-Stage Recursion for Probabilities of Ultimate Ruin

First, the probability of ultimate ruin must be defined. Given is a compound Poisson

random process Xt ∑
i 1

Nt

Yi, which describes the aggregate claims incurred up to time t,

where the claim sizes Yi are independent and identically distributed, and independent from
the Poisson claim number process Nt with intensity .

Definition 3.1. Let Stt ≥0 be the standard surplus process given by St  u  ct − Xt, where
u is the initial capital, and c the constant premium rate per unit time. The probability of
ultimate ruin (of ever having a negative surplus) depends on u and is defined by
u  PSt  0 for some t ≥ 0.

By ruin theory one has u  1 − PL ≤ 0, with L  max Xt − ct, t ≥ 0 the
maximum aggregate loss associated to Xt. The random quantity L can be shown equal to a
random sum L  L1  L2 . . .LM, where the Li′s are independent and identically distributed,
and independent from the geometrically distributed random variable M with parameter 1 − ,
  /c,  the mean of the claim size Y  Yi. The sequence m  1 − m,m ≥ 0, of
ultimate survival probabilities can be computed by means of Beekman’s convolution formula
(e.g. Beekman [1], Seah [30], Panjer and Willmot [26], pp. 371-372, Kaas [19]) as follows:

m  1 −  ∑
k0



kT∗km,m ≥ 0, 0  1 − , 7

where T∗k denotes the k-fold convolution of a suitable discrete arithmetic approximation to
the integrated tail distribution Tnn ≥0 that belongs to L1  Li, which has probability density
fL1y  1 − PY  y/. In practice, rounding down (up) the random variable L1 to
multiples of some sufficiently small  yields a lower (upper) bound to (7). Denote by L1



such an integer valued approximation to L1. By the form of (7) the sequence mm ≥0 is
nothing else than a geometric compound distribution with jump distribution Tnn ≥ 0. The

power series z ∑
m 0



mzm and Tz ∑
n 0



Tnzn satisfy the identity

z  1 − 1 − T0  Tzz, which implies the recursion

1 − T0m   ∑
j 1

m

Tjm−j, m ≥ 1, 0  1 − . 8

Next, express the integrated tail distribution in terms of the stop-loss transform

n  EL1
 − n ,n ≥ 0, with slgf z ∑

n 0



n zn. In the following, let Qz ∑
n 0



hn zn

be the pgf of the discrete arithmetic approximation L1
. The cumulative distribution of L1

 is

denoted by Hn ∑
j0



hj, and the survival function by Hn  1 − Hn . Similarly to lemma 2.2

one shows that
Tn  1 − n1

 ,n ≥ 0,  the mean of L1
. 9
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A further application of (4) shows that the integrated tail probabilities are given by
tn  ∇Tn 

Hn
 ,n ≥ 0, T−1  0. 10

The corresponding generating functions satisfy the power series identity
1 − zz   − z1 − zTz, |z|  1. 11
By insertion into lemma 2.1 one sees that the generating function of the integrated tail
distribution and the pgf are linked through the identity
1 − z2Tz  1 − Qz. 12
From this, one gets similarly to (3) and (4) the recursion relations:
−  ∇2Tn  hn,n ≥ 2,   T1  H0  H1,   T0  H0, 13

  ∇Tn  Hn,n ≥ 1,   T0  H0. 14
Although quite simple, Beekman’s convolution formula has the disadvantage to be a

two-stage nested recursive algorithm. Indeed, before being inserted into (8), the integrated tail
distribution (7) must first be evaluated using the recursion (3), which reads here as
∇2n1  hn, n ≥ 2, 1   − 1  h0, 0  . However, based on the identity (12), the
following simpler one-stage recursion is obtained.

Theorem 3.1. (One-stage Beekman recursion formula) The ultimate survival probabilities of a

compound Poisson risk process Xt ∑
i 1

Nt

Yi approximates the following one-stage recursion

1 − T0m    m−1  ∇m−1 −  ∑
j 1

m

hjm−j, m ≥ 3, 15

where the first few m′s are determined by
1 − T0m    T11  T20, 1 − T01    T10,

0  1 − , Tj  1 −
j  1

 , ∇j1
2   hj, 0  , j  0,1,2. 16

Proof. From Beekman’s convolution formula one knows that
Tz 

z −01−T0
z .

By insertion into (12) one gets the power series identity
z − 1 − z2z  01 − T0 1 − z2  zQz.

Comparison of coefficients yields after rearrangement the one-stage recursion (15). 

4. Factorial Moment Based Series Representations

Notations to be employed here are those of the preliminary Section 2. The existence of all
factorial moments of the random variable X is assumed. They are denoted by k  Pk1,
where by convention 0  1. The starting point is lemma 2.1, that is the identity
1 − z2z  1 − z − z1 − Pz. 17
By taking derivatives one obtains through induction the power series identities
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1 − z2′z − 21 − zz  −1    Pz  zP ′z, 18

1 − z2kz − 2k1 − zk−1z  k − 1kk−2z
 kPk−1z  zPkz, k ≥ 2. 19

Lemma 4.1. The stop-loss transform satisfies the following alternating series representation

n ∑
k n



−1k−n k
n mk1  mk2 , n ≥ 0, 20

where mk  k/k!,k ≥ 0.

