http://www.jnmas.org/jnmas8-6.pdf

Euclidean Press, LLC Online: ISSN 2151-2302

Backward Doubly Stochastic Differential Equations With Monotone and Discontinuous Coefficients

B. MANSOURI¹, H. OUERDIANE², and I. SALHI²

¹University of Biskra, POBox 145, 07000 Biskra, Algeria; ²Faculty of Sciences of Tunis, University of Tunis El Manar, Tunisia, E-mail: mansouri.badreddine@gmail.com

Abstract. In this paper, we use the Yoshida approximation to prove the existence and uniqueness of a solution for the backward doubly stochastic differential equation when the generator is monotone and continuous. Before that we present the results for existence and uniqueness of an adapted solution of the backward doubly stochastic differential equation under some generals conditions.

Key words: Backward DSDEs, Monotone Coefficients, Discontinuous Coefficients, Adapted Solution, Existence and Uniqueness.

AMS Subject Classifications: 60H10, 60H05

1. Introduction

A new kind of backward stochastic differential equations was introduced by Pardoux and Peng [13] in 1994, which is a class of backward doubly stochastic differential equation (BDSDEs in short) with two different directions of stochastic integrals, i.e., equations involving both a standard forward stochastic integral and a backward stochastic integral. That is, BDSDEs are stochastic differential equations of the form

$$Y_{t} = \xi + \int_{t}^{T} f(s, Y_{s}, Z_{s}) ds + \int_{t}^{T} g(s, Y_{s}, Z_{s}) dB_{s} - \int_{t}^{T} Z_{s} dW_{s},$$
(1)

where the dW is a forward Itô integral and the dB is a backward Itô integral. The terminal value ξ and the functions f, g are supposed to be given. In [13], the existence and uniqueness of the solution are established under a uniformly Lipschitz condition on the coefficients. It is worth noting that the definition of solution of this type of equations is slightly different from that of classical BSDEs. The BDSDEs (1) can be related to semilinear and quasilinear stochastic partial differential equations (SPDEs). A link that was developed in many papers

(see e. g. [1, 2, 3, 9, 12]) and has motivated many efforts to establish the existence and uniqueness of solutions under more general conditions than the global Lipschitz one as done in [4, 14, 15]. The equation for the adjoint process in optimal stochastic control of [10] is a linear version of the following equation:

$$Y_{t} = \xi + \int_{t}^{T} f(s, Y_{s}, Z_{s}) ds + \int_{t}^{T} g(s, Y_{s}, Z_{s}) dB_{s} - \int_{t}^{T} [h(s, Y_{s}) + Z_{s}] dW_{s}.$$
 (2)

In this paper, we study the BDSDEs with monotone and continuous coefficients using the Yosida approximation [11] and we obtain the existence and uniqueness of solution for BDSDEs (1). First, we establish the existence and uniqueness for an adapted solution $(Y_t, Z_t)_{0 \le t \le T}$ of equation (2). As well known, this result should be useful in optimal stochastic control.

We also prove the existence and the uniqueness of the solution for the general equation

$$Y_{t} = \xi + \int_{t}^{T} f(s, Y_{s}, Z_{s}) ds + \int_{t}^{T} g(s, Y_{s}, Z_{s}) dB_{s} - \int_{t}^{T} h(s, Y_{s}, Z_{s}) dW_{s},$$
(3)

where h is $\mathcal{P} \otimes \mathcal{B}_d \otimes \mathcal{B}_{d \times k}/\mathcal{B}_{d \times k}$ measurable, the mapping $z \to h(s, y, z)$ is a bijection for any (s,ω,y) .

The paper is organized as follows. In Sections 2, we state some notations, assumptions and define a solution to the BDSDE. In Section 3, we present our first results for existence and uniqueness of an adapted solution under certain conditions. Finally in section 4, we established the existence and uniqueness of the solution in the case where the generator is continuous and monotone.

2. Notation, Preliminaries and Assumptions

Let (Ω, \mathcal{F}, P) be a complete probability space and T > 0. Let $\{W_t, 0 \le t \le T\}$ and $\{B_t, 0 \le t \le T\}$ be two independent standard Brownian motions defined on (Ω, \mathcal{F}, P) with values in \mathbb{R}^d and \mathbb{R} , respectively. For $t \in [0, T]$, we define

$$\mathcal{F}_t := \mathcal{F}_t^W \vee \mathcal{F}_{t,T}^B, \quad and \quad \mathcal{G}_t := \mathcal{F}_t^W \vee \mathcal{F}_T^B,$$

where $\mathcal{F}_t^W = \sigma(W_s; 0 \le s \le t)$ and $\mathcal{F}_{t,T}^B = \sigma(B_s - B_t; t \le s \le T)$, completed with *P*-null sets. It should be noted that (\mathcal{F}_t) is not an increasing family of sub σ -fields, and hence it is not a filtration. However (\mathcal{G}_t) is a filtration. Denote by \mathcal{P} the σ -algebra of \mathcal{F}_t -progressively measurable subsets of $\Omega \times [0, T]$.

Let $M^2(0,T,\mathbb{R}^d)$ denote the set of d-dimensional, jointly measurable stochastic processes $\{\varphi_t; t \in [0,T]\}$, that satisfy: (a) $E\left(\int_0^T |\varphi_t|^2 dt\right) < \infty$.

(a)
$$E\left(\int_0^t |\varphi_t|^2 dt\right) < \infty$$
.

(b) φ_t is \mathcal{F}_t -measurable, for any $t \in [0, T]$.

Definition 2.1. The solution of equation (1) is a couple (Y,Z) which belongs in $M^2(0,T,\mathbb{R}^d) \times M^2(0,T,\mathbb{R}^{d\times k})$ and satisfies equation (1).

