Journal of Numerical Mathematics and Stochastics, 9 (1) : 20-32, 2017 © JINM@S

http://www.jnmas.org/jnmas9-2.pdf Euclidean Press, LLC
Online: ISSN 2151-2302

A Transformed Double Step Length Method
for Solving Large-Scale Systems
of Nonlinear Equations

A.S.HALILU?, and M.Y. WAZIRI?

! Department of Mathematics and Computer Sciences, Sule Lamido University, Kafin Hausa, Jigawa,
Nigeria;?Department of Mathematical Sciences, Faculty of Science, Bayero University Kano, Kano,
Nigeria, E-mail: abubakarsaddiqu@gmail.com

Abstract. In this paper, we present a double direction and step length method for solving
large-scale systems of nonlinear equations, that is based on approximating the Jacobian with a
diagonal matrix by means of an acceleration parameter. This method is a new approach that
reduces the two step length into a single step length and employs a derivative-free line search
in order to obtain a suitable step length. Furthermore, this method is matrix-free, and so is
advantageous when solving large-scale nonlinear systems of equations. Under appropriate
conditions, we show that the proposed method is globally convergent. The preliminary
numerical results, reported in this paper, show that the method is practically quite effective.

Key words : Double Step Length, Double Direction, Global Convergence, Acceleration
Parameter, Systems of Nonlinear Equations.

AMS Subject Classifications : 65H11, 65K05, 65H12, 65H18

1. Introduction

This work deals with the system of nonlinear equations:

F(x) =0, 1)
where F : R" - R" is nonlinear map.

A renowned method for finding a numerical solution to (1) is the Newton’s method. The
method is simple to implement, and generates an iterative sequences<{xy} from a given initial
guess Xg in a neighborhood of the solution x* via
Xke1 = Xk — (F' (X)) T F(x), (2

20

21 A.S. HALILU and M. Y. WAZIRI

where k = 0,1,2,... and (F'(xx) is the Jacobian matrix.

The attractive features of this method are easy implementation and rapid convergence [4].
However, Newton’s method requires the computation of Jacobian matrix, which invokes the
first-order derivative of the system. It is well known that the computation of some function
derivatives are costly in practice, sometimes they are not even available or could not be
obtained exactly. In this case Newton’s method cannot be directly applied [3,15,16]. To
overcome such a difficulty, simple modifications of the Newton method have been introduced,
like the fixed Newton method [19] for the determination of solution x*, which is given by
X1 = Xk = (F'(x0)) "F(X), 3)
where k = 0,1,2,... A method that avoids the computation and storing the Jacobian in each
iteration (except at k = 0), but it still requires solving the system of n linear equations which
consumes increased CPU time as the system’s dimension increases [19].
A quasi-Newton’s method is another variant of Newton-type methods that replaces the
Jacobian, or its inverse, with an approximation which can be updated at each iteration [18]. Its
updating scheme is given by
Xkl = Xk — BElF(Xk), (4)
where By is the approximation of the Jacobian at xx. The rationale behind a quasi- Newton
method is to do with the evaluation cost of the Jacobian matrix [1,18].

It is vital to mention that due to the well known shortcomings of Newton’s method, a
double step length has been proposed in [1] and its pertaining iterative procedure is given by
Xk+1 = Xk + akdk + ﬁka, (5)
where Xk.1 represents a new iteration point, X is the previous iterative point, ax and B denote
the step lengths, while by and «cx are search directions respectively.

A transformation of double step length methods has originally been used in unconstrained
optimization problems. They are particularly efficient due to their convergence properties,
simple implementation, and low storage requirements [11]. Nevertheless, the study of
transformation of double step length methods for solving systems of nonlinear equations is
very scanty. For this reason we are motivated to write this paper.

We are interested in approximating the Jacobian with a diagonal matrix via
F'(xq) = yl, (6)
where | is an identity matrix.