Proof. Setting z  1 in (19) one obtains

k1  1
k1 Pk11  Pk2

1
k2 ,k ≥ 0.

The result follows from the rearranged Taylor expansion

z ∑
k 0


k

1

k! z − 1k ∑
k 0


k

1

k! ∑
n 0

k

−1k−n k
n zn

∑
n 0



∑
k n



−1k−n k
n  

k
1

k! zn . 

Remark 4.1. The first formula in the proof contains in particular the relations

1 ∑
n  0



n  1
2 1  2, ′1 ∑

n  0



nn  1
6 3 − 1, 21

where the k′s are the k-th moments about the origin. The first one is useful in the evaluation
of stop-loss distances between ordered random variables (see e.g. Kaas et al. [20], Section
VI.4).

As an even simpler result, we may show that the probabilities and the stop-loss transform
are alternating series in the factorial moments.

Theorem 4.1. (Factorial moment series representations) Suppose that all factorial moments
k exist, then one has the series representations

fn  −1n∑
k  n



−1k k
n mk  1

n! ∑
j  0


−1j

j! nj, n ≥ 0, 22

n  −1n∑
k n



−1k k−1
n−1 mk1,n ≥ 0, 23

with the convention
k
−1   1 if k  −1 and k

−1   0 if k  0,1,2, . . . . 24

Proof. Rearrange the Taylor expansion of Pz as in the proof of lemma 4.1 to get
immediately (22). Then the expression (23) follows from (22) by applying (3) and using
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binomial coefficient identities. Alternatively, reorder the summands in (20) to get

n  mn1  −1n ∑
k n 1



−1k−1 k−1
n  − k

n mk1

 mn1 − −1n ∑
k n 1



−1k−1 k−1
n−1 mk1.

Shifting the summation index yields (23). 

Example 4.1. An attractive counting distribution, for which these representations are useful, is
the mixed Poisson lognormal distribution discussed by Shaban in Crow and Shimizu [9], where
one misses expressions for the probabilities and the pgf. Theorem 4.1 applies with the factorial
moments (e.g. Hürlimann [15], Section 5)
k  kk2  j1

k 2j−1,   e,   e2 , 25
where , are the natural parameters of the lognormal distribution. Other examples include
the Euler and generalized Euler distributions (e.g. Benkherouf and Bather [2], Ramsay [27,28],
Charalambides [7], Kemp [23], Benkherouf and Alzaid [3], Janardan [17], Hürlimann [15]).

Remark 4.2. The alternating series (22) and (23) are kind of inversion formulas. For a discrete
arithmetic distribution with finite support 0,1,2, . . . ,m the series terminates at j  m. In this
special case, one finds the representation (22) in Johnson and Kotz [18], formula (1.162), p. 62.
Variants of (22), including convergence questions, have been used by Cramér et al. [8].

5. Recursions for Stop-Loss Transforms of Compound Distributions

In the present section, let X ∑
i 1

N

Yi, where the Yi′s are independent and identically

distributed, and independent of the counting random variable N. The (claim size) random

variable Y  Yi has pgf Qz ∑
n 0



hnzn and the counting random variable N has pgf

PNz ∑
n 0



pnzn. For simplicity, suppose that h0  0, a convenient assumption, which can be

removed if necessary. It is well-known that the random variable X has pgf Pz  PNQz.
The means   P ′1 and   Q′1 are assumed to be finite. Moreover, it is assumed that
N belongs to Panjer’s extended family of counting distributions first considered in Sundt [31]
(see also Sundt and Vernic [32]). More precisely, N is said to be of type Rka;b, with
a  a1, . . . ,ak,b  b1, . . . ,bk being some parameter vectors, if the following recursion
holds:

pn ∑
i 1

k

ai 
bi
n pn−i, n ≥ 1, p0  0, pn  0, n  0. 26

The type R1a;b describes the family of distributions by Katz [22] and Panjer [25], and the
type R2a, 0; b,c is studied by Schröter [29]. Letting k → , the type Ra;b is defined
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by the recursion

pn ∑
i 1



ai 
bi
n pn−i, n ≥ 1, p0  0,pn  0, n  0. 27

In particular, the class R0;b coincides with the pseudo compound Poisson distribution
introduced in Hürlimann [13,14] and recently revisited in [16].

In the following, recursions for compound distributions with counting function of the type

Rka;b are considered. Use again the notation of section 2, let Pz ∑
n 0



fn zn, Fn ∑
j 0



fj

the cumulative probability, Fn  1 − Fn the survival probability, and n  EX − n ,
n ≥ 0, the stop-loss transform. Consider the integrated tail distribution of X, which by lemma

2.2 is equal to Tn  1 −
n1
 ,n ≥ 0, and let Tz ∑

n  0



Tn zn be the corresponding pgf.