Next we consider the following assumptions:

H1) $g: \Omega \times [0,T] \times \mathbb{R}^d \times \mathbb{R}^{d \times k} \to \mathbb{R}^{d \times l}$ be measurable, $g(.,Y,Z) \in M^2(0,T,\mathbb{R}^{k \times l})$, and there exists a constants L > 0 and $0 < \lambda < 1$, such that for every $(\omega, t) \in \Omega \times [0, T]$ and $(Y, Z) \in$

```
\mathbb{R}^d \times \mathbb{R}^{d \times k}
|g(t,Y,Z)-g(t,Y',Z')|^2 \leq L|Y-Y'|^2 + \lambda |Z-Z'|^2.
H2) Let \xi be a square integrable random variable which is \mathcal{F}_T – measurable.
H3) Let f: \Omega \times [0,T] \times \mathbb{R}^d \times \mathbb{R}^{d \times k} \to \mathbb{R}^d be \mathcal{P} \otimes \mathcal{B}_d \otimes \mathcal{B}_{d \times k}/\mathcal{B}_d -measurable,
a) f(...,0,0) \in M^2(0,T,\mathbb{R}^d)
b) There exist C > 0 such that
|f(t,Z) - f(t,Z')| \le C|Z - Z'|.
H4) Let f: \Omega \times [0,T] \times \mathbb{R}^d \times \mathbb{R}^{d \times k} \to \mathbb{R}^d be \mathcal{P} \otimes \mathcal{B}_d \otimes \mathcal{B}_{d \times k}/\mathcal{B}_d -measurable and
h: \Omega \times [0,T] \times \mathbb{R}^d \to \mathbb{R}^{d \times k} be \mathcal{P} \otimes \mathcal{B}_d/\mathcal{B}_{d \times k} -measurable,
a) f(.,0,0) \in M^2(0,T,\mathbb{R}^d), h(.,0) \in M^2(0,T,\mathbb{R}^{d\times k})
b) There exist C > 0 such that for all Y, Y' \in \mathbb{R}^d, Z, Z' \in \mathbb{R}^{d \times k},
|f(t, Y, Z) - f(t, Y', Z')| \le C(|Y - Y'| + |Z - Z'|),
|h(t,Y)-h(t,Y')| \le C|Y-Y'|.
H5) Let f: \Omega \times [0,T] \times \mathbb{R}^d \times \mathbb{R}^{d \times k} \to \mathbb{R}^d be \mathcal{P} \otimes \mathcal{B}_d \otimes \mathcal{B}_{d \times k}/\mathcal{B}_d -measurable and h: \Omega \times [0,T] \times \mathbb{R}^d \times \mathbb{R}^{d \times k} \to \mathbb{R}^{d \times k} be \mathcal{P} \otimes \mathcal{B}_d \otimes \mathcal{B}_{d \times k}/\mathcal{B}_{d \times k} -measurable,
a) f(.,0,0) \in M^2(0,T,\mathbb{R}^d), h(.,0,0) \in M^2(0,T,\mathbb{R}^{d\times k}),
b) There exist C > 0 such that
|f(t,Y,Z)-f(t,Y',Z')|+|h(t,Y,Z)-h(t,Y',Z'')|+|Z-Z'|,
for all Y, Y' \in \mathbb{R}^d, Z, Z' \in \mathbb{R}^{d \times k} (t, \omega) a.e.
c) There exist \beta > 0 such that
|h(t,Y,Z)-h(t,Y,Z'')|,
for all Y \in \mathbb{R}^d, Z, Z' \in \mathbb{R}^{d \times k} (t, \omega) a.e.
```

3. Adapted Solution of Backward Doubly Stochastic DEs

In this section, let us consider the following lemma before the prove of the existence and uniqueness of such solution for equation (2). We start by considering that f, g and h are independent of (Y,Z).

Lemma 3.1. Under assumption (H2),
$$f \in M^2(0,T,R^d)$$
, $g \in M^2(0,T,R^{k\times l})$, and $h \in M^2(0,T,R^{d\times k})$, (Y,Z) is a solution for the following equation:
$$Y_t = \xi + \int_t^T f(s)ds + \int_t^T g(s)dB_s - \int_t^T [h(s) + Z_s]dW_s. \tag{4}$$

Proof. We define the filtration $\mathcal{G}_t = \mathcal{F}_t^W \vee \mathcal{F}_T^B$ and the \mathcal{G}_t -square integrable martingale $Y_t = E^{\mathcal{G}_t}[\xi + \int_0^T f(s)ds + \int_0^T g(s)dB_s], \ 0 \le t \le T$. The martingale representation theorem yields the existence of \mathcal{G}_t - progressively measurable process \bar{Z}_t with values in $\mathbb{R}^{d\times k}$ such that $E\int_0^T |\bar{Z}_s|^2 ds < \infty$ and

$$Y_t = Y_0 + \int_0^t \bar{Z}_s dW_s.$$
If $Z_t = \bar{Z}_t - h(t)$, $0 \le t \le T$, then
$$Y_t = Y_0 + \int_0^t (h(s) + Z_s) dW_s,$$

$$Y_T = Y_0 + \int_0^T (h(s) + Z_s) dW_s.$$

As in the same proof of [13], it follows that $(Y_t, Z_t)_{0 \le t \le T}$ is \mathcal{F}_t -adapted and solves equation (4).

Now, we consider the following equation:

$$Y_{t} = \xi + \int_{t}^{T} f(s, Z_{s}) ds + \int_{t}^{T} g(s, Y_{s}, Z_{s}) dB_{s} - \int_{t}^{T} [h(s) + Z_{s}] dW_{s}.$$
 (5)

Proposition 3.1. Under assumptions (H1), (H2) and (H3), (Y,Z) is the unique solution for equation (5).

Proof. (Uniqueness): Let $\Delta Y_t = Y_t - Y_t'$, and $\Delta Z_t = Z_t - Z_t'$ such that (Y_t, Z_t) and (Y_t', Z_t') be

two solutions of (5). Using Itô's formula for
$$|\Delta Y_t|^2$$
, we get
$$|\Delta Y_t|^2 = 2 \int_t^T (\Delta Y_s, f(s, Z_s) - f(s, Z_s')) ds + 2 \int_t^T (\Delta Y_s, g(s, Y_s, Z_s) - g(s, Y_s', Z_s')) dB_s$$

$$-2 \int_t^T (\Delta Y_s, \Delta Z_s) dW_s + \int_t^T |g(s, Y_s, Z_s) - g(s, Y_s', Z_s')|^2 ds - \int_t^T |\Delta Z_s|^2 ds.$$

Taking the expectation, leads to

$$E|\Delta Y_{t}|^{2} + E \int_{t}^{T} |\Delta Z_{s}|^{2} ds = 2E \int_{t}^{T} (\Delta Y_{s}, f(s, Z_{s}) - f(s, Z'_{s})) ds + E \int_{t}^{T} |g(s, Y_{s}, Z_{s}) - g(s, Y'_{s}, Z'_{s})|^{2} ds.$$

Then by assumptions (H1) and (H3), we have
$$E|\Delta Y_t|^2 + E\int_t^T |\Delta Z_s|^2 ds \leq 2CE\int_t^T |\Delta Y_s||\Delta Z_s| ds + E\int_t^T (L|\Delta Y_s|^2 + \lambda|\Delta Z_s|^2) ds$$
$$\leq \bar{C}E\int_t^T |\Delta Y_s|^2 ds + \lambda E\int_t^T |\Delta Z_s|^2 + \frac{1}{2}E\int_t^T |\Delta Z_s|^2.$$

Application, here of Gronwall's Lemma, yields the uniqueness of the solution.

