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Abstract. In this paper, we use the Yoshida approximation to prove the existence and
uniqueness of a solution for the backward doubly stochastic differential equation when the
generator is monotone and continuous. Before that we present the results for existence and
uniqueness of an adapted solution of the backward doubly stochastic differential equation
under some generals conditions.
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1. Introduction

A new kind of backward stochastic differential equations was introduced by Pardoux and
Peng [13] in 1994, which is a class of backward doubly stochastic differential equation
(BDSDEs in short) with two different directions of stochastic integrals, i.e., equations
involving both a standard forward stochastic integral and a backward stochastic integral. That
is, BDSDEs are stochastic differential equations of the form

T T T
Vo= &+ [ s YaZo)ds + | g(s Vs ZodBs — [ ZedWs, (1)

where the dW is a forward Itd integral and the dB is a backward Itd integral. The terminal
value £ and the functions f, g are supposed to be given. In [13], the existence and uniqueness of
the solution are established under a uniformly Lipschitz condition on the coefficients. It is
worth noting that the definition of solution of this type of equations is slightly different from
that of classical BSDEs. The BDSDEs (1) can be related to semilinear and quasilinear
stochastic partial differential equations (SPDEs). A link that was developed in many papers
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(see e. g. [1, 2, 3, 9, 12]) and has motivated many efforts to establish the existence and
uniqueness of solutions under more general conditions than the global Lipschitz one as done in
[4, 14, 15]. The equation for the adjoint process in optimal stochastic control of [10] is a linear
version of the following equation:
T T T

Yi=8+ It f(s,Ys,Zs)ds + jt 9(s,Ys, Zs)dBs — jt [h(s,Ys) + Zs]dWs. 2)
In this paper, we study the BDSDEs with monotone and continuous coefficients using the
Yosida approximation [11] and we obtain the existence and uniqueness of solution for
BDSDEs (1). First, we establish the existence and uniqueness for an adapted solution
(Yt,Zt) o<t Of equation (2). As well known, this result should be useful in optimal stochastic
control.
We also prove the existence and the uniqueness of the solution for the general equation

T T T
Vo= &+ j 5. Ys,Z5)ds + j 905, Y5, Z<)dBs - j (S, Y5, Zo)dWs, 3)

where h is P ® By ® Baxk/Bdx measurable, the mapping z — h(s,y,z) is a bijection for any
(s,@,Y).

The paper is organized as follows. In Sections 2, we state some notations, assumptions and
define a solution to the BDSDE. In Section 3, we present our first results for existence and
uniqueness of an adapted solution under certain conditions. Finally in section 4, we established
the existence and uniqueness of the solution in the case where the generator is continuous and
monotone.

2. Notation, Preliminaries and Assumptions

Let (Q,F,P) be a complete probability space and T > 0. Let {W;,0<t<T} and
{B:,0 <t < T} be two independent standard Brownian motions defined on (Q,F,P) with
values in R? and R, respectively. For t € [0, T], we define
Fo=FR'VFr, and G=F'VI?,
where 7Y = 6(Ws;0 < s <t) and 72 = 6(Bs — Bi;t < s < T), completed with P-null sets. It
should be noted that (F:) is not an increasing family of sub o —fields, and hence it is not a
filtration. However (G;) is a filtration. Denote by P the o —algebra of F: —progressively
measurable subsets of Q x [0, T].
Let M2(0,T,R?) denote the set of d—dimensional, jointly measurable stochastic processes
{py;t € [0, T]}, that satisfy :
@) E(j0|(pt|2dt> < .

(b) ¢+ is Fi —measurable, forany t € [0, T].

Definition 2.1. The solution of equation (1) is a couple (Y,Z) which belongs in
M2(0,T,RY) x M2(0, T, R%*) and satisfies equation (1).

Next we consider the following assumptions:
H1) g: Qx[0,T] x RY x R®™ - R™ pe measurable, g(.,Y,Z) € M2(0, T,R*), and there
existsa constantsL > 0 and 0 < A < 1, such that forevery (o,t) € Qx[0,T]and (Y,Z) €
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Rd % Rdxk’

ot Y, 2)—g(tY.Z) " <L|Y-Y' | +2|]z-Z'|".

H2) Let & be a square integrable random variable which is 1 — measurable.
H3) Let f: Qx[0,T] x RY x R™~ RYbe P ® By ® Byu/Ba —measurable,
a) f(.,0,0) € M2(0, T,RY)

b) There exist C > 0 such that

[f(t,z) — f(t,Z2")| < Cjz-Z'|.