Similarly to (11) one has the identity 1 − zz   − z1 − zTz, |z|  1, which when
inserted in lemma 2.1 yields the relationship

Pz  1 − 1 − z2Vz, Vz    Tz. 28
Since

n→
lim Tn  1, the power series Tz and Vz are divergent. Therefore, the validity

of formulas derived from Vz must be analyzed carefully. However, as a rule, no
mathematical objection arises in case only formal power series manipulations and subsequent
comparisons of coefficients are made. This convenient procedure follows from an “old”
theorem of Borel [5], p. 44, that one finds in Boas [4] as explained by Gould [12] (see also
Niven [24] for a readable account). With this, it is possible to take derivatives in (28) and build
the ratio of power series

P′z
Pz 

1−z2Vz
′

1−z2Vz−1
. 29

Recall that Pz  PNQz and N is of type Rka;b. Using (26) one obtains

P′z
Pz 

∑ i1
k ai 

bi
n Qiz

′

1 − ∑ i1
k ai Qiz

. 30

Comparing (29) and (30) one obtains after rearrangement the identity

1 − z2Vz′  −∑
i 1

k

ai 
bi
n Qiz′

∑
i 1

k

ai 
bi
n Qiz′1 − z2Vz ∑

i 1

k

aiQiz1 − z2Vz′. 31

Comparing coefficients one obtains the recursion

n∇2Vn  −∑
i 1

k

ai 
bi
n nhn

∗i

∑
i 1

k

∑
j  0

n

nai 
bi
i j hj

∗i∇2Vn−j, n ≥ 1. 32
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But, the multiplication of power series is associative. Therefore, if Az ∑
n 0



an zn and

Bz ∑
n 0



bn zn, then the condition Az  1 − z2Bz  1 − z2Az  Bz implies the

relation

∑
j  0

n

aj∇2bn−j ∑
j  0

n

∇2ajbn−j. 33

Using this property, the recursion (32) can be rewritten in the synthetic form

n∇2Vn  −Rn
n ∑

j  0

n

∇2Rj
nVn−j,

V1   − 2  F0  F1, V0   − 1  1 − f0  F0, 34
where use has been made of the following auxiliary numbers

Rj
n ∑

i  1

k

Rj
ni, Rj

ni  nai 
bi
i j hj

∗i, j  0,1, . . . ,n. 35

With the simplifying assumption h0  0, one has R0
ni  0, i  1, . . . ,k, hence R0

n  0. A
recursion in terms of the stop-loss transform is obtained using the relations

Vn   − n1,∇2Vn  −∇2n1 , and the addition formula ∑
j  0

n

∇xj  xn .

Theorem 5.1. (Second-order backward difference recursion for stop-loss transform of

compound distributions) Let X ∑
i  1

N

Yi be a compound random variable with N of type

Rka;b. The stop-loss transform n  EX − n ,n ≥ 0, satisfies the recursion formula

n∇2n1  Rn
n − ∇Rn

n ∑
j  0

n

∇2Rj
nn1−j, n ≥ 1, 36

1   − 1  f0, 0  ,
where the sequence Rj

n is defined by (35).

Example 5.1. (Stop-loss transform of a discrete arithmetic distribution) The pgf Pz ∑
n  0



fn

zn, f0  0, has the so-called pseudo compound Poisson representation Pz  PNQz with

N Poisson() distributed, Qz ∑
n  0



hn zn with hn  rn/n,n ≥ 1,   − lnf0, and the

sequence rnn ≥1 is determined by the recursion (e.g. Hürlimann [16], Proposition 1)

rn f0  nfn −∑
j  1

n−1

rj fn−j, n ≥ 1. 37

In particular, the distribution is compound Poisson, or equivalently infinitely divisible, if, and
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only if, the sequence rnn ≥1 is non-negative (e.g. Katti [21], Feller [11]). In the Poisson case
one has k  1,a1  0,b1  , in (27), hence Rj

n  rj  jhj does not depend on n. In this
important compound Poisson situation one has the very simple stop-loss transform recursion

n∇2n1  rn − ∇rn ∑
j  0

n

∇2rjn1−j, n ≥ 1, 38

1   − 1  f0, 0  .
Similar but more complex recursions can be formulated by taking notice of the fact that

discrete arithmetic distributions are not only of pseudo compound Poisson type R0; r, but
also of some type Ra;b for any choice of a (see Sundt [31], Section 4B).

Example 5.2. (Recursion for the probabilities of a compound distribution) From (30) one
derives also the following recursive scheme for the probabilities of a compound distribution
with N of type Rka;b:

nfn ∑
j  1

n

Rj
n fn−j,n ≥ 1, f0  p0. 39

This generalization of the recursion by Panjer [25] is found in Sundt [31], Section 6A,
Corollary 5. Clearly, for a pseudo compound Poisson distribution of the type R0; r in

Example 5.1, one recovers the recursion nfn ∑
j  1

n

rj fn−j, n ≥ 1, f0  p0  exp−.
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