(Existence): By the Picard iteration and lemma 3.1, we introduce an approximating sequence as follow: $Z_t^0 \equiv 0$ and $(Y_t^n, Z_t^n)_{n\geq 1}$ be a sequence in $\mathcal{M}^2(t, T; \mathbb{R}^d) \times \mathcal{M}^2(t, T; \mathbb{R}^{d \times k})$ defined by :

$$Y_t^n = \xi + \int_t^T f(s, Z_s^{n-1}) ds + \int_t^T g(s, Y_s^{n-1}, Z_s^{n-1}) dB_s - \int_t^T [h(s) + Z_s^n] dW_s.$$
 (6)

Let $\beta \in \mathbb{R}$, with integration by parts applied to $|Y_t^{n+1} - Y_t^n|^2 e^{\beta t}$ we obtain.

$$|Y_t^{n+1} - Y_t^n|^2 e^{\beta t} + \beta \int_t^T |Y_s^{n+1} - Y_s^n|^2 e^{\beta s} ds = 2 \int_t^T (Y_s^{n+1} - Y_s^n) (f(s, Z_s^n) - f(s, Z_s^{n-1})) e^{\beta s} ds$$

$$+ 2 \int_t^T (Y_s^{n+1} - Y_s^n) (g(s, Y_s^n, Z_s^n) - g(s, Y_s^{n-1}, Z_s^{n-1})) e^{\beta s} dB_s$$

$$- \int_t^T (Y_s^{n+1} - Y_s^n) (Z_s^{n+1} - Z_s^n) e^{\beta s} dW_s$$

$$+ \int_{t}^{T} |g(s, Y_{s}^{n}, Z_{s}^{n}) - g(s, Y_{s}^{n-1}, Z_{s}^{n-1})|^{2} e^{\beta s} ds$$
$$- \int_{t}^{T} |Z_{s}^{n+1} - Z_{s}^{n}|^{2} e^{\beta s} ds.$$

Taking the expectation, leads to

$$E|Y_t^{n+1} - Y_t^n|^2 e^{\beta t} + \beta E \int_t^T |Y_s^{n+1} - Y_s^n|^2 e^{\beta s} ds + E \int_t^T |Z_s^{n+1} - Z_s^n|^2 e^{\beta s} ds$$

$$= 2E \int_t^T (Y_s^{n+1} - Y_s^n) (f(s, Z_s^n) - f(s, Z_s^{n-1})) e^{\beta s} ds$$

$$+ E \int_t^T |g(s, Y_s^n, Z_s^n) - g(s, Y_s^{n-1}, Z_s^{n-1})|^2 e^{\beta s} ds.$$

By assumption (H1) and (H3) we get,

$$\begin{split} E|Y_{t}^{n+1} - Y_{t}^{n}|^{2}e^{\beta t} + \beta E \int_{t}^{T} |Y_{s}^{n+1} - Y_{s}^{n}|^{2}e^{\beta s}ds + E \int_{t}^{T} |Z_{s}^{n+1} - Z_{s}^{n}|^{2}e^{\beta s}ds \\ & \leq \varepsilon C^{2}E \int_{t}^{T} |Y_{s}^{n+1} - Y_{s}^{n}|e^{\beta s}ds + \frac{1}{\varepsilon}E \int_{t}^{T} |Z_{s}^{n} - Z_{s}^{n-1}|e^{\beta s}ds \\ & + LE \int_{t}^{T} |Y_{s}^{n} - Y_{s}^{n-1}|^{2}e^{\beta s}ds + \lambda E \int_{t}^{T} |Z_{s}^{n} - Z_{s}^{n-1}|^{2}e^{\beta s}ds. \end{split}$$

Now if we choose $\varepsilon = \frac{2}{1-\lambda}$ and $\beta = \frac{2L}{1+\lambda} + \frac{2C^2}{1-\lambda}$, we may deduce that

$$E|Y_{t}^{n+1} - Y_{t}^{n}|^{2}e^{\beta t} + \left(\frac{2L}{1+\lambda}\right)E\int_{t}^{T}|Y_{s}^{n+1} - Y_{s}^{n}|^{2}e^{\beta s}ds + E\int_{t}^{T}|Z_{s}^{n+1} - Z_{s}^{n}|^{2}e^{\beta s}ds \\ \leq \frac{1+\lambda}{2}E\int_{t}^{T}\left(\frac{2L}{1+\lambda}|Y_{s}^{n} - Y_{s}^{n-1}|^{2} + |Z_{s}^{n} - Z_{s}^{n-1}|^{2}\right)e^{\beta s}ds.$$

It follows then that

$$E \int_{t}^{T} (\frac{2L}{1+\lambda} |Y_{s}^{n+1} - Y_{s}^{n}|^{2} + E \int_{t}^{T} |Z_{s}^{n+1} - Z_{s}^{n}|^{2}) e^{\beta s} ds$$

$$\leq (\frac{1+\lambda}{2})^{n} E \int_{t}^{T} (\frac{2L}{1+\lambda} |Y_{s}^{1} - Y_{s}^{0}|^{2} + |Z_{s}^{1} - Z_{s}^{0}|^{2}) e^{\beta s} ds.$$

Hence (Y^n) and (Z^n) are two Cauchy sequences in $\mathcal{M}^2(0,T,\mathbb{R}^d) \times \mathcal{M}^2(0,T,\mathbb{R}^{d\times k})$. By (6), (Y^n) is also a Cauchy sequence in $\mathcal{L}^2(\Omega,\mathcal{C}(0,T,\mathbb{R}^d))$. Applying the limit to (6), as $n \to \infty$, we obtain that $Y = \lim_{n \to \infty} Y^n$ and $Z = \lim_{n \to \infty} Z^n$ solve equation (5).

