Journal of Numerical Mathematics and Stochastics, 9 (1) : 80-94, 2017 © JINM@S
http://www.jnmas.org/jnmas9-6.pdf Euclidean Press, LLC
Online: ISSN 2151-2302

On Computing the Regularization Parameter for the
Levenberg-Marquardt Method Via the Spectral Radius
Approach to Solving Systems of Nonlinear Equations

Y.B.MUSAL M.Y. WAZIRI® and A.S.HALILU?

! Department of Mathematics and Computer Sciences, Sule Lamido University, Kafin Hausa, Jigawa,
Nigeria;?Department of Mathematical Sciences, Faculty of Science, Bayero University Kano, Kano,
Nigeria, E-mail: balarabemusa.yau@jsu.edu.ng

Abstract. In this paper, we present a Levenberg-Marquardt-type method for solving
symmetric nonlinear systems of equations. The pertaining regularization parameter is
computed using the spectral radius approach. Convergence results for the proposed method
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1. Introduction

This work deals with the system of nonlinear equations:

F(x) =0, 9]
where
F:R" >R, (2)

i.e. F = (f1,f2,f5,...,fn)T is a continuously differentiable system of functions. We denote the
Jacobian by J(x) = F'(x), V x € R". When iterated, it is denoted as Jx , which is also assumed
to be Lipschitz continuous.

This problem is one of the cornerstones in computation and applied mathematics, with
applications in physics, engineering , technology , economics , industries, etc. [1, 6, 9, 10, 14,
15]. Various methods have been widely implemented for solving (1). Typical examples are the
Newton, Gauss-Newton, Trust Region, quasi-Newton methods, etc. [2, 3, 11, 16]. As (1) is
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nonlinear, it may have no solution at all. In this work, we assume, however, that the solution
space of (1) is not empty.

The Levenberg-Marquardt method is a classical method for solving nonlinear system of
equations. In this method, the trial step di is computed at each iteration as
dg = —(JIJk + lk|)_lJIFK . 3)
The Levenberg-Marquardt parameter Ax or LM parameter is introduced to overcome the
difficulty when J[Ji is singular or very close to singularity [1, 8, 10, 12]. The parameter A is
updated in every iteration. Like the Newton iterative method, it is well known that the
Levenberg-Marquardt method is also of quadratic convergence, when the Jacobian matrix is
nonsingular and Lipschitz continuous at the solution of (1).

Here it is vital to mention that Fan and Yuan proposed in [9] the LM parameter Ax = ||F«]|
and advanced a related algorithm that has quadratic convergence. These authors also proved, in
[7], that if this parameter is chosen as Ax = ||F||°, & € (0,2], under a local error bound
condition, then the convergence order of the LM algorithm would be min{1 + ¢,2} .

Fan also introduced in [5] a Modified Levenberg-Marquardt method (MLM), with cubic
convergence, where the LM parameter was chosen as Ax = ux||F«||° with u > 0. Then Karas

and Santos chose the LM parameter, in [10], as min{u§, ui > when

L 2+/5
i = S @IFdi SR+ PRI, wi = 255 LRl @

where Py is the projection onto the range of the Jx matrix.

In the present work, we employ the spectral radius approach for computation of a novel
efficient and reliable LM parameter. Our proposed method exhibits remarkable advantages
over the ones presented in [8, 10].

The paper is organized as follows: in section 2, some preliminaries are presented. Section 3
contains the algorithm for the proposed method. Convergence results are presented in section
4. In Section 5, we report some numerical results to compare the new algorithm with that of
[10] and [8]. Then a final remark is presented in the last section.

2. Technical Results

Definition 2.1. (Spectral radius) Let A be an n x n matrix. The spectral radius of A, denoted as
p(A), is defined as p(A) = max{|ii| /A € o(A)}, where a(A) is the set of all eigenvalues of
the matrix A.

Lemma2.1. ForanyA € R™" b e R™, m>nandu > 0,
ICATA + ) 2ATD < 5= IProbll

where R(A) is the range of A and Pg(a) is the orthogonal projection onto this subspace.