H4) Let f: Qx[0,T] x RY x R™- R be P ® By ® Byu/Ba —measurable and
h:Qx[0,T]xRI> R™ be P® Ba/Bg«k —Measurable,

a) f(.,0,0) € M2(0,T,RY), h(.,0) € M2(0, T,R%k)

b) There exist C > Osuch that forall Y, Y' € RY, Z, Z' € R%,

[f(t,Y,Z2) —f(t,Y',Z2")| < C(|Y = Y'[+Z - Z')),

|h(t,Y) —h(t,Y)| < C|lY =Y.

H5) Let f: Qx[0,T] x RY x R R%be P ® By ® Ba/Bg —measurable and
h:Qx[0,T]xRIx R R™ e P® By ® Bax/Baxk —measurable,

a) f(.,0,0) € M2(0, T,R%), h(.,0,0) € M2(0, T,R%¥),

b)There exist C > 0 such that

[f(t,Y,Z) —f(t,Y',Z)|+h(t,Y,Z) = h(t,Y',Z"|+Z - Z')),

forallY, Y e RY, Z, Z' € R™ (t,0) a.e.

c) There exist B > 0 such that

|h(t,Y,Z) - h(t,Y,Z"|,

forallY e RY, Z, Z' € R™ (t,0) a.e.

3. Adapted Solution of Backward Doubly Stochastic DEs

In this section, let us consider the following lemma before the prove of the existence and
uniqueness of such solution for equation (2). We start by considering that f, g and h are
independent of (Y, 2).

Lemma 3.1. Under assumption (H2), fe M?©,T,RY), g e M?(0,T,R*!), and
h € M2(0, T,R%K), (YTZ) is asolutlon for the following equation:

. jt f(s)ols+jt g(s)dB; — j [h(s) + Z]dWs. (4)

Proof. We define the filtration G, = &' Vv 72 and the G;-square integrable martingale
Yy = EG[E + flf(s)ds - j;g(s)st], 0 <t < T. The martingale representation theorem yields
the existence of G;— progressively measurable process Z; with values in R®* such that
Ef |Zs|2ds < o and

Yi= Yo+ j Z,dWs.

IfZy =2 h(t) 0 <t<T,then

Yi= Yo+ j (h(s) + Zs)dWs ,
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and .
Yr =Yg +j (h(s) + Zs)dW.
0

As in the same proof of [13], it follows that (Y:,Zt)o«<r IS Fi —adapted and solves equation
(4). u

Now, we consider the following equation:

T T T
=&+ f(s,Z)ds + | g(s,Ys,Z5)dBs - [ [h(s) + ZJdWs. (5)
t t t

Proposition 3.1. Under assumptions (H1), (H2) and (H3), (Y,Z) is the unique solution for
equation (5).

Proof. (Uniqueness): Let AY: = Y{—Y4, and AZ; = Z; — Z; such that (Y,Z) and (Y},Z;) be
two solutlons of (5). Using It6’s formula for |AYt|2 we get

IAY,[? 2j (AYs, (s, Zs) — f(sZ))ds+2J~ (AYs,g(s, Vs, Zs) — g(s, Y., ZL))dBs

—2] (AYs, AZ<)dWs + j|g(s Ye,Zs) — g(s, Y. Z)|2ds—j IAZ;|2ds.
Taking the expectatlon leads to
EJAY{? + E j IAZq|2ds = 2E j (AYs, (s, Zs) — f(s,ZL))ds

+ EI l9(s,Ys, Zs) — g(s, Ys, Z4)|2ds.
Then by assumptlons (H1) and (TH3) we have
EJAY {2 + E j IAZ4|2ds < 2CEj IAY||AZs|ds + Ej (LIAYS|? + AJAZ4|2)ds

< CEj IAYs |2ds+zEj IAZs[2 + LE []|AZs[2.
Application, here of Gronwall s Lemma, y|elds the uniqueness of the solution.