In this part of the paper, we shall try to prove the existence and uniqueness of the solution to equation (2).

Theorem 3.1. Under assumptions (H1), (H2) and (H3), equation (2) admits a unique solution.

Proof. (Uniqueness): Let $\Delta Y_t = Y_t - Y_t'$ and $\Delta Z_t = Z_t - Z_t'$, such that (Y_t, Z_t) and (Y_t', Z_t') be two solutions of (2). By applying Itô's formula to $|\Delta Y_t|^2$, we get

$$E|\Delta Y_t|^2 + E\int_t^T |\Delta Z_s|^2 ds = 2E\int_t^T (\Delta Y_s, f(s, Y_s, Z_s) - f(s, Y_s, Z_s)) ds$$

$$+ E \int_{t}^{T} |g(s, Y_{s}, Z_{s}) - g(s, Y'_{s}, Z'_{s})|^{2} ds$$

$$- 2E \int_{t}^{T} (\Delta Z_{s}, h(s, Y_{s}) - h(s, Y'_{s})) ds$$

$$- E \int_{t}^{T} |h(s, Y_{s}) - h(s, Y'_{s})|^{2} ds.$$

Using assumptions (H1) and (H4), leads to

$$E|\Delta Y_{t}|^{2} + (1 - \lambda)E \int_{t}^{T} |\Delta Z_{s}|^{2} ds \leq 2CE \int_{t}^{T} |\Delta Y_{s}| (|\Delta Y_{s}| + |\Delta Z_{s}|) ds$$

$$+ E \int_{t}^{T} (L|\Delta Y_{s}|^{2} + \lambda |\Delta Z_{s}|^{2}) ds$$

$$- 2CE \int_{t}^{T} |\Delta Z_{s}| |\Delta Y_{s}| ds - CE \int_{t}^{T} |\Delta Y_{s}|^{2} ds$$

$$\leq \bar{C}E \int_{t}^{T} |\Delta Y_{s}|^{2} ds,$$

for a certain \bar{C} ; and the result follows

(*Existence*): Let $Y_t^0 \equiv 0$ and $(Y_t^n, Z_t^n)_{n \geq 1}$ be a sequence in $\mathcal{M}^2(t, T, \mathbb{R}^d) \times \mathcal{M}^2(t, T, \mathbb{R}^{d \times k})$ defined

$$Y_{t}^{n} = \xi + \int_{t}^{T} f(s, Y_{s}^{n-1}, Z_{s}^{n-1}) ds + \int_{t}^{T} g(s, Y_{s}^{n-1}, Z_{s}^{n-1}) dB_{s}$$

$$- \int_{t}^{T} [h(s, Y_{s}^{n-1}) + Z_{s}^{n-1}] dW_{s}.$$
(7)

Application of Itô's formula to $|Y_t^{n+1} - Y_t^n|^2$ and utilization of assumptions (H1) and (H4) lead

$$\begin{split} E|Y_t^{n+1} - Y_t^n|^2 &\leq 2CE\int_t^T |Y_s^{n+1} - Y_s^n|(|Y_s^n - Y_s^{n-1}| + |Z_s^n - Z_s^{n-1}|)ds \\ &+ E\int_t^T (L|Y_s^n - Y_s^{n-1}|^2 + \lambda |Z_s^n - Z_s^{n-1}|^2)ds \\ &- C^2E\int_t^T |Y_s^n - Y_s^{n-1}|^2ds - E\int_t^T |Z_s^n - Z_s^{n-1}|^2ds. \end{split}$$

Taking \bar{C} to depend only on C and L, leads to

$$E|Y_t^{n+1}-Y_t^n|^2+(1-\lambda)E\int_t^T|Z_s^n-Z_s^{n-1}|^2ds\leq \bar{C}(E\int_t^T|Y_s^{n+1}-Y_s^n|^2ds+E\int_t^T|Y_s^n-Y_s^{n-1}|^2ds).$$

$$-E|Y_t^{n+1} - Y_t^n|^2 - \bar{C}E\int_t^T |Y_s^{n+1} - Y_s^n|^2 ds \le \bar{C}E\int_t^T |Y_s^n - Y_s^{n-1}|^2 ds.$$

$$E\int_t^T |Y_s^{n+1} - Y_s^n|^2 ds \leq \bar{C}\int_t^T \exp(\bar{C}(s-t)) \left[E\int_t^T |Y_s^n - Y_s^{n-1}|^2 ds\right] ds.$$

The inequality above can be approximated by
$$E \int_0^T |Y_t^{n+1} - Y_t^n|^2 dt \le \frac{\exp(\bar{c}T)}{n!} E \int_0^T |Y_s^n - Y_s^{n-1}|^2 ds.$$

This implies that (Y^n) and (Z^n) are two Cauchy sequences in $\mathcal{M}^2(0,T;\mathbb{R}^d)\times\mathcal{M}^2(0,T;\mathbb{R}^{d\times k})$. Moreover, (7) illustrates that (Y^n) converges in $\mathcal{L}^2(\Omega; \mathcal{C}(0,T;\mathbb{R}^d))$. So we obtain that $Y = \lim_{n\to\infty} Y^n$ and $Z = \lim_{n\to\infty} Z^n$ solve equation (2).

Now, let's find a solution to equation (3).

Theorem 3.2. Under the assumptions (H1), (H2) and (H5), there exists a unique solution to equation (3).

Proof. Let us study the equation

$$Y_t = \xi + \int_t^T f(s)ds + \int_t^T g(s, Y_s, Z_s)dB_s - \int_t^T h(s, Z_s)dW_s, \tag{8}$$

when g satisfies the assumption (H1), $f \in \mathcal{M}^2(0,T,\mathbb{R}^d)$, and $h \in \mathcal{M}^2(0,T,\mathbb{R}^{d\times k})$. The uniqueness and existence of a solution to (8) were studied in lemma 3.1.