Furthermore (1) can emerge from an unconstrained optimization problem, a saddle point,
and equality constrained problem [6]. Let f be a norm function defined by
fox) = ZIIFCOII%.)
The nonlinear equations problem (1) is equivalent to the following global optimization
problem
min f(x), x e R". (8)

The double direction method has been proposed in [2]. Using multi-step iterative
information and curve search to generate new iteration points. However, a multi-step algorithm
for minimization of a nondifferentiable function is presented in [2]. Moreover, a double
direction method for solving unconstrained optimization problem is presented in [8]. Recently,
a double step size method for solving unconstrained optimization problems is proposed in [9].

There are several procedures for the choice of the search direction [7, 8, 10, 13, 14, 2, 11]
mentioned above. The step length ax can also be computed either exact or inexact. It is very
expensive to find the exact step length in a practical computation. Therefore the most
frequently used line search in practice is inexact line search [18, 8, 9, 12, 17, 20]. A basic

A Double Step Length Method for Solving Large-Scale Systems of Nonlinear Equations 22

requirement of the line search is to sufficiently decrease the function values i.e. to
establish||F(Xk1)[|< [[F(XK) ||

We have organized the paper as follows. In the next section, we present the proposed
method. Convergence results are presented in section 3. Some numerical experiments and
results are reported in section 4. Finally, the paper concludes in section 5.

2. Main Result

In this section we intend to reduce the two step lengths ax and Sk in (5) into a single step
length. This reduction is made possible by the additional assumption:
Bx = 5ax. 9)
In order to incorporate more information on the iterates at each iteration and to improve on the
direction towards the solution, we suggest new directions bk and ci in (5) to be defined as:

di =~y F(xw), (10)

where y > 0 is an acceleration parameter, and

Ck = —F(X). (11)
So by putting (9),(10) and (11) into (5) we have the general scheme as:

Xkt = Xk + (ak + +okyk)dx. (12)

We proceed to obtain the acceleration parameter by using Taylor’s expansion of the first
order that leads to the following approximation:

F(Xki1) = F(Xk) + F'(&) (Xke1 — Xk), (13)
where the parameter & fulfills the conditions & € [Xk, Xk+1],
E=Xx+0(Xks1 —Xk), 0<86 <1 (14)

Bearing in mind that the distance between xi and X1 is small enough, we can take 6 = 1
in (14) and assume & = X1, SO @S

F'(§) = yial. (15)

Now from (13) and (15) it is not difficult to verify that:

F(Xkr1) — F(X) = 71 (Xie1 — X)- (16)

Taking Yk = F(Xk+1) — F(Xk) and sk = X1 — Xk, We have

Yk = ¥Yk+1Sk. (17)

By multiplying both side of (17) with y|, the acceleration parameter yields:

s = 2k (18)
Yk Sk

We then use the derivative-free line search proposed in [6] in order to compute our step
length ax. Let w1 >0, w2 >0 and r € (0,1) be constants and let nx be a given positive
sequence such that

an <n < oo, (19)
k=0
and
f(Xk+((xk+%(Xk yk)dk)—f(Xk) < —a)1||akF(Xk) || 2 _ [O)) ||(Xkdk|| 2 + nkf(Xk). (20)

Finally, let ix be the smallest non negative integer i such that (45) holds for o = rl and let
ax = r'«. Now we can list the algorithm of the proposed method.

23 A.S. HALILU and M. Y. WAZIRI

Algorithm 1(TDS)
STEP 1: Given Xg, yo = 0.01, € = 10™, setk = 0.
STEP 2: Compute F(x).
STEP 3: If||F(xk)|| < € then stop, else go to STEP 4.
STEP 4: Compute search direction dy = —y*F(X).
STEP 5: Compute step length ax(using (20)).
STEP 6: Set Xk = Xk + (ak + %akyk)dk.
STEP 7: Compute F(Xk+1). .
STEP 8: Determineg yx1 = {/ﬁ z'k‘ :
k
STEP 9: Setk = k+ 1, and go to STEP 3.