(Existence): By the Picard iteration and lemma 3.1, we introduce an approximating sequence
as follow: Z? = 0 and (Y!,Z!)n=1 be a sequence in M2(t, T; RY) x M2(t, T; R%) defined by :

T T T
VP = e+ | fs.zehds+ [ (s Y3 ZedBs - [ NG + Z2ldWs, (6)

Let g € R, with integration by parts applied to [Y[*1 — Y]|?et we obtain,
T T
[YEH — YP[%eft + ﬁf [Yer —YQ|%efods = ZI (Y8 = YD)(f(s, Z8) — f(s, 28 71))ePods
t t

i
+2 [ (VI YD)(g(s, Y2,ZD) - o(s, VI, Z8))edBs
t

!
= [ orpt - v @t - znyerdw,
t
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T
+ [ lo(s,Y2,28) - g5, Y, 20 eods
t
T
- j |Z0+1 — Z0]2ehsds,
t
Taking the expectation, leads to
T T
E[YP™ - Yp2ef + BE [ Y2t - YI[2efods + E [ |z8 - Z3|%eds
t t
.
= 2E | (Y - YD)(f(5, Z8) - f(5,Z5))eods
t
T
+E [ 19(5,Y2,20) - o5, YT, 28 ) Perods.
t
By assumption (H1) and (H3) we get,
T T
E[YP™ - Yp2ef + BE [ Y2t - YIl2efods + E [ |z8 - Z3|%erds
t t
T 1 T
< gCZEj Y2+~ YDjehsds + LE j 120 — Zi-|efsds
t t
T T
+LE j YD — Y1 2ehsds + AE j IZ0 — Z0-1|2ebsds,
t

Now if we choose ¢ =

2L 2C
1 and B = T+ T o7 T we may deduce that

EYP - Vo2l + (2B j Yot Yn|2eﬂ5ds+5j jZot - zn|2eﬁ8ds

< HEJ (Lo|V2 — VI 4 |20 — 23 )eseds
It follows then that
n+1 n|2 n+1 n pBs
Ej(mw — YD) +Ef|z Z|)e ds
< (AR [T(Eo v - Yo + j22 - 29)eds.

Hence (Y") and (Z") are two Cauchy sequences in M2(0, T,RY) x M2(0,T,R%). By (6), (Y")
is also a Cauchy sequence in £2(Q,,C(0,T,R%)). Applying the limit to (6), as n — oo, we
obtain that Y = limp.. Y™ and Z = lim,.. Z" solve equation (5). |

In this part of the paper, we shall try to prove the existence and uniqueness of the solution
to equation (2).

Theorem 3.1. Under assumptions (H1), (H2) and (H3), equation (2) admits a unique solution.

Proof. (Uniqueness): Let AY; = Y- Y; and AZ; = Z; —Z{, such that (Y, Z:) and (Y{,Z) be
two solutions of (2). By applylng It6’s formula to |AY{|?, we get

EJAY |2 + E j IAZ4|2ds = 2E j (AYs, (s, Ys,Zs) — (s, Y5, Z1))ds
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]
+E [ 1965, Ys.Z9) - g(s. Y5, Z0)Pds
T
— 2E [ (AZ:,h(s,Y2) ~ (s, Y2)ds
t
)
~E [ In(s.Y) - h(s. Y)[ds.
t
Using assumptions (TH1) and (H4), Iead§ to
E[AY([2 + (1 - A)E [ |AZq[2ds < 2CE [ |AYS|(|AYs]+IAZq|)ds
t T t
+E [ (LIAYS2 +21AZ4?)ds
t
;
— 2CE [ |AZ[|AYslds — CE [ |AY4[2ds

< CE [ |av4f2as,
— t
for a certain C; and the result follows.

(Existence): Let Y? = 0 and (Y}, ZP)ns1 be a sequence in M2(t, T,RY) x M2(t, T,R%¥) defined
by :
T T
VP = [ f(s,YERZOds + [ g(s, Y0, Z00)dBs
t t
.
— [ Th(s, YI) + 2811, )
t

Application of 1td’s formula to |Y{** — Y{|? and utilization of assumptions (H1) and (H4) lead
to

)
EVE™ - YPI? < 2CE [ Y2 — YII(VE - Y3 }+Z8 - Z8-4))ds
t
’
HE [ (LIVE - Y + 2120 - 281 2)ds
t

T T
— C?E | V2 - Yo iP2ds - E |20 - 281 °ds.
_ t
Taking C to depend only (T)n Cand L, leads to ; .
EYP™ - YP[2 + (1 - A)E [ |28 - Z042ds < C(E [ [¥8™ - Y212ds + E [ Y2 - Y1-1{2ds).
t t t
We also have
_ T _ T
CE[YP - Yp)2 - CE j YL — yo|2ds < CE j VD — Yo-i|2ds,
t t
Then
T _ T _ T
E [ vart - vajeds < € [ exp(Cs —t))|:E [ ve- Yg—1|2ds]ds.
t t t
TheTinequaIity above can be apprToximated by
E[ vpt—vpprdt < ZEEDE vp-vitpds,
0 ’ 0