Next, we may consider the following equation:

$$Y_t = \xi + \int_t^T f(s, Z_s) ds + \int_t^T g(s, Y_s, Z_s) dB_s - \int_t^T h(s, Z_s) dW_s,$$

where f, g, h satisfy the assumptions (H1) and (H3). The uniqueness and the existence of a proposition equation were proved in

Finally, we try to solve equation (3), starting with equation (8). Indeed by lemma 3.1, there exists a unique solution to

$$Y_t = \xi + \int_t^T f(s)ds + \int_t^T g(s, Y_s, Z_s)dB_s - \int_t^T \bar{Z}_s dW_s,$$

where $\bar{Z} \in \mathcal{M}^2(0,T,\mathbb{R}^{d\times k})$. Hence there exists a unique $Z \in \mathcal{M}^2(0,T,\mathbb{R}^{d\times k})$ such that $h(t,Z_t) = \bar{Z}_t$, (t,ω) a.e., from the assumption for h that for any $(t,\omega,z) \in [0,T] \times \Omega \times \mathbb{R}^{d\times k}$, there exists a unique element $\phi_t(\omega, z) \in \mathbb{R}^{d \times k}$ such that $h(t, \omega, \phi_t(\omega, z)) = Z$. We show now that ϕ is $\mathcal{P} \otimes \mathcal{B}_{d \times k}/\mathcal{B}_{d \times k}$ -measurable. We assume that $\Omega = ([0,T];\mathbb{R}^k), W_t(\omega) = \omega_t$, and \mathcal{F}_T is the Borel field over Ω . Then the mapping $H(t,\omega,z)=(t,\omega,h(t,\omega,z))$ is a bijection from $[0,T] \times \Omega \times \mathbb{R}^{d \times k}$ into itself. Since $[0,T] \times \Omega \times \mathbb{R}^{d \times k}$ is a complete and separable metric space, from Theorem 10.5, page 506 in Ethier and Kurtz [8], we deduce that H^{-1} is Borel measurable. For each t the restriction of the same map to $[0,T] \times \mathcal{C}([0,T];\mathbb{R}^{d\times k}) \times \mathbb{R}^{d\times k}$, we obtain that H^{-1} is $\mathcal{P} \otimes \mathcal{B}_{d \times k}$ measurable and we get that ϕ is $\mathcal{P} \otimes \mathcal{B}_{d \times k}/\mathcal{B}_{d \times k}$ –measurable.

4. BDSDEs Under Monotonicity and General Increasing Growth **Conditions**

Throughout this section we shall consider the following assumptions.

H6) $g: \Omega \times [0,T] \times \mathbb{R}^d \times \mathbb{R}^{d \times k} \to \mathbb{R}^{d \times l}$ be measurable, $g(.,Y,Z) \in M^2(0,T,\mathbb{R}^{k \times l})$, and there exists a constant $0 < \lambda < 1$, such for every $(\omega, t) \in \Omega \times [0, T]$ that $(Y, Y', Z, Z') \in \mathbb{R}^d \times \mathbb{R}^d \times \mathbb{R}^{d \times k} \times \mathbb{R}^{d \times k}$

$$|g(t,Y,Z)-g(t,Y',Z')|^2 \leq \lambda(|Y-Y'|^2+|Z-Z'|^2).$$

H7) *f* is continuous in (y,z) for almost all (t,ω) , $f(.,y,z) \in \mathcal{M}^2(0,T,\mathbb{R}^d)$

a) For all $(y,z) \in \mathbb{R}^d \times \mathbb{R}^{d \times k}$, there exists $C_1 > 0$ such that

 $|f(t,y,z)| \le |f(t,0,0)| + C_1(|Y| + |Z|).$ b) For all $(y,y',z,z') \in \mathbb{R}^d \times \mathbb{R}^d \times \mathbb{R}^{d \times k} \times \mathbb{R}^{d \times k}$, there exists $\frac{7}{4} < C < 2$ such that

$$(y-y',f(t,y,z)-f(t,y',z')) \le (1-C)|z-z'^2-C|y-y'^2.$$

Our main result is reported in this section.

Lemma 4.1. let $\Phi: \mathbb{R}^n \to \mathbb{R}^n$ be a continuous function and there exists a constant c > 0 such

that

$$(\Phi(x^1) - \Phi(x^2), x^1 - x^2) \le -c \mid x^1 - x^2 \mid^2, \quad \forall x^1, x^2 \in \mathbb{R}^n.$$

Then for the Yosida approximation Φ^{α} of Φ , $\alpha > 0$, we have

(i)
$$(\Phi^{\alpha}(x^{1}) - \Phi^{\alpha}(x^{2}), x^{1} - x^{2}) \le -c |x^{1} - x^{2}|^{2}$$

 $|\Phi^{\alpha}(x^{1}) - \Phi^{\alpha}(x^{2})| \le (\frac{2}{\alpha} + c) |x^{1} - x^{2}|$
 $|\Phi^{\alpha}(x)| \le |\Phi(x)| + 2c |x|$

(ii) For any $\alpha, \beta > 0$, we have

$$(\Phi^{\alpha}(x^{1}) - \Phi^{\beta}(x^{2}), x^{1} - x^{2}) \leq (\alpha + \beta)(|\Phi(x^{1})| + |\Phi(x^{2})| + c |x^{1}| + c |x^{2}|)^{2} - c |$$

(iii) For any $(x^{\alpha})_{\alpha>0} \subset R^n$, $x \in R^n$, if $\lim x^{\alpha} = x$, then $\lim \Phi^{\alpha}(x^{\alpha}) = \Phi(x).$

$$\lim_{\alpha \to 0} \Phi^{\alpha}(x^{\alpha}) = \Phi(x).$$

This lemma can be proved by adopting the proof given in Da Prato and Zabczyk [5, 6].

Theorem 4.1. Under assumptions (H2), (H6) and (H7), there exists a unique adapted solution $(Y_t, Z_t) \in M^2(0, T, \mathbb{R}^d) \times M^2(0, T, \mathbb{R}^{d \times k})$ for equation (1).