3. Convergence Analysis

This section is devoted to a study of the global convergence of our method (TDS). To
begin with, let us define the level set
Q = XFO) < [IFXo) [} (21)
In order to analyze the convergence of algorithm 1, we state the following assumption.

e Al

(1) There exists x* € R" such that F(x*) = 0.

(2) F is continuously differentiable in some neighborhood, say N, of x* containing Q.

(3) The Jacobian of F is bounded and positive definite on N, i.e. there exists positive constants
M > m > 0 such that

IF'O)I<SM VX e N, (22)

and

m|ld||? <d"F'(x)d Vvx e N,d e R" (23)
From the level set we have:

[FO)<mp VX e Q. (24)

Remark 3.1. Assumption Al implies that there exist constants M > m > 0 such that

mild||< [[F'(x)d||< M||d|| Vx € N,d € R". (25)

mlix—ylI< [[FO) —FW < Mlx=y[¥y € N. (26)

In particular Vx € N we have

mlx —x*[[< [FO) = [[FO) = F(X*) < M{[x = x*]], (27)

where x* stands, as usual, for the unique solution of (1) in N.
Since yxl approximates F'(xx) along direction s, we can contemplate another assumption:

e A2
vkl is a good approximation to F'(xx), i.e.
I (F' (i) — yihdill< e[Fx |, (28)

where € € (0,1) is a small quantity [18].

Lemma 3.1. Let A2 hold and {xx} be generated by algorithm 1. Then dy is a descent direction
for f(xx) at x i.e.

A Double Step Length Method for Solving Large-Scale Systems of Nonlinear Equations 24
Vi(xx)Tdy < 0. (29)

Proof. From (10) we have
Vf(Xk)Tdk = F(Xk)TFI(Xk)dk= F(Xk)T[(F/(Xk)—Yk|)dk—F(Xk)]

= F(x) T((F'(xk)=rid)di—= [Fxi) 1] (30)
By Cauchy Schwartz ineguality it follows that

Vi) "dis IFO T CCF (ki) =yiD)dil [=1 FO) 1< =(1 = ©) [F(xi) 112 (31)
Hence for € € (0,1) this lemma is true. H

By lemma 3.1, we can deduce that the norm function f(xx) is a descent along d , which
means that ||[F(Xk:1) || < [I[F(x) || is true.

Lemma 3.2. Let A2 hold and {xx} be generated by algorithm 1. Then {xx} < Q.

Proof. By lemma 3.1 we have |[F(xk1) < [[F(X«)[|. Moreover, we have for all k,

[FXk) = IFG) < [IFk-) -+ < TR o) I

This implies that {xx} < Q. |
Lemma [18] 3.3. Suppose that Al holds and {xx} is generated by algorithm1. Then there exists
a constant m > 0 such that, for all k,

Y Sk = m||sk||. (32)

Lemma 3.4. Suppose that Al holds and {xx} is generated by algorithm 1. Then

lim ||axdk||= 0, (33)
k—o0

and

lim [[akF(xk)|= 0, (34)
k—o0

both hold.

Proof. By (20) we have forall k > 0

o2llakdk]|? < o1]lakF(x) 1% + o2 || axdk|| 2
< IF)N12 = IFGiea) 12 + micl [F i) || (35)

By summing the above inequality, We can write

szua.d 12 <Z(||F(x)12 = IIF(Xis) |)+Zn.||F(X)||2
= |F(xo) 2= IF(xies) 1|2+ ZmnF(xi)nZ (36)

< [IF(xo)I? +m12nu < [F(xo)[|*+m Zm @37)
So from (24) and the fact that {ny} satisfies (19) it follows that the serles Z | aidi || 2

25 A.S. HALILU and M. Y. WAZIRI

convergent. This implies (33). In a similar way we can prove that (34) holds. |

Lemma 3.5. Suppose that Al holds and {x«} is generated by algorithm 1. Then there exists
some positive constants m, and m; such that, for all k > 0,