This implies that (Y") and (Z") are two Cauchy sequences in MZ2(0, T;RY) x M2(0, T; R%¥),
Moreover, (7) illustrates that (Y") converges in £2(Q;C(0,T;RY)). So we obtain that
Y = limp. Y"and Z = limp.., Z" solve equation (2). H

Now, let’s find a solution to equation (3).
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Theorem 3.2. Under the assumptions (H1), (H2) and (H5), there exists a unique solution to
equation (3).

Proof. Let us study the equation
T T T
Yi=¢+ [ f)ds+ [ g0sYeZodBs - [ h(s,Zo)dWs, ®)

when ¢ satisfies the assumption (H1), fe M2(0,T,RY), and h € M2(0,T,R%). The
uniqueness and existence of a solution to (8) were studied in lemma 3.1.
Next, we may consider the following equation:

T T T
Vo= e+ [ f(s.Zods+ [ g(5.Ys,Z5)dBs - [ (s, Ze)dWs,

where f, g, h satisfy the assumptions (H1) and (H3). The uniqueness and the existence of a
solution to this equation were proved in proposition 3.1.

Finally, we try to solve equation (3), starting with equation (8). Indeed by lemma 3.1, there
exists a unique solution to

T T T _
Yo=e+ [ f9)ds+ | g0sYeZodBs — | ZedWs,

where Z € M2(0,T,R%). Hence there exists a unique Z € M?2(0,T,R%) such that
h(t,Zy) = Z;, (t,®) a.e., from the assumption for h that for any (t,®,z) € [0,T] x Q x R¥
there exists a unique element ¢«(w,z) € R®* such that h(t,®, ¢:(w,z)) = Z. We show now
that ¢ is P ® Bg./Baxk —measurable. We assume that Q = ([0, T;R¥), Wi(w) = o, and Fr is
the Borel field over Q. Then the mapping H(t,w,2) = (t,0,h(t,w,2)) is a bijection from
[0,T] x Q x R into itself. Since [0,T] x Q x R is a complete and separable metric space,
from Theorem 10.5, page 506 in Ethier and Kurtz [8], we deduce that H=* is Borel measurable.
For each t the restriction of the same map to [0, T] x C([0, T];R%¥) x R%*, we obtain that H!
is P ® By« measurable and we get that ¢ is P ® Bgxk/Baxk —measurable. |

4. BDSDEs Under Monotonicity and General Increasing Growth
Conditions

Throughout this section we shall consider the following assumptions.
H6) g: Qx[0,T] x RYx R®™ - R™ pe measurable, g(.,Y,Z) € M2(0, T,R*), and there
exists a constant O<A<1such that for every (ot)eQx[0,T] and
(Y,Y',2,Z") € RY x RY x R x R¥K
9t Y, Z) =gt Y, Z) [ < AQY =Y/ [P+ 2= Z').
H7) f is continuous in (y,z) for almost all (t,®), f(.,y.z) € M2(0, T,R%)
a) For all (y,z) € RY x R® there exists C; > 0 such that
If(t.y, 2)| < [f(t,0,0)+C1(|Y+|Z]).
b) Forall (y,y',z,2") € R? x R? x R** x R%¥, there exists - < C < 2 such that
(y - y/’f(t’ Y, Z) - f(t!y/’ Zl)) < (1 - C)|Z - ZIZ - C|y - y/2_
Our main result is reported in this section.

Lemma 4.1. let ® : R" - R" be a continuous function and there exists a constant ¢ > 0 such
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that
(d(x) —d(x?), xt —x?) <— | xt—-x% |2, VvxL,x? eR"
Then for the Yosida approximation ®“ of @, @ > 0, we have
(i) (P(xt) - @e(x?), x! =x2) < —¢ | xt—x? |2
| @o(x}) —0(x?) | < (£ +c¢) | xt-x2 |
| @*(X) [ =] @) | +2¢ [ X |
(ii) For any a, > 0, we have
(@*(xH) = @F(x*),x" =x*) < (@ +B)(| (X)) | + | ®(?) | +¢ | x* | +¢ | x* [)*~c |
(iii) For any (x*)4-0 < R", x € R", if lim x* = x, then
a-0
lim ®%(x*) = d(x).

a—-0

This lemma can be proved by adopting the proof given in Da Prato and Zabczyk [5, 6].