Proof. (Uniqueness): Let (Y_t, Z_t) and (Y_t', Z_t') be two solutions of equation (1). We call

$$\Delta Y_t = Y_t - Y_t' \text{ and } \Delta Z_t = Z_t - Z_t'. \text{ Applying the Itô formula to } |\Delta Y_t|^2 \text{ , we get}$$

$$E |\Delta Y_t|^2 = 2E \int_t^T |\Delta Y_s| |f(s, Y_s, Z_s) - f(t, Y_s', Z_s')| ds$$

$$+ E \int_t^T |g(s, Y_s, Z_s) - g(t, Y_s', Z_s')|^2 ds - E \int_t^T |\Delta Z_s|^2 ds.$$

Then by assumptions (H6) and (H7), we have

$$E \mid \Delta Y_t \mid^2 - E \int_t^T \mid \Delta Z_s \mid^2 ds \leq -(2C - \lambda)E \int_t^T \mid \Delta Y_s \mid^2 ds$$
$$-(2C - \lambda)E \int_t^T \mid \Delta Z_s \mid^2 ds.$$

Hence

Hence
$$(2C - \lambda)E\int_{t}^{T} [\mid \Delta Y_{s} \mid^{2} + \mid \Delta Z_{s} \mid^{2}] ds - E\int_{t}^{T} \mid \Delta Z_{s} \mid^{2} ds \leq 0,$$
 for $\frac{7}{4} \leq C \leq 2$ and $0 \leq \lambda \leq 1$. Then we have $E\int_{t}^{T} \mid \Delta Y_{s} \mid^{2} ds = 0$ and $E\int_{t}^{T} \mid \Delta Z_{s} \mid^{2} ds = 0.$

Thus there exists a unique adapted solution $(Y_t, Z_t)_{0 \le t \le T} \in M^2(0, T, \mathbb{R}^d) \times M^2(0, T, \mathbb{R}^{d \times k})$ for equation (1).

(Existence): Assume h(t, y, z) = z, then equation (1) becomes like (3). To prove the existence, we need to pass through the following four steps.

Step 1. There exists a unique adapted solution for the approximating BDSDEs (3), and for arbitrary $\alpha > 0$ the approximating BDSDEs of (3)is

$$Y_t^{\alpha} = \xi + \int_t^T f^{\alpha}(s, Y_s^{\alpha}, Z_s^{\alpha}) ds + \int_t^T g(s, Y_s^{\alpha}, Z_s^{\alpha}) dB_s$$
$$-\int_t^T h^{\alpha}(s, Y_s^{\alpha}, Z_s^{\alpha}) dW_s, \qquad 0 \le t \le T,$$

$$(9)$$

where $(f^{\alpha}(t, Y_t^{\alpha}, Z_t^{\alpha}), -h^{\alpha}(t, Y_t^{\alpha}, Z_t^{\alpha}))$ is the Yosida approximation of $(f(t, Y_t, Z_t), -h(t, Y_t, Z_t))$.

Then by lemma 4.1 we get,

$$|f^{\alpha}(t,y,z)-f^{\alpha}(t,y',z'^2+|h^{\alpha}(t,y,z)-h^{\alpha}(t,y',z'^2)| \le (\frac{2}{\alpha}+c)^2(|y-y'^2+|z-z'^2).$$
 Hence

$$2|f^{\alpha}(t,y,z)-f^{\alpha}(t,y',z'^{2}+2|h^{\alpha}(t,y,z)-h^{\alpha}(t,y',z'^{2})| \leq 2(\frac{2}{\alpha}+c)^{2}(|y-y'^{2}+|z-z'^{2}).$$

Furthermore

$$(|f^{\alpha}(t,y,z)-f^{\alpha}(t,y',z'^{\alpha}(t,y,z)-h^{\alpha}(t,y',z'^{2}\leq 2(\frac{2}{\alpha}+c)^{2}(|y-y'^{2}+|z-z'^{2}).$$

Therefore

$$| f^{\alpha}(t, y, z) - f^{\alpha}(t, y', z'^{\alpha}(t, y, z) - h^{\alpha}(t, y', z') |$$

$$\leq \sqrt{2} \left(\frac{2}{\alpha} + c \right) (| y - y'^{2} + | z - z'^{2})^{\frac{1}{2}}$$

$$\leq \sqrt{2} \left(\frac{2}{\alpha} + c \right) (| y - y' | + | z - z' |),$$

$$(10)$$

and by lemma 4.1, we have

$$(f^{\alpha}(t,y,z)-f^{\alpha}(t,y',z'^{\alpha}(t,y,z'^{\alpha}(t,y,z),z-z')) \leq -c \mid z-z' \mid^{2},$$

which implies that

$$\mid h^{\alpha}(t,y,z) - h^{\alpha}(t,y,z') \mid \mid z - z' \mid \geq c \mid z - z' \mid^{2}.$$

Then

$$|h^{\alpha}(t, y, z) - h^{\alpha}(t, y, z')| \ge c |z - z'|.$$
 (11)

Clearly (10) and (11) yield the assumptions of theorem 3.2. Hence, there exists a unique adapted solution (Y^{α}, Z^{α}) for equation (9) in $M^2(0, T, \mathbb{R}^d) \times M^2(0, T, \mathbb{R}^{d \times k})$.

Step 2. Estimation of
$$Y^{\alpha}$$
, Z^{α} . By applying the Itô formula to $|Y_t^{\alpha}|^2$, we obtain
$$E\xi^2 = E |Y_0^{\alpha}|^2 - 2E \int_0^T |Y_s^{\alpha}| |f^{\alpha}(s, Y_s^{\alpha}, Z_s^{\alpha})| ds - E \int_0^T |g(s, Y_s^{\alpha}, Z_s^{\alpha})|^2 ds + E \int_0^T |h^{\alpha}(s, Y_s^{\alpha}, Z_s^{\alpha})|^2 ds.$$

$$E \mid Y_{0}^{\alpha} \mid^{2} + 2CE \int_{0}^{T} (\mid Y_{s}^{\alpha} \mid^{2} + \mid Z_{s}^{\alpha} \mid^{2}) ds \leq E\xi^{2} + E \int_{0}^{T} \mid Y_{s}^{\alpha} \mid^{2} ds + E \int_{0}^{T} |Z^{\alpha}|^{2} ds + E \int_{$$

On another hand, we have

$$|f^{\alpha}(t,Y_t^{\alpha},Z_t^{\alpha})| \leq |f(t,Y_t^{\alpha},Z_t^{\alpha})| + 2C(|Y_t^{\alpha}| + |Z_t^{\alpha}|).$$

Then

$$|f^{\alpha}(t,0,0)|^2 + |h^{\alpha}(t,0,0)|^2 \le |f(t,0,0)|^2.$$

Therefore

$$E|Y_0^{\alpha}|^2 + (2C - \frac{3}{2} - \lambda)E \int_0^T (|Y_s^{\alpha}|^2 + |Z_s^{\alpha}|^2) ds$$

$$\leq E\xi^2 + E \int_0^T |g(s,0,0)|^2 ds + 2E \int_0^T |f^{\alpha}(s,0,0)|^2 ds.$$