Proof. Letb’ = Pryband S = (ATA + ul)"*ATh. It is noticeable that
(ATA + ul)s = ATb' . (5)
Using Singular Value Decomposition (SVD) of A, we have U and V unitary matrices m x m
and n x n respectively, such that UTAV = D,di; = oi,i = j and o; = 0 otherwise. Note that
VI =Vv1 U" =U1and VTATAV = (UTAV)TUTAV = D'D. .

Now, multiplying (5) by VT and using the substitutions 3 = Vs, b = UTh" in (5), we can
conclude that Db = VT(ATA + ui)V3 = (DD + pui)s.
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Oj

If n<m, then, by (5), we have §;= =2 bi , i=1,2,...,n. Moreover, since
i+
2 < > =
t/~(t + 1) <2Jﬁ> for u >0 and t >0, we have |J3]| < 2,/_ ———||b’||. Finally, as ||5 = ||s||, and
|Ibj|= |Ib’|l, the conclusion of the proof is directly reached. |

Theorem [10] 2.1. Forany u > 0, ||s|| = ||(ATA + ul)"*ATh|| < ZJ_ ——||P(F(x))]|| < ZJ_ ——||F(X)|],

where P stands for orthogonal projection onto the range of J(x).
For the details of the proof for this theorem, we refer the reader to lemma 2.1 and [10].

Theorem 2.2. Let A be an n x n square matrix , and let ||.|| be a consistent norm on R™". Then,
p(A) < Il

Proof. Let V be a vector norm consisten with the matrix norm ||.|| and let c(A) be the spectrum
of the matrix A. If (1,X) is an eigenpair of A with V(x) = 1. Then,

Al = IAIV(X) = V(AX) = V(AX) +[A]V(X) = [A]. (6)

Since A is an arbitrary eigenvalue of A, we have ||Al > max <|A|} = p(A) and thus,
e O(A)

p(A) < [IAll. u

2.1. Our choice of p

Considering the LM directions in theorem 2.1 and if it is equated to d, we have
d = (ATA+ u)*ATF(x),

[dll = [I-(ATA + u)ATEX)|

< [[(ATA + uh)HIIATFXO|
< IAFOOIL _ IRl @)
A A+ul]] — [|AA+pul]]
From the above equation and lemma 2.1, theorems 2.1 and 2.2, we have
IATIECOI -

- < F(x 8
ATl = 2pr IOl ®)
Clearly,

pQ) 1,

> 9
wz AT ©)
where Q = ATA + pl.

Here, our choice for u is

_ < LP@Q)

where § = Ak,L>O
k
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3.

Algorithm

Now we propose a new Levenberg-Marquadrt algorithm denoted as (SRLM) in which the

regularization parameter is computed via the spectral radius approach.

Algorithm 3.1. Input: xo € R, g € (0,1),n7 € [0,1),Lo > 0,6 >0ando > 0withLo > o
1.k« 0

2. while JJFx # 0 do, where Fyx = F(Xk),Jx = J(Xk)

3. compute p(Jx) = max|Ai| where A; are the eigenvalues of the matrix

Jx and p(Jy) is its spectral radius

csetQ = JJk+ul,u>0
. p(Q) = max|Ai|, where 4; are the eigenvalues of the matrix Q and p(Q) is its spectral radius

p(J)

. compute dx = —(J} Ik + ux)IFFy
A<
9. while [|[F(xx + |2 > [IFl|2 + Bt(di, JTFx) do

4
5

2
6. uk = (okLx) /4|: p(Q) J where Ly > 0and & = 1/kK fork > 1
7
8

A< t/2

. end while

=t

L2k = Xp+ (te + %)dk

.compute Fz, = F(zx),Jz, = J(zx)

- set X1 = zk — (37,37, + uk) 133, Fz,;
ifty < 1then

. Lk+1 = 2Lk

. else

 Ared = [[Fx,|I? = [IFx, lI?