[[dk([< m2, (38)
and
llck[|< ma. (39)
Proof. By (26), we have
ldel= |- F(i) Y1 Skt IF&OIScalTYiall _ TFGGIMIISy 4 I
Pl s
Xk X0
S—— 5 S5 — (40)

: F M
Taking m; =%, leads to (38).
Also, from (11) and (24) we have,
ekl = I-Fxi) Il < [[Fi) | < ma. (41)
Here the proof completes. |

Moreover, we can deduce that for all k, (38) and (39) hold. Now we are going to establish
the following global convergence theorem to show that, under some suitable conditions, there
exists an accumulation point of {xx} which is a solution to (1).

Theorem 3.1. Suppose that Al holds and {xx} is generated by algorithm 1. Assume further,
for all k > 0, that

d

ay > clF 00 Gd (42)
[[dicll

where ¢ is some positive constant. Then

lim ||[F(xx)|= 0. (43)

k—o0

Proof. From lemma 3.5 we arrive at (38). Therefore by (34) and the boundedness of {|dx|},
we have

lim ay|/d«||? = 0. (44)
k—o0
From (42) and (44), it follows that
lim |F(Xk)Tdk|= 0. (45)
k—o0
On the other hand, (10) leads to
F(x) Tdk = =y [Fi0 12, (46)
and
IFxi)N1Z = [I-Fxi0) Tdkykll < [F(xk) Tdy- (47)
But))
il = y1k-_1 Sk-1 S mllS,_q |l S m||Sy_4 |l _m
> > 5 -
iall® yeal® T Mls P M

then

A Double Step Length Method for Solving Large-Scale Systems of Nonlinear Equations 26

il = 5

So from (47) we have,
IFe1? = IF Tl (). (48)
Thus
0 < IFeI” < IFxo Tl (44) — o (49)
Therefore
lim ||F(x)|= 0. (50)
X?this point, the proof is completed. H

4. Numerical Results

The performance of our method for solving nonlinear equations (1) is compared in this
section, with a derivative-free CG method. Here also we study the global convergence when
solving symmetric nonlinear equations [12]. It should be noted here that:

(i) A transformed double step length (TDS) stands for our method, for which we set the
following:
o1 =0, =10%r=0.2andnx = ——.

(k+1)
(ii) A derivative-free CG (DFCGQG) is the method proposed in [12] and for it we have
a)l—a)z—104 0—001 r—02andnk

(k+1)
Problem 1:
(2 - A
-1 2 -1
F(x) = o . e -l e DT X - (05,0505
-1 2
Problem 2:
(2 - A
0 2 -1
F(x) = o . X+ (sinxy — 1,...,sinxn —)T, X0 = (1,1,...,1)T.
-1 2

\ J

Problem 3:

27 A.S. HALILU and M. Y. WAZIRI

Fi(x) = x1(x +x3) - 1,
Fi(x) = Xi(xE.q + 2XF + X{1),
Fn(X) = Xn(X3_y +X3),
i=23,...,n-1.

Xo = (0.01,0.01,...,0.01)T.

Problem 4:

Fsii2(X) = Xai — 2Xsii1 — X5 — 1,
Fai2(X) = X3i — 2Xsi1 — X5 — 1,
Fai(X) = eXsi2 _ g Xai1
i=1..,1

Xo = (0.1,0.1,...,0.1)T.

Problem 5:

Fi(X) = (1 —x?) + Xi(L + XiXn-2Xn-1Xn) — 2,
i=1,2,...,n.

Xo = (0.7,0.7,...,0.7)T.

Problem 6:

F1(X) = x2 — 3xy + 1 + cos(X1 — X2),
Fi(x) = X3 — 3x; + 1 + cos(Xi — Xi_1),
i=12,...,n.

xo = (0.4,0.4,...,0.4)T.