Ultimately for $\frac{7}{4} \leq C \leq 2$, if we let

$$K = \left[2E\xi^2 + 2E \int_0^T |g(s,0,0)|^2 ds + 4E \int_0^T |f^{\alpha}(s,0,0)|^2 ds \right] / (4C - 3 - 2\lambda),$$

then

$$E\int_{T}^{T}(\mid Y_{s}^{\alpha}\mid^{2}+\mid Z_{s}^{\alpha}\mid^{2})ds\leq K.$$

Step 3. (Y^{α}, Z^{α}) converge in $M^2(0, T, \mathbb{R}^d) \times M^2(0, T, \mathbb{R}^{d \times k})$. Consider $\alpha > 0$ and $\beta > 0$ then

apply Itô's formula to
$$|Y_t^{\alpha} - Y_t^{\beta}|^2$$
 to obtain
$$E |Y_0^{\alpha} - Y_{0t}^{\beta}|^2 + 2E \int_0^T (Y_s^{\alpha} - Y_s^{\beta}, f^{\beta}(s, Y_s^{\beta}, Z_s^{\beta}) - f^{\alpha}(s, Y_s^{\alpha}, Z_s^{\alpha})) ds$$

$$-E \int_0^T |g(s, Y_s^{\alpha}, Z_s^{\alpha}) - g(s, Y_s^{\beta}, Z_s^{\beta})|^2 ds + E \int_0^T |h^{\alpha}(s, Y_s^{\alpha}, Z_s^{\alpha}) - h^{\beta}(s, Y_s^{\beta}, Z_s^{\beta})|^2 ds = 0.$$
Hence

$$E \mid Y_{0}^{\alpha} - Y_{0}^{\beta} \mid^{2} - 2E \int_{0}^{T} (Z_{s}^{\alpha} - Z_{s}^{\beta}, h^{\alpha}(s, Y_{s}^{\alpha}, Z_{s}^{\alpha}) - h^{\beta}(s, Y_{s}^{\beta}, Z_{s}^{\beta})) ds$$

$$+ E \int_{0}^{T} \mid h^{\alpha}(s, Y_{s}^{\alpha}, Z_{s}^{\alpha}) - h^{\beta}(s, Y_{s}^{\beta}, Z_{s}^{\beta}) \mid^{2} ds$$

$$\leq -2CE \int_{0}^{T} (|Y_{s}^{\alpha} - Y_{s}^{\beta}|^{2} + |Z_{s}^{\alpha} - Z_{s}^{\beta}|^{2}) ds$$

$$+ \lambda E \int_{0}^{T} (|Y_{s}^{\alpha} - Y_{s}^{\beta}|^{2} + |Z_{s}^{\alpha} - Z_{s}^{\beta}|^{2}) ds$$

$$+ 2(\alpha + \beta)E \int_{0}^{T} [(|f^{\alpha}(s, Y_{s}^{\alpha}, Z_{s}^{\alpha})| + |f^{\beta}(s, Y_{s}^{\beta}, Z_{s}^{\beta})|) + |h^{\alpha}(s, Y_{s}^{\alpha}, Z_{s}^{\alpha})|$$

$$+ |h^{\beta}(s, Y_{s}^{\beta}, Z_{s}^{\beta})| + C(|Y_{s}^{\alpha}| + |Z_{s}^{\alpha}| + |Y_{s}^{\beta}| + |Z_{s}^{\beta}|)]^{2} ds,$$

which implies that

$$E \mid Y_{0}^{\alpha} - Y_{0}^{\beta} \mid^{2} + (2C - \lambda)E \int_{0}^{T} (|Y_{s}^{\alpha} - Y_{s}^{\beta}|^{2} + |Z_{s}^{\alpha} - Z_{s}^{\beta}|^{2}) ds$$

$$\leq 2E \int_{0}^{T} (Z_{s}^{\alpha} - Z_{s}^{\beta}, h^{\alpha}(s, Y_{s}^{\alpha}, Z_{s}^{\alpha}) - h^{\beta}(s, Y_{s}^{\beta}, Z_{s}^{\beta})) ds$$

$$- E \int_{0}^{T} \mid h^{\alpha}(s, Y_{s}^{\alpha}, Z_{s}^{\alpha}) - h^{\beta}(s, Y_{s}^{\beta}, Z_{s}^{\beta}) \mid^{2} ds$$

$$+ 2(\alpha + \beta)E \int_{0}^{T} [|f^{\alpha}(s, Y_{s}^{\alpha}, Z_{s}^{\alpha})| + |f^{\beta}(s, Y_{s}^{\beta}, Z_{s}^{\beta})|) + |h^{\alpha}(s, Y_{s}^{\alpha}, Z_{s}^{\alpha})|$$

$$+ |h^{\beta}(s, Y_{s}^{\beta}, Z_{s}^{\beta})| + C(|Y_{s}^{\alpha}| + |Z_{s}^{\alpha}| + |Y_{s}^{\beta}| + |Z_{s}^{\beta}|)^{2} ds$$

$$- E \int_{0}^{T} |Z_{s}^{\alpha} - Z_{s}^{\beta}|^{2} ds + E \int_{0}^{T} |Z_{s}^{\alpha} - Z_{s}^{\beta}|^{2} ds.$$

Therefore

$$E \mid Y_{0}^{\alpha} - Y_{0}^{\beta} \mid^{2} + (2C - \lambda - 1)E \int_{0}^{T} (|Y_{s}^{\alpha} - Y_{s}^{\beta}|^{2} + |Z_{s}^{\alpha} - Z_{s}^{\beta}|^{2}) ds$$

$$\leq 8(\alpha + \beta)E \int_{0}^{T} \left[(|f^{\alpha}(s, Y_{s}^{\alpha}, Z_{s}^{\alpha})|^{2} + |f^{\beta}(s, Y_{s}^{\beta}, Z_{s}^{\beta})|^{2}) + |h^{\alpha}(s, Y_{s}^{\alpha}, Z_{s}^{\alpha})|^{2} + |h^{\beta}(s, Y_{s}^{\beta}, Z_{s}^{\beta})|^{2} + C^{2}(|Y_{s}^{\alpha}|^{2} + |Z_{s}^{\alpha}|^{2} + |Y_{s}^{\beta}|^{2} + |Z_{s}^{\beta}|^{2}) \right] ds.$$