. Pred = ||Fx, |2 = [IFx, + Ix, dil|> = u«lldi|?> = —(dk, Iz, Fx,)
. If Ared > n Pred then

Lk = max{%,o}

23.
24.
25.
26.
217.
28.

else

Lk = Lk
end if

end if

k<~ k+1

end while

3.1. Remarks

(i) The iteration begins with k = | — 1, and ends with k = | if JJFy # 0.

(if) If the iteration does not end at iteration k+ 1, then uy , d¢ are well defined and this
direction is a descent one for the square norn ||F(.)||>. Therefore the Armijo line search in step
7-10 of our algorithm 1 has finite termination. It means that, algorithm 1 is well defined and it
either terminates with JJFy = 0 or it generates the infinite sequences (xk), (d), (t), (1), Lk).
(iii) oL plays the role of the Lipschitz- constant of J(x).
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(iv) Though the spectral radius approach is a new concept for computing the LM parameter,
we observe that ux > 0 for both p(Q) and p(Jx) > 0.

It should be noted that we assume that algorithm 3.1, with the above inputs, does not stop at
step 2 and it generates (xx), (dk), (tk), (uk), Lk), as (infinite) sequences.

Proposition 3.1. If Ly > L, thentx = 1 and L1 = max{ L«/2,5}.

Proof. Suppose that Ly > L. Then from the definition of u and the stated assumption, the first
inequality of the proposition follows from that of the parameter in the definition of d, theorem
2.1 with g = py, X = Xk, S = di, and steps 7-11. The second inequality comes from the first
one and from steps 17-27. |

Proposition 3.2. For all k,
8 < L < max{Lo,2L}, (11)
and for infinitely many k, tx = 1.

Proof. Now, since Lo > 6§ and Ly1 > max{L/2,6} for all k, the first inequality in (10) also
holds for all k. The second inequality could be proved by induction with varying k. The
inequality holds trivially if k = 0. Assume that k #+ 0 and it holds for some k.

Steps 17-27 of the algorithm 3.1 imply that if ty =1, then Lya =Lk or
L1 = max{d,Lk/2} < Lk and in all the cases, the inequality holds for k + 1. If tx < 1, from
proposition 3.1, it implies that Lk < L and so Lk, = 2Lx < 2L. Therefore, the inequality holds
for k + 1; hence the proof of the first part is complete. For the proof of the second part of the
proposition, we suppose that ty < 1 for any k > ko.
Then, Lk + 2%,k = ko,ko + 1,ko + 2,... This is a contradiction with (11). Consider then
proposition 3.2 and step 5 of the algorithm 3.1, to write

SIF el < i < 2505 max{Lo, 2L IF o)l (12)
for all k. H

Proposition 3.3. For each k,
IF e IIP< IF GO +Bt (I Fi, die)
o I3’

[[9ll™+ 1y
As a cosequence, the sequence(||(xk)||) is strictly decreasing and

> gt A k” - < IFool

e VY

< [IFxOlI?> - B (13)

Proof. The first inequality follows from the stopping condition for the armijo line search (
steps 7-10). Considering the definition of sy and iy, aznd the fact that ux > 0, leads to
T
~OFF ) = OTF O+ ) IR = TRl
(191 Il + a1,
which implies trivially the second inequality. Moreover, the last statement of the proposition
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follows directly from (12). H

4. Convergence Analysis
The following results facilitate the convergence analysis of of algorithm 3.1.
Proposition 4.1. If the sequence (xx) is bounded, then it has a stationary accumulation point.

Proof. by proposition 3.2, ty = 1 for infinitely many k. Since (xx) is bounded, there exists a
subsequence (xk;) convergent to X, such that t; = 1 for all j.
Thus gomg by proposition 3.3,

UL F ||
Zﬁ 46T <R (xo)]|2.
117+

In addltlon Slnce F and J are continuous, ||F(xk)||, [[J|| and ux are bounded.
Hence, the sequence (J[J.ij) converges to 0. Then use continuity of both F and J to conclude

that J(X) TF(%X) = 0. |
Next we can prove that the step length is bounded away from zero.
Proposition24.2. If 6 > 0, then,
2
t > 86°/L
1+16 6/L
for all k.

Proof. For any t € [0, 1] the following holds.