Problem 7:
Fi(x) = xi — 0.1x2,
Fn(X) = Xn — 0.1x2,

i=1,2,...,n-1
xo = (1,1,...,1)7.
Problem 8:

Fi(x) = 0.i (1—xi)2—e X},
Fa(x) = L.(1-eXf),
i=1,2..n-1

Xo = (-0.1,-0.1,...,-0.1).

Problem 9:

Fi(x) = 2x; — sin|xj,
i=12,...,n

Xo = (-0.1,-0.1,...,-0.1)".

Problem 10:

X +X
COS(£L—~2
Fi=x1—e (n+l)1
Xi 4 +Xi+X;
COS(i—1 n+|l |+1>
Fi=Xi—e

A Double Step Length Method for Solving Large-Scale Systems of Nonlinear Equations 28

COS(Xn—1+xn)
Fn — Xn —e n+1

i=23,...n-1
Xo = (=2,-2,...,-2)T.

The employed computational codes were written in Matlab 7.9.0 (R2009b) and run on a
personal computer 2.00 GHz CPU processor and 3 GB RAM memory. We stopped the
iterations if the total number of iterations exceeds 1000 or ||F(xx)||< 10~4. We have tried the
two methods on the previous ten test problems with different initial points and dimension (n
values). Problems 1-7 are from [12] and problem 8 was arbitrarily constructed by us, while
problems 9 and 10 are from [17].

Table 1: The numerical results for TDS and DFCG for problems 1 to 5.

TDS DFCG

Problems | Dim | Iter | Time(s) | ||F(Xx)|| Iter Time(s) | ||FXw)|l
1 10 14 | 0.059241 | 2.79E-05| 34 | 0.139560 | 8.37E-05
100 | 15 | 0.071557 | 1.49E-05| 38 | 0.189075 | 9.55E-05

1000 | 16 | 0.490706 | 9.60E-05| 53 | 2.471807 |8.72E-05
10000 | 15 | 1.473685 |8.21E-05| 54 | 8.348075 | 8.10E-05

2 10 11 | 0.054593 | 5.34E-05| 49 0.175516 | 4.08E-05
100 | 12 | 0.069415 | 4.08E-05| 60 | 0.304922 | 8.65E-05

1000 | 12 | 0.353096 |6.48E-05| 67 | 3.228993 | 8.22E-05
10000 | 12 | 1.143396 |6.76E-05| 75 |12.382064 | 9.61E-05

3 10 15 | 0.005725 | 2.51E-05| 130 | 0.048701 | 9.10E-05
100 | 16 | 0.007151 | 5.57E-05| 124 | 0.065831 | 9.16E-05

1000 | 16 | 0.029844 | 9.39E-05| 129 | 0.213241 | 9.40E-05
10000 | 13 | 0.113851 |8.93E-05| 127 | 1.574677 | 8.34E-05

4 10 7 | 0.006096 |2.31E-05| 62 | 0.043354 |9.69E-05
100 7 | 0.005472 | 6.67E-05| 74 | 0.042591 | 5.19E-05

1000 | 8 | 0.012189 |9.65E-05| 77 | 0.164359 | 4.90E-05
10000 | 9 | 0.094071 | 6.65E-05 78 1.147510 | 6.30E-05

5 10 7 10.0021951|1.67E-05| 11 | 0.008832 | 1.86E-05
100 7 |1 0.004831 | 5.29E-05| 11 | 0.012392 | 5.88E-05

1000 8 0.013615 | 7.90E-07 | 12 0.044482 | 2.70E-07
10000 | 8 | 0.096588 |2.50E-06 | 12 | 0.148847 |8.55E-07

29 A.S. HALILU and M. Y. WAZIRI

The numerical results of the two methods are reported in tables 1 and 2,where "Iter" and
"Time" stand for the total number of all iterations and the CPU time in seconds, respectively,
while ||F(xk)|| is the norm of the residual at the stopping point. From tables 1 and 2, we can
easily observe that both of these methods attempt to solve the systems of nonlinear equations
(1), but the better efficiency and effectiveness of our proposed algorithm was clear for it solves
where DFCG fails. This is quite evident for instance with problem 6. In particular, the TDS
method considerably outperforms the DFCG for almost all the tested problems, as it has the
least number of iterations and CPU time, which are even much less than the CPU for the
DFCG method. This is apparently due to the computation of step length in each iteration of the
TDS as well as the approximation of the Jacobian through the acceleration parameter.