Theorem 4.1. Under assumptions (H2), (H6) and (H7), there exists a unique adapted solution
(Yt,Zt) € M2(0, T,R%) x M2(0, T,R®¥) for equation (1).

Proof. (Uniqueness): Let (Y, Z;) and (Y{,Z;) be two solutions of equation (1). We call
AYt = Y¢—Yiand AZTt = Zi — Zt. Applying the 1t0 formulato | AY; |2 , we get
E | AYe |2 =2E[ | AYs [ f(s,Ys,Zo) - f(LY4Z4 | ds
T t T
+E[ 19 YsZ) -0 Y, Zh) [2ds—E[ | AZs |2 ds.
t t
Then by assumptiops (H6) and (H7), we have :
E | AY; |2 —Ej | AZq |2 dsg—(zc:—x)Ej | AYs |2 ds
t T t
—(2C—,1)Ej | AZs |2 ds.
t
Hence
T T
(2C—,1)Ej [| AYs |2 +| AZs |2]ds—Ej | AZs |2 ds <0,
t t
for %SCSZ and 0<A<1 Then we have EjtT | AYs |[2ds=0 and
ELT | AZs |2 ds = 0.
Thus there exists a unique adapted solution (Y1,Zt).; € M?(0,T,R?) x M2(0, T,R%*) for
equation (1).

(Existence): Assume h(t,y,z) = z, then equation (1) becomes like (3). To prove the existence,
we need to pass through the following four steps.

Step 1. There exists a unique adapted solution for the approximating BDSDEs (3), and for
arbitrary o > 0 the approximating BDSDEs of (3)is

T T
Ye= g | fos e, Ze)ds + [ o, Ye,Ze)dBs

T
-j he(s,Ye,Z8)dWs, 0<t<T, 9)
t

where (f*(t,Y¢,Z¢),—he(t,Y¢,Z¢)) is the Yosida approximation of (f(t, Y, Zt),—h(t, Y, Zt)).
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Then by lemma 4.1 we get,

|fa(t,y,Z) - fa(tiy/’Z,Z + |ha(t’ y1 Z) - ha(t’y/12,2 < (% + C)2(| y - y,2 + |Z - 2/2
Hence

2f*(t,y, z) — fe(t,y', 22 + 2|he(t,y,z) — he(t,y', 22 < 2(2 +¢)?(| y-y? +|z 2"
Furthermore

(lfa(t’ y1 Z) - fa(t’yliz/a(tyiz) - ha(t’y,12/2 < 2(% + C)Z( | y - y,2 + |Z - 2/2
Therefore

| fe(ty,z) - f Ly, 2ty 2) —he(ty',z") |
<J2(Z+0)(] y-y?+| z-2%)1
<V2E+o(y-y | +1z2-21), (10)
and by lemma 4.1, we have
(fe(ty,z) — fe(t,y', 2'(t,y, 2% (t,y,2),2-2') < — | z—z/|2,
which implies that
| h*(t,y,z) —hety,z)) || z-2' |>¢c]| z—z’|2.
Then
| he(t,y,z) —h*(ty,z) |>c | z-7|. (11)

Clearly (10) and (11) yield the assumptions of theorem 3.2. Hence, there exists a unique
adapted solution (Y, Z%) for equation (9) in M2(0, T,R%) x M2(0, T,R%),
Step 2. Estimation of Y%, Z%. By applying the 1t6 formula to | Y¢ |2, we obtain

E2=E | Y& |2 - Ejo | Y2 || fe(s,Y2,Z8) | ds—Ej | g(s,Y%,Z%) |2 ds
+Ej | he(s,Ye,28) |2 ds.
So
T T T
E|VYE |2 +2CEJ. (] Yo |2 4] 28 |2)ds<Ee§2+Ej ye |2 ds+E_f 1Z2)2ds
0
+Ej | g(s,Ye,Z9) |2 ds+Ej | f(s,0,0) |
—2Ej (Z2,h%(s,0,0))ds
]
+2Ej |ha(s,o,0)|ds+%5j 1Z2)2ds.
0 0

On another hand, we have
| fo(t YE, Z8) | < |f(L YE, ZE)H2C( Y+ ZE).

Then

| f(t,0,0) |2 +| h%(t,0,0) |2 <|[f(t,0,0)2.
Therefore

EVg2+(2C - 2 —A)Ej (Y22 + [22[2)ds

<Eg2+Ej | g(s,0,0) |2 ds+2Ej | f2(s,0,0) |2 ds.
Ultimately for < C <2 ifwelet
K = [2E§2+2E_f | g(s,0,0) |2 ds+4Ej | f(s,0,0) |2 ds}/(4C—3—21),
then
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;
EL(| Yo |2 4] Ze 2 )ds < K.

Step 3. (Y2,Z%) converge in M2(0, T,R?9) x M2(0, T,R%). Consider @ > 0 and g > 0 then
apply 1t6’s formulato | Y# — Y/ |2 to obtain

)
E | Y§—Yh 12 +2E [ (ve—YE 18G5, Y2, Z) — f(s, g, 28))ds
T ’ B P T B P
—Ej | g(s,Ye,Z2) —g(s, Y, 20) |2 ds+Ej | he(s,Ye,z2) —hb(s,YE,z8) |2 ds = 0.
0 0
Hence
;
E | VE-Y 12 - 26| (¢ - Z8,he(s,v2,28) - hO(s, YE, ZE))ds
0

;
+E[ | he(s,ve,ze) —hoGs,YE,ZE) |2 ds
0
T p
< —2CEj (Ve = YE2 + |22 — ZsP|2)ds
0
;
+ zEj (Ve - YE|2 + |22 - ZsP|2)ds
0
T B 5B
+2a+ PE[ [ ¥ Z0MIE YEZOD + he(s, Y2,29)

(s, YE, ZEleqveHzeYEZED ] ds,
which implies that
p T B2 B2
E | Y§—Y5 12 +@C-E [ (ve-YER+(zg - Z812)ds
0
]
< 26 | (z¢ -2 he(s, Y8, 28) - hA(s,YE, 28)ds
0
;
—E[ 1 hes ez —hiGs, YEZE) |2 ds
0
.
+2a+pE[ [ Y4z YEZOD + he(s,v2,29)
+he (s, YE, ZD)leC(IY eizall YL +(ZE] ) °ds
T B2 T B2
—Ej ze - Z82ds + E[ |22 — ZE)2ds.
0 0
Therefore :
E|vYe-YE |2 4 (2C—),—1)Ej (Ve — Y22 + 122 — ZsP|2)ds
0
:
<8+ BE[ [ Y220 + P, Y2 ZE)) + he(s, V2, Z9)[
+ A (s, YE, ZE)|2 + C2(IYe]? + (21 + IYE? + 1Z81%) ] ds.
Using | f(t,y,z) |<] f(t,0) | +C1(] y | +|z]) and Ej;(| y |2 +]z|?)dt < K, we deduce that
there exists a constant K' > 0, such T‘ghat
E|Yi-YE |2 +(2C—/1—1)Ej (Ve = Y82 + |22 — ZsP|2)ds < K'(a + B).
0

If I < C <2, then (Y?,Z%) 40 is a Cauchy sequence in M?(0, T,R?) x M2(0, T,R*¥); and we
denote its limit by (Y,Z) € M2(0, T,R%) x M2(0, T, R,

Step 4. Involves taking weak limits in the approximating equation (9). From lemma 4.1 and
assumptions (H6), (H7)a), there exist constant | and m such that
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| fo(t,YE,Z§) + g(t, YE, Z§) + he(t, YE, Z§) |2
<I(] f(t,0,0) |* +| 9(t,0,0) |?)+m(| Y§ |2 +| Z¢ |?).
So,Tthere exists a constant C, > 0 such that
Ejt | fo(s,Y%,Z%) +g(s, Y%, Z%) + ho(s,Y%,Z%) |2 ds < C,.
Therefore there exists a subsequence of

(fa(. !yaf Za)! g( !yaf Za)! ha(_ ’y(x’ Za))ﬂt>0
which converges weakly to (F, g, H) in the space M2(0,T,R¢ x R®! x R®), The weak limits

in the approxmatlngTequatlon 9 ¥|eld
Yt—§+j Fds+j §(s)dBs — jHolws

Similar to the proof by Darling and Pardoux [7], it remains to prove that
F = f(t, Yt,Z) g(t) = o(t, Yt,Zt) H: = h(t, Yt,Z) P—-a.s., a.e. t € [0, T]. Therefore

Vs e+ [ 16 Yo Zds + [ 905, Y5, Z)0Bs - [ Zeaw,
Then (Y, Zt) o<t IS an adapted solution of equation (1). Here the existence proof ends. |
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