2
L t3)ldll? + L IFOaol] -
2
< t (L lldll? + LIFO0 I -
o IFO + LIF (o)

IF(xk (12 + LIFID = allFxoll =

+Ly_
(1 5 15| +5)-1] (14)
The bound of t gives the first inequality, while the second from theorem 2.4 and the third from
the fact that ux > of|F(xk)||, as stated in (11).
By inequality (13) and Lemmza 2.3in [10], we have that if
2
0<t< 1 _ 80°/L |
N 1+16 6/L
1652 9

then,
[IF (i + tdi)ll> < [[F(xil|? + i, IEFi)-
Hence, the result follows from steps 7-10 of algorithm 3.1. |



Regularization Parameter Computation in the Levenberg-Marquardt Method 86
Proposition 4.3. If 6 > 0, then all accumulation points of the sequence (xx) are stationary for

the function ||F(x)||2.

Proof. Suppose that (xx;) converges to some X. From propositions 3.3 and 4.2, we have that

0 T 2
I F,
DyFE

2

=1 ||ka||2+.ukj
It follows from (11) and the continuity of F and J(x) that |[Jy||* + ux, is bounded. Therefore,
Ji F; converges to 0. L

Proposition 4.4. If 5 > 0 and (xk) is bounded, then

i . V= oL
|:1n;I:’Pk INxi)F(xi)|l= O( K )-

Proof. We define
M = sup{||Jk]|> + SLmax{Lo, 2L}||F«][}.
Then, by (11) and propositions 3.3 and 4.2, for any k, we have

k T 2
85%L% 3 Ji Fi
i=1 i i

and the result follows. l

5. Numerical Results

In this section, we report on some numerical results of our proposed method. The
performance of the algorithm 3.1 was tested on certain bench-mark problems in comparison to
two other LM methods. The algorithms were coded in MATLAB 7.10.0 (R2010a) and run on a
personal computer with a 3.0GHZ CPU processor.

The results are listed in Table 1-2 where different initial points were considered. We
adopted almost all the parameters used in [10] and the remaining ones are
Lo =20,e =10%n=1,=10"%and § = 1078.

We say that the method found a solution if

N* = ||JFFy]| < 1075 (15)
The meanings of the columns in Tables 1-2 are stated as follows:

n: the dimension of the problem;

# Iter: the total number of iterations;

#Fun: number of function evaluations;

cpu: the cpu time in seconds;

N*: denotes the stopping criterion.

We denote failure of the algorithm by —, and this migh occur due to low memory or N* > 10-°.
The proposed method and the other two metods were tested on some benchmark problems.

Problems 2-6 below are derived from [13], problem 1 is a modified form of problem 1 of [13],

while problem 7 is taken out of [4].
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Problem 1:
(3 )
-1 3 -1
F(x) = x+(f-1,...,ef-1DT.
B |
Y
Problem 2:
(2 4 A
0 2 -1
F(x) = X+ (sinxy —1,..., sinx, — 1)T.
. |
\ 12
Problem 3:
Fi(X) = X, (X; +X2) —1,
F.(X) = X.(X,+2X? + X2,),
F.(X) = X (X2 +X2).
1=2,3,..., n-1.
Problem 4:
Faiz(X) = X,—2 Xsi.1—X3—1,
Faia(X) = X, , X5 5 Xai — X5, + X5.,-2,
Fa(x) = e @ 2—e %,
i=1,..., %
Problem 5:
Fi(X)=(1—X) +X(1+X X, X, 1Xn) — 2.
i=23,...,n.
Problem 6:

F]_(X) — X2—3X1 +1 + COS(X]__ XZ))
Fi(X) = X1_3Xi +1 + COS(Xi— Xi-1),
i = 1,2,...,”.
Problem [4] 7:
Fi(X) =eX-1,i=1,23,...,n and X = (0.02,0.02,0.02,...,0.02)".