Table 2: The numerical results for TDS and DFCG for problems 6 to 10.

TDS DFCG
Problems | Dim | Iter | Time(s) | ||[F(Xx)|| Iter | Time(s) | [[F(XW)]l
6 10 6 |0.005406 | 3.24E-06 | — — —
100 6 |0.004294 | 1.02E-05| — — —
1000 | 6 |0.022208 | 3.24E-05| — — —
10000 7 |0.095078 | 4.73E-07| — — —
7 10 4 10.003252 | 6.59E-06 5 10.006986 | 5.23E-06
100 4 10.002224 | 1.91E-05 5 10.059992 2.35E-05
1000 | 4 |0.006047 | 5.89E-05 5 10.303477 | 7.52E-05
10000 | 5 |0.059346 | 9.50E-07 6 5.610828 | 4.64E-08
8 10 6 |0.003555|6.23E-05| 10 |0.003783|6.53E-05
100 8 10.003634 | 8.56E-05 9 0.010739 | 5.72E-05
1000 | 11 |0.017507 | 4.88E-05 9 0.031811 | 9.15E-05
10000 13 |0.118862 6.76E-05| — — —
9 10 4 10.003177 | 8.12E-05 6 0.003853 | 3.53E-11
100 6 |0.005008 | 1.53E-06 6 0.003912 | 1.12E-10
1000 | 6 |0.009973 | 4.82E-06 6 0.012268 | 3.53E-10
10000 | 6 |0.064697 | 1.53E-05 6 0.085342 | 1.12E-09
10 10 7 10.004101 | 9.59E-05| 13 |0.006429 |4.42E-05
100 5 10.004108 | 1.72E-06 5 10.004818 | 2.78E-06
1000 | 4 |0.018428 | 1.35E-05 0.018432 | 4.78E-06
10000 | 4 |0.076609 | 1.81E-05 0.090856 | 4.32E-05

Figures (1-2) exhibit the better performance of our method relative to the number of
iterations and CPU time, which were evaluated using the profiles of Dolan and Moré [5]. That
is, for each method, we plot the fraction P(z) of the problems for which the method is within a

A Double Step Length Method for Solving Large-Scale Systems of Nonlinear Equations 30

factor 7 of the best time. The top curve is the method that solved most problems in a time that
was within a factor 7 of the best time.

P(x)

Figure 1: Performance Profiles of TDS and DFCG methods with
respect to the number of iterations for problems 1-10

——TD3

CFCG 2

Figure 2: Performance Profiles of TDS and DFCG methods with
respect to the CPU time (in seconds) for problems 1-10

31 A.S. HALILU and M. Y. WAZIRI

5. Conclusion

In this paper we presented a transformed double step length (TDS) method for solving
large-scale systems of nonlinear equations and compared its numerical performance with that
of a derivative-free conjugate gradient (DFCG) method for symmetric systems of nonlinear
equations [12]. We have proved the global convergence of our proposed method by using a
backtracking type line search. Also the numerical results of the reported experiments
demonstrate the good efficiency of our method.

References

[1] C. G. Broyden, A class of methods for solving nonlinear simultaneous equations,
Mathematics of Computation 19, (1965), 577-593.

[2] N. 1. Dbaruranovic-milicic, A multi-step curve search algorithm in nonlinear optimization,
Yugoslav Journal of Operations Research 18, (2008), 47-52.