Using $| f(t,y,z) | \le | f(t,0) | +C_1(|y|+|z|)$ and $E \int_0^T (|y|^2 + |z|^2) dt \le K$, we deduce that there exists a constant K' > 0, such that

$$E \mid Y_0^{\alpha} - Y_0^{\beta} \mid^2 + (2C - \lambda - 1)E \int_0^T (|Y_s^{\alpha} - Y_s^{\beta}|^2 + |Z_s^{\alpha} - Z_s^{\beta}|^2) ds \leq K'(\alpha + \beta).$$

If $\frac{7}{4} \leq C \leq 2$, then $(Y^{\alpha}, Z^{\alpha})_{\alpha>0}$ is a Cauchy sequence in $M^2(0, T, \mathbb{R}^d) \times M^2(0, T, \mathbb{R}^{d \times k})$; and we denote its limit by $(Y,Z) \in M^2(0,T,\mathbb{R}^d) \times M^2(0,T,\mathbb{R}^{d\times k})$.

Step 4. Involves taking weak limits in the approximating equation (9). From lemma 4.1 and assumptions (H6), (H7)a), there exist constant l and m such that

$$| f^{\alpha}(t, Y_{t}^{\alpha}, Z_{t}^{\alpha}) + g(t, Y_{t}^{\alpha}, Z_{t}^{\alpha}) + h^{\alpha}(t, Y_{t}^{\alpha}, Z_{t}^{\alpha}) |^{2}$$

$$\leq l(| f(t, 0, 0) |^{2} + | g(t, 0, 0) |^{2}) + m(| Y_{t}^{\alpha} |^{2} + | Z_{t}^{\alpha} |^{2}).$$

So, there exists a constant $C_2 > 0$ such that

$$E\int_{1}^{T} |f^{\alpha}(s, Y_{s}^{\alpha}, Z_{s}^{\alpha}) + g(s, Y_{s}^{\alpha}, Z_{s}^{\alpha}) + h^{\alpha}(s, Y_{s}^{\alpha}, Z_{s}^{\alpha})|^{2} ds \leq C_{2}.$$

Therefore there exists a subsequence of

$$(f^{\alpha}(.,y^{\alpha},z^{\alpha}),g(.,y^{\alpha},z^{\alpha}),h^{\alpha}(.,y^{\alpha},z^{\alpha}))_{\alpha>0}$$

which converges weakly to (F, \bar{g}, H) in the space $M^2(0, T, \mathbb{R}^d \times \mathbb{R}^{d \times l} \times \mathbb{R}^{d \times k})$. The weak limits in the approximating equation (9) yield

in the approximating equation (9) yield
$$Y_t = \xi + \int_t^T F_s ds + \int_t^T \bar{g}(s) dB_s - \int_t^T H_s dW_s.$$

Similar to the proof by Darling and Pardoux [7], it remains to prove that

From Front by Dating and Factors
$$\{Y_t, X_t, Z_t\}$$
, $\{T_t, X_t\}$, $\{T_t$

Then $(Y_t, Z_t)_{0 \le t \le T}$ is an adapted solution of equation (1). Here the existence proof ends.

Acknowledgements

The authors wish to thank an anonymous referee for his critical reading of the typescript.

References

- [1] K. Bahlali, R. Gatt, and B. Mansouri, Backward doubly stochastic differential equations with a superlinear growth generator, *Comptes Rendus Mathematique* **353**(1), (2015), 25-30.
- [2] R. Buckdahn, and J. Ma, Stochastic viscosity solutions for nonlinear stochastic partial differential equations I, *Stochastic Processes and Their Applications* **93**(2), (2001), 181-204.
- [3] R. Buckdahn, and J. Ma, Stochastic viscosity solutions for nonlinear stochastic partial differential equations II, *Stochastic Processes and Their Applications* **93**(2), (2001), 205-228.
- [4] B. Boufoussi, J. Van Casteren, and N. Mrhardy, Generalized backward doubly stochastic differential equations and SPDEs with nonlinear Neumann boundary conditions, *Bernoulli* **13**(2), (2007), 423-446.
- [5] G. Da Prato, and J. Zabczy, *Ergodicity for Infinite Dimensional Systems*, Cambridge University Press, Cambridge, 1996.
- [6] G. Da Prato, and J. Zabczy, *Stochastic Equation in Infinite Dimension*, Cambridge University Press, Cambridge, 1992.
- [7] R. W. R. Darling, and E. Pardoux, Backward stochastic differential equation with random terminal time, and application to semilinear elliptic PDE, *Annals of Probability* **25**(3), (1997) 1135-1159.
- [8] J. M. Ethier, and T.G. Kurtz, Markov Process: Characterization and Convergence, J.

Wiley, New york, 1986.

- [9] A. Gomez, K. Lee, C. Mueller, A. Wei, and J. Xiong, Strong uniqueness for an SPDE via backward doubly stochastic differential equations, *Statistics and Probability Letters* **83**(10), (2013), 2186-2190.
- [10] Y. Han, S. Peng, and Z.Wu, Maximum principle for backward doubly stochastic control systems with applications, *SIAM Journal on Control and Optimization* **48**(7), (2010), 4224-4241.
- [11] Y. Hu, On the solution of forward-backward SDEs with monotone and continuous coefficient, *Nonlinear Analysis* **42**, (2000), 1-12.
- [12] N. Mrhardy, An approximation result for nonlinear SPDEs with Neumann boundary conditions, *Comptes Rendus Mathematique* Acad. Sci. Paris **346** (1-2), (2008), 79-82.
- [13] E. Pardoux, and S. Peng, Backward doubly stochastic differential equations and systems of quasilinear SPDEs, *Probability Theory and Related Fields* **98**, (1994), 209-227.
- [14] Z. Wu, and F. Zhang, BDSDEs with locally monotone coefficients and Sobolev solutions for SPDEs, *Journal of Differential Equations* **251**, (2011), 759-784.
- [15] B. Zhu, and B. Han, Backward doubly stochastic differential equations with infinite time horizon, *Applications of Mathematics* **6**, (2012), 641-653.

Article history: Submitted February, 22, 2016; Accepted December, 23, 2016.