Problem 8:
Fi(X) =x2-4,i=1,23,....,n and Xo = (-1,-1,-1,...,-1)".
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Table 1 : Numerical CLM Results for problems 1 - 7

Problems | n | #lter | # Fun N* cpu Exist
1 10 8 9 |351E-17| 0.5478 1
100 @ 18 32 | 6.14E-11| 1.0321 1

500 | 20 38 | 9.61E-07 | 35.8419 | 1

1000 | 23 54 | 8.85E-10|204.6444| 0

2 10 10 22 | 3.43E-23| 0.7946 1
100 | 12 25 | 1.31E-24| 0.8178 1

500 | 15 31 |1.18E-24| 159103 | 1

1000 | 22 34 | 3.30E-24 | 48.0528 | 1

3 10 8 11 | 4.63E-17 | 0.0209 1
100 | 20 38 | 8.38E-08 | 1.0979 1

500 | 74 | 151 - 115.145 | 3

1000 | 84 | 170 - 1154436 | 3

4 10 17 26 - 0.2651 3
100 | 17 26 - 0.7987 3

500 | 18 27 - 22.128 3

1000 | 18 27 - 183.4044 | 3

5 10 5 6 |5.92E-31| 0.011 1
100 | 15 4 | 9.11E-17 | 0.1916 1

500 | 17 4.20E-24 | 3.2699 1

1000 | 19 7.71E-27 | 26.7783 | 1

6 10 8 11 | 4.63E-17 | 0.0209 1
100 | 20 38 | 8.38E-08 | 1.0979 1

500 | 74 | 151 - 115.145 | 3

1000 | 84 | 170 - 1154436 | 3

7 10 5 6 |5.92E-31| 0.011 1
100 | 15 5 |9.11E-17 | 0.1916 1

88
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Table 2 : Numerical ARCLM Results for problems 1 - 7

Problems | n | #Iter | # Fun N* cpu Exist
1 10 8 9 3.51E-17 | 0.2478 1
100 | 12 21 | 6.14E-11 | 1.0321 1

500 | 13 22 | 9.61E-07 | 17.8419 | 1

1000 | 14 29 | 8.85E-10 | 194.6444 | O

2 10 6 11 | 3.43E-23 | 0.0946 1
100 6 7 1.31E-24 | 0.5178 1

500 6 7 1.18E-24 | 5.9103 1

1000 | 6 734 | 3.30E-24 | 48.0528 | 1

3 10 8 11 | 4.63E-17 | 0.0209 1
100 | 20 38 | 8.38E-08 | 1.0979 1

500 | 74 | 151 - 115.145 | 3

1000 | 84 | 170 - 1154436 | 3

4 10 17 26 | 3.10E-09 | 0.2651 1
100 | 17 26 | 3.41E-011| 0.7987 1

500 | 18 27 | 1.72E-07 | 22.128 1

1000 | 18 27 - 183.4044 | 3

5 10 5 6 5.92E-31 | 0.011 1
100 | 20 38 | 8.38E-08 | 1.0979 1

500 | 74 | 151 - 115.145 | 3

1000 | 84 | 170 - 1154436 | 3

6 10 8 11 | 4.63E-17 | 0.0209 1
100 | 20 38 | 8.38E-08 | 1.0979 1

500 | 74 | 151 - 115.145 | 3

1000 | 84 | 170 - 1154436 | 3

7 10 5 6 5.92E-31 | 0.011 1
100 4 9.11E-17 | 0.1916 1
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Table 3 : Numerical SRLM Results for problems 1 - 7

Problems| n |#Iter | # Fun N* cpu Exist
1 10 6 9 |250E-16 | 0.0689 1
100 | 8 11 | 3.74E-21| 0.4653 1