[3] D. W. Decker, and C.T. Kelley, Broyden’s methods for a class of problems having singular
Jacobian at root, SIAM Journal of Numerical Analysis 17(1), (1985), 566-574.

[4] J. E. Dennis, and R. B. Schnabel, Numerical Methods for Unconstrained Optimization and
Non-Linear Equations, Prentice Hall, Englewood Cliffs, NJ, 1983.

[5] E. Dolan, and J. More, Benchmarking optimization software with performance profiles,
Journal of Mathematical Programing 91(2), (2002), 201-213.

[6] D. Li, and M. Fukushima, A global and superlinear convergent Gauss-Newton based BFGS
method for symmetric nonlinear equation, SIAM Journal on Numerical Analysis 37, (1999),
152-172.

[7] K. Natasa, and L. Zorna, Newton-like method with modification of rigtht-hand vector,
Mathematics of Computation 71, (2001), 237-250.

[8] M. J. Petrovic, and P. S. Stanimirovic, Accelerated double direction method for solving
unconstrained optimization problems, Mathematical Problems in Engineering 2014, (2014),
Article ID 965104, 8p.

[9] M. J. Petrovic, An accelerated double step size model in unconstrained optimization,
Journal of mathematics and Computation 250, (2015), 309-319.

[10] M. Raydan, On Barzilai and Borwein choice of step length for the gradient method, IMA
Journal of Numerical Analysis 13, (1993), 321-326.

A Double Step Length Method for Solving Large-Scale Systems of Nonlinear Equations 32

[11] P. S. Stanimirovic, G. V. Milovanovic, M. J. Petrovic, and N. Z. Kontrec, A
transformation of accelerated double step size method for unconstrained optimization, Journal
of Mathematical Problems in Engineering 2015, (2015), Article 1D 283679, 8p.

[12] M.Y. Waziri and J. Sabiu, A derivative-free conjugate gradient method and its global
convergence for symmetric nonlinear equations, Journal of Mathematics and Mathematical
Sciences 2015 (2015), Article ID 961487, 8p.

[13] M.Y. Waziri, W. J. Leong, M. A. Hassan, and M. Monsi, A new Newton’s method with
diagonal Jacobian approximation for system of nonlinear equations, Journal of Mathematics
and Statistics 6(3), (2010), 246-252.

[14] M.Y. Waziri, W. J. Leong, and M. A. Hassan, Jacobian-free diagonal Newton’s method
for solving nonlinear systems with singular Jacobian, Malaysian Journal of Mathematical
Science 5, (2011), 241-255.

[15] M.Y. Waziri, W. J. Leong, M. A. Hassan, and M. Monsi, Jacobian computation-free
Newton method for systems of non-linear equations, Journal of Numerical Mathematics and
Stochastics 2, (2010), 54-63.

[16] M.Y. Waziri, and Z. A. Majid, An enhanced matrix-free secant mehod via
predictor-corrector modified line search strategies for solving systems of nonlinear equations,
Journal Mathematics and Mathematical Sciences 2013, (2013), Article ID 814587, 6p.

[17] Q-R. Yana, X-Z. Penga, and D-H. Li, A globally convergent derivative-free method for
solving large-scale nonlinear monotone equations, Journal of Computational and Applied
Mathematics 234, (2010), 649-657.

[18] G. Yuan, and X. Lu, A new backtracking inexact BFGS method for symmetric nonlinear
equations, Computers and Mathematics With Applications 55, (2008), 116-129.

[19] L. Zang, W. Zhou, and D. H. Li, Global convergence of modified Fletcher-Reeves
conjugate gradient method with Armijo-type line search, Numerische Mathematik 164(1),
(2005), 277-289.

[20] W. Zhou, and D. Shen, An inexact PRP conjugate gradient method for symmetric
nonlinear equations, Numerical Functional Analysis and Optimization 35, (2014), 370-388.

Avrticle history: Submitted January, 01, 2017; Revised May, 03, 2017; Accepted June, 06,
2017.