500 8 11 | 7.59E-09 | 16.4488 | 1

1000 | 8 11 | 6.74E-17 | 142.0582 | 1

2 10 5 1.48E-17 | 0.0486 1
100 | 5 9.43E-19 | 0.3946 1

500 5 3.13E-20 | 11.9695 | 1

1000 | 5 3.09E-20 | 95.8803 | 1

3 10 7 10 | 9.85E-18 | 0.1744 1
100 | 8 11 | 3.74E-21| 0.4653 1

500 9 12 | 6.29E-21| 18.6814 | 1

1000 | 9 12 | 1.98E-16 | 154.9348 | 1

4 10 | 27 | 123 |5.00E-13| 0.589 1
100 | 26 | 123 | 5.26E-10| 2.2461 1

500 | 26 | 123 | 2.64E-7 | 144.0507 | 1

1000 | 27 | 128 - 255.188 | 3

5 10 5 4.42E-18 | 0.0216 1
100 | 5 4.12E-19 | 0.3548 1

500 2 8.96E-19 | 6.4269 1

1000 | 2 3.58E-21| 39.9825 | 1

6 10 7 10 | 9.85E-18 | 0.1744 1
100 | 8 11 | 3.74E-21| 0.4653 1

500 9 12 | 6.29E-21| 18.6814 | 1

1000 | 9 12 | 1.98E-16 | 154.9348 | 1

7 10 5 4.42E-18 | 0.0216 1
100 | 5 4.42E-18 | 0.0216 1

90

The results corresponding to the solved problems are depicted in the performance profiles
of Figures 1, 2 and 3, for the number of iterations, cpu time and function evaluation.The
outcomes of the three strategies, CLM [7], ACRLM [9], ARCLM and our proposed method
SRLM are respectively , displayed, row by row for each problem.
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It is well known that some variations of the CPU time might occur from one execution of
an algorithm to the other. We run seven times and consider the average CPU time of the last
six runs, where the first CPU time is discarded. Problems 4 was considered unsolved by the
CLM, which also has not solved problems 3 and 6 at higher dimensions. The ARCLM clearly
fails to solve problems 3, 4 and 7 at high dimensions. It is also worth noting that our proposed
method apparently fails to solve problem 4 at n = 1000.

It is moreover clear from Tables 1, 2, 3 and Figures 1, 2 and 3 that our method solves about
69% of the total tested problems with the least number of iterations and function evaluations.
Moreover, in contrast to the two other algorithms, it can also be observed that as the dimension
increases, our proposed algorithm requires less cpu time to get to the approximated solution. In
terms of robustness and efficiency, our method slightly outperformed both the CLM and
ARCLM with regard to number of iterations, cpu time and function evaluations.

5.1. Performance profiles
Below are figures illustrating the performance of our new SRLM method in comparison to

CLM and ARCLM. The comparison was made in terms of number of iterations, cpu-time and
function evaluations.

Figure 1: Performance profile for CRLM, ARCLM and SRLM methods
with respect to number of iterations for problems 1-7



Regularization Parameter Computation in the Levenberg-Marquardt Method

1 L] 1 L] 1 L] T Ii 1 II
i1
—+— CLM
—a— ACRLM ]
—+— SRLM
1 1 1 1 1
2 25 3 3.5 4

T

Figure 2: Performance profile for CRLM, ARCLM and SRLM methods
with respect to cpu-time for problems 1-7

1 T T |i T T T T f
—— CLM .
—a— ARCIM
= -
= D —+— SRLM
1 1 1 1 1
&0 B8O 100 120 140 180

T

Figure 3: Performance profile for CRLM, ARCLM and SRLM methods
with respect to function evaluations for problems 1-7
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6. Final Remarks

In this paper, we have proposed a new approach to computing the regularization parameter
in the Levenberg-Marquadrt method for solving nonlinear systems of equations. This is namely
the spectral radius approach which produces a moderate LM step that makes the iterates move
faster towards the solution. In term of convergence, all accumulation points of the sequence
generated by the algorithm are indeed stationary. From the numerical experiments conducted,
the spectral radius approach has shown that it is both efficient and competitive.

6.1. Future research challenges

The greatest challenge ahead, is how to apply the Levenberg-Marquardt algorithm with our
regularization parameter evaluation in areas of modern civil engineering, where most of the
problems are inverse and nonlinear in nature. The image compression is another area which
needs to be addressed by the algorithm since digital images and videos are still demanding in
terms of storage space and bandwidth. In recent years, Intelligent Mobile Robots are subjects
that have been receiving increasing attention. With all the existing literature on Neutral
Networks, finding minima of the error functions still pose a difficult problem